Shrinking of Ischia Island (Italy) from Long-Term Geodetic Data: Implications for the Deflation Mechanisms of Resurgent Calderas and Their Relationships with Seismicity
Abstract
:1. Introduction
2. Geological Setting
3. GPS Network and Dataset Processing
4. Results
5. Displacement Field Modelling
6. Discussion
7. Conclusions
- (a)
- Ischia is characterized by a 1997–2017 deformation pattern indicating subsidence and contraction of its western sector.
- (b)
- The observed pattern is consistent with a deflating and contracting sill-like source located at 4 km depth. The sill is affected by cooling and degassing processes.
- (c)
- The recorded deformations are not compatible with the seismicity of the island, which is mainly associated with the dynamics of the hydrothermal system and not with that of the deflating sill.
- (d)
- A change in the rate of the recorded 1997–2017 deformation in the western sector of the island and/or the occurrence of a deformation pattern compatible with a source located in the eastern sector could be signs of the reactivation of the Ischia magmatic system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowenstern, J.B.; Smith, R.B.; Hill, D.P. Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems. Philos. Trans. Royal Soc. A 2006, 364, 2055–2072. [Google Scholar] [CrossRef] [PubMed]
- Caricchi, L.; Biggs, J.; Annen, C.; Ebmeier, S. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth Planet. Sci. Lett. 2014, 388, 166–174. [Google Scholar] [CrossRef]
- Macedonio, G.; Giudicepietro, F.; D’Auria, L.; Martini, M. Sill intrusion as a source mechanism of unrest at volcanic calderas. J. Geophys. Res. Solid Earth 2014, 119, 3986–4000. [Google Scholar] [CrossRef]
- Kwoun, O.I.; Lu, Z.; Neal, C.; Wicks, C. Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology 2006, 34, 5–8. [Google Scholar] [CrossRef]
- Newhall, C.G.; Dzurisin, D. Historical Unrest at large calderas of the world. US Geol. Survey Bull. 1988, 1855, 1–27. [Google Scholar]
- Trasatti, E.; Polcari, M.; Bonafede, M.; Stramondo, S. Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geophys. Res. Lett. 2015, 42, 3847–3854. [Google Scholar] [CrossRef]
- Chang, W.L.; Smith, R.B.; Farrell, J.; Puskas, C.M. An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys. Res. Lett. 2010, 37, L23302. [Google Scholar] [CrossRef] [Green Version]
- Foumelis, M.; Trasatti, E.; Papageorgiou, E.; Stramondo, S.; Parcharidis, I. Monitoring Santorini volcano (Greece) breathing from space. Geophys. J. Inter. 2013, 193, 161–170. [Google Scholar] [CrossRef]
- De Martino, P.; Tammaro, U.; Obrizzo, F.; Sepe, V.; Brandi, G.; D’Alessandro, A.; Pingue, F. The GPS network of Ischia Island: Ground deformations in an active volcanic area (1998–2010). Quad. Geofis. 2011, 95, 95. [Google Scholar]
- Tammaro, U.; De Martino, P.; Obrizzo, F.; Brandi, G.; D’Alessandro, A.; Dolce, M.; Malaspina, S.; Serio, C.; Pingue, F. Somma Vesuvius volcano: Ground deformations from CGPS observations (2001–2012). Ann. Geophys. 2013, 56, S0456. [Google Scholar] [CrossRef]
- Trasatti, E.; Acocella, V.; Di Vito, M.A.; Del Gaudio, C.; Weber, G.; Aquino, I. Magma degassing as a source of long-term seismicity at volcanoes: The Ischia island (Italy) case. Geophys. Res. Lett. 2019, 46, 14421–14429. [Google Scholar] [CrossRef] [Green Version]
