Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data
2.3. Delineation Processes
2.3.1. Step 1: Channel Boundary and Riparian Zone Delineation
2.3.2. Step 2: Classifying Vegetation vs. Non-Vegetation within the Riparian Zone
2.4. Analysis Design
2.4.1. Accuracy Assessment
2.4.2. Factors Impacting Accuracy
3. Results
3.1. Channel Boundary Delineation Accuracy
3.2. Riparian Vegetation Classification Accuracy
4. Discussion
4.1. Importance of Considering Channel Delineation Accuracy
4.2. Factors Impacting Channel Boundary Delineation and Riparian Vegetation Classification Accuracy
4.2.1. Stream Order Impact
4.2.2. Land Use and Riparian Width Impact
4.2.3. Image Shadow Effects
4.2.4. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, M.E.; Weller, D.E.; Jordan, T.E. Improved methods for quantifying potential nutrient interception by riparian buffers. Landsc. Ecol. 2006, 21, 1327–1345. [Google Scholar] [CrossRef]
- Iverson, L.R.; Szafoni, D.L.; Baum, S.E.; Cook, E.A. A Riparian Wildlife Habitat Evaluation Scheme Developed Using GIS. Environ. Manag. 2001, 28, 639–654. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing riparian zones for river health improvement: An integrated approach. Landsc. Ecol. Eng. 2021, 17, 195–223. [Google Scholar] [CrossRef]
- Klemas, V. Remote Sensing of Riparian and Wetland Buffers: An Overview. J. Coast. Res. 2014, 297, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Pu, G.; Quackenbush, L.J.; Stehman, S.V. Using Google Earth Engine to Assess Temporal and Spatial Changes in River Geomorphology and Riparian Vegetation. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 789–806. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landforms 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Claggett, P.R.; Okay, J.A.; Stehman, S.V. Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 334–343. [Google Scholar] [CrossRef]
- Fu, B.; Burgher, I. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid. Environ. 2015, 113, 59–68. [Google Scholar] [CrossRef]
- Yang, X. Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. Int. J. Remote Sens. 2007, 28, 353–370. [Google Scholar] [CrossRef]
- Salo, J.A.; Theobald, D.M. A Multi-scale, Hierarchical Model to Map Riparian Zones. River Res. Appl. 2016, 32, 1709–1720. [Google Scholar] [CrossRef]
- Ali, S.S.; Corner, R. Land cover change detection using ASTER and Landsat-7 ETM+ images: An application to forest resource management. In Proceedings of the 2003 Spatial Sciences Conference, Canberra, Australia, 22–26 September 2003; pp. 22–26. [Google Scholar]
- Johansen, K.; Phinn, S.; Witte, C. Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: Assessing accuracy and costs. Remote Sens. Environ. 2010, 114, 2679–2691. [Google Scholar] [CrossRef]
- Wasser, L.; Chasmer, L.; Day, R.; Taylor, A. Quantifying land use effects on forested riparian buffer vegetation structure using LiDAR data. Ecosphere 2015, 6, art10. [Google Scholar] [CrossRef]
- Dunford, R.; Michel, K.; Gagnage, M.; Piégay, H.; Trémelo, M.-L. Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. Int. J. Remote Sens. 2009, 30, 4915–4935. [Google Scholar] [CrossRef]
- Räpple, B.; Piégay, H.; Stella, J.