- Vezzoli, L. Island of Ischia, Quad. Ric. Sci. 1988, 114, 133. [Google Scholar]
- Civetta, L.; Gallo, G.; Orsi, G. Sr- and Nd-isotope and trace-element constraints on the chemical evolution of the magmatic system of Ischia (Italy) in the last 55 ka. J. Volcanol. Geotherm. Res. 1991, 46, 213–230. [Google Scholar] [CrossRef]
- Gillot, P.-Y.; Chiesa, S.; Pasquaré, G.; Vezzoli, L. 33,000-yr K–Ar dating of the volcano–tectonic horst of the Isle of Ischia, Gulf of Naples. Nature 1982, 299, 242–245. [Google Scholar] [CrossRef]
- Sbrana, A.; Toccaceli, R.M.; Biagio, G.; Cubellis, E.; Faccenna, C.; Fedi, M. Carta Geologica n. 464 Isola di Ischia Scala 1:10.000- Cartografia e Note Illustrative; Regione Campania: Napoli, Italy, 2011. [Google Scholar]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Sepe, V.; Atzori, S.; Ventura, G. Subsidence due to crack closure and depressurization of hydrothermal systems: A case study from Mt Epomeo (Ischia Island, Italy). Terra Nova 2007, 19, 127–132. [Google Scholar] [CrossRef]
- Alessio, G.; Esposito, E.; Ferranti, L.; Mastrolorenzo, G.; Porfido, S. Correlazione tra sismicità ed elementi strutturali nell’isola d’Ischia. Il Quat. 1996, 9, 303–308. [Google Scholar]
- Tibaldi, A.; Vezzoli, L. A new type of volcano flank failure: The resurgent caldera sector collapse, Ischia, Italy. Geophys. Res. Lett 2004, 31, L14605. [Google Scholar] [CrossRef]
- Chiodini, G.; Avino, R.; Brombach, T.; Caliro, S.; Cardellini, C.; De Vita, S. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 2004, 133, 291–309. [Google Scholar] [CrossRef]
- Di Napoli, R.; Aiuppa, A.; Bellomo, S.; Brusca, L.; D’Alessandro, W.; Candela, E.G. A model for Ischia hydrothermal system: Evidences from the chemistry of thermal groundwaters. J. Volcanol. Geotherm. Res. 2009, 186, 133–159. [Google Scholar] [CrossRef]
- Panichi, C.; Bolognesi, L.; Ghiara, M.R.; Noto, P.; Stanzione, D. Geothermal assessment of the island of ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. J. Volcanol. Geotherm. Res. 1992, 49, 329–348. [Google Scholar] [CrossRef]
- Di Giuseppe, M.G.; Troiano, A.; Carlino, S. Magnetotelluric imaging of the resurgent caldera on the island of Ischia (southern Italy): Inferences for its structure and activity. Bull. Volcanol. 2017, 79, 85. [Google Scholar] [CrossRef]
- D’Auria, L.; Giudicepietro, F.; Tramelli, A.; Ricciolino, P.; Bascio, D.L.; Orazi, M. The seismicity of Ischia Island. Seism. Res. Lett. 2018, 89, 1750–1760. [Google Scholar] [CrossRef]
- Calderoni, G.; Di Giovambattista, R.; Pezzo, G.; Albano, M.; Atzori, S.; Tolomei, C.; Ventura, G. Seismic and geodetic evidences of a hydrothermal source in the Md 4.0, 2017, Ischia earthquake (Italy). J. Geophys. Res. Solid Earth 2019, 124, 5014–5029. [Google Scholar] [CrossRef]
- Braun, T.; Famiani, D.; Cesca, S. Seismological constraints on the source mechanism of the damaging seismic event of 21 August 2017 on Ischia Island (Southern Italy). Seism. Res. Lett. 2018, 89, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Cubellis, E.; Luongo, G. Il terremoto del 28 luglio 1883 a Casamicciola nell’isola d’Ischia—“Il contesto fisico” Monografia n.1, Presidenza del Consiglio dei Ministri; Servizio Sismico Nazionale, Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 1998; pp. 49–123. [Google Scholar]
- Anzidei, M.; Baldi, P.; Pesci, A.; Del Mese, S.; Esposito, A.; Galvani, A.; Loddo, F.; Massucci, A.; Cristofoletti, P. La rete geodetica dell’appennino centrale CA- GeoNet. Quad. Geofis. 2008, 54, 1–41. [Google Scholar]
- Avallone, A.; Selvaggi, G.; D’Anastasio, E.; D’Agostino, N.; Pietrantonio, G.; Riguzzi, F.; Serpelloni, E.; Anzidei, M.; Casula, G.; Cecere, G.; et al. The RING network: Improvement of a GPS velocity field in the central Mediterranean. Ann. Geophys. 2010, 53, 39–54. [Google Scholar] [CrossRef]
- Vespe, F.; Bianco, G.; Fermi, M.; Ferraro, C.; Nardi, A.; Sciarretta, C. The Italian GPS fiducial network: Services and products. J. Geodyn. 2000, 30, 327–336. [Google Scholar] [CrossRef]
- Beutler, G.; Bock, H.; Dach, R.; Fridez, P.; Gäde, A.; Hugentobler, U.P.; Jäggi, A.; Meindl, M.; Mervart, L.; Prange, L.; et al. Bernese GPS Software Version 5.0; Dach, R., Hugentobler, U., Fridez, P., Meindl, M., Eds.; Astronomical Institute, University of Bern: Bern, Switzerland, January 2007. [Google Scholar]
- Altamimi, Z.; Métivier, L.; Collilieux, X. ITRF2008 plate motion model. J. Geophys. Res. Solid Earth 2012, 117, B07402. [Google Scholar] [CrossRef]
- Devoti, R.; D’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; D’Ambrosio, C.; et al. A Combined Velocity Field of the Mediterranean Region. Ann. Geophys. 2017, 60, S0215. [Google Scholar] [CrossRef] [Green Version]
- Devoti, R.; Riguzzi, F. The velocity field of the Italian area. Rend. Fis. Acc. Lincei 2018, 29, 51–58. [Google Scholar] [CrossRef]
- Della Seta, M.; Marotta, E.; Orsi, G.; de Vita, S.; Sansivero, F.; Fredi, P. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: The case of Ischia island (Italy). Bull. Volcanol. 2012, 74, 79–106. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Atzori, S.; Manunta, M.; Fornaro, G.; Ganas, A.; Salvi, S. Postseismic displacement of the 1999 Athens earthquake retrieved by the Differential Interferometry by Synthetic Aperture Radartime series. J. Geophys. Res. Solid Earth 2008, 113, B09309. [Google Scholar] [CrossRef]
- Battaglia, M.; Pagli, C.; Meuti, S. The 2008–2010 Subsidence of Dallol Volcano on the Spreading Erta Ale Ridge: InSAR Observations and Source Models. Remote Sens. 2021, 13, 1991. [Google Scholar] [CrossRef]
- de Zeeuw-van Dalfsen, E.; Pedersen, R.; Hooper, A.; Sigmundsson, F. Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. J. Volcanol. Geotherm. Res. 2021, 213, 72–82. [Google Scholar] [CrossRef]
- Castaldo, R.; Gola, G.; Santilano, A.; De Novellis, V.; Pepe, S.; Manzo, M.; Tizzani, P. The role of thermo-rheological properties of the crust beneath Ischia Island (Southern Italy) in the modulation of the ground deformation pattern. J. Volcanol. Geotherm. Res. 2017, 344, 154–173. [Google Scholar] [CrossRef]
- Sbrana, A.; Marianelli, P.; Pasquini, G. Volcanology of Ischia (Italy). J. Maps 2018, 14, 494–503. [Google Scholar] [CrossRef]
SITE | East (mm/yr) | sigE (mm/yr) | North (mm/yr) | sigN (mm/yr) | Up (mm/yr) | sigUp (mm/yr) | Tin (initial; yr) | Tfi (final; yr) | # Campaign |
---|---|---|---|---|---|---|---|---|---|
AQMO | −1.3185 | 1.0561 | −0.8085 | 1.0672 | −3.7278 | 0.2328 | 2001 | 2018 | CGNSS |
BARA | −1.2012 | 1.2281 | 2.4108 | 1.4395 | −7.6995 | 5.8372 | 1998 | 2017 | 6 |
CHIU | −1.5085 | 0.5462 | 1.8581 | 0.6677 | −3.2606 | 2.471 | 1997 | 2017 | 7 |
EPOM | 0.6406 | 1.138 | 3.1905 | 1.3249 | −9.8474 | 4.9739 | 1997 | 2017 | 7 |
FAN1 | 1.8555 | 1.5572 | −1.8048 | 1.6763 | −2.9954 | 7.4253 | 1998 | 2017 | 6 |
FAN2 | 0.9177 | 1.335 | 2.0247 | 1.6369 | −10.1203 | 6.5496 | 1998 | 2017 | 6 |
FIAI | −1.9689 | 1.3448 | 0.5986 | 1.5824 | −6.6067 | 6.636 | 1999 | 2017 | 5 |
FORI | 1.2557 | 1.0692 | −1.3669 | 1.0853 | −2.7434 | 0.5228 | 1997 | 2018 | CGNSS |
ISCH | −1.2798 | 1.03 | −0.621 | 1.2643 | −3.0754 | 4.726 | 1997 | 2017 | 7 |
ISCK | −1.4056 | 1.057 | 1.3132 | 1.1506 | −4.2302 | 0.7274 | 2008 | 2018 | CGNSS |
MCOR | 3.1704 | 1.5771 | 1.2881 | 1.6606 | −7.7989 | 7.4588 | 2003 | 2017 | 3 |
MEPO | −1.1809 | 1.0394 | 3.3943 | 1.1477 | −15.1859 | 5.2276 | 2017 | 2018 | CGNSS |
MEZZ | −0.512 | 1.199 | −2.0104 | 1.4277 | −2.2951 | 5.6208 | 1997 | 2017 | 7 |
MOLA | −1.0144 | 0.9449 | 1.3155 | 1.1494 | −2.5843 | 4.4062 | 1998 | 2017 | 7 |
OSCM | −0.4383 | 1.0813 | −2.5699 | 1.1087 | −3.2291 | 0.3768 | 2010 | 2018 | CGNSS |
PANZ | 3.2801 | 1.2677 | 2.7378 | 1.5565 | −2.1145 | 6.0143 | 2010 | 2017 | 3 |
PCAR | −0.289 | 1.2238 | −1.6892 | 1.3691 | −1.9985 | 5.5785 | 1997 | 2017 | 7 |
PIMP | 2.8468 | 1.3238 | −0.6643 | 1.6352 | −3.5494 | 6.2291 | 1998 | 2017 | 6 |
SANT | −1.6167 | 1.1062 | 0.4773 | 1.1268 | −2.5306 | 0.4933 | 2013 | 2018 | CGNSS |
SER1 | 1.3107 | 0.062 | 3.3351 | 0.0748 | −6.8572 | 0.265 | 2001 | 2018 | CGNSS |
SUCC | 1.8514 | 1.2647 | 1.8193 | 1.6016 | −4.8232 | 6.0664 | 1998 | 2017 | 7 |
Model | Mesh (m) | Mean ∆ Volume (m3) |
---|---|---|
2 km Depth | 7000 × 7000 | −319,225 |
4 km Depth | 7000 × 7000 | −366,325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvani, A.; Pezzo, G.; Sepe, V.; Ventura, G. Shrinking of Ischia Island (Italy) from Long-Term Geodetic Data: Implications for the Deflation Mechanisms of Resurgent Calderas and Their Relationships with Seismicity. Remote Sens. 2021, 13, 4648. https://doi.org/10.3390/rs13224648
Galvani A, Pezzo G, Sepe V, Ventura G. Shrinking of Ischia Island (Italy) from Long-Term Geodetic Data: Implications for the Deflation Mechanisms of Resurgent Calderas and Their Relationships with Seismicity. Remote Sensing. 2021; 13(22):4648. https://doi.org/10.3390/rs13224648
Chicago/Turabian StyleGalvani, Alessandro, Giuseppe Pezzo, Vincenzo Sepe, and Guido Ventura. 2021. "Shrinking of Ischia Island (Italy) from Long-Term Geodetic Data: Implications for the Deflation Mechanisms of Resurgent Calderas and Their Relationships with Seismicity" Remote Sensing 13, no. 22: 4648. https://doi.org/10.3390/rs13224648
APA StyleGalvani, A., Pezzo, G., Sepe, V., & Ventura, G. (2021). Shrinking of Ischia Island (Italy) from Long-Term Geodetic Data: Implications for the Deflation Mechanisms of Resurgent Calderas and Their Relationships with Seismicity. Remote Sensing, 13(22), 4648. https://doi.org/10.3390/rs13224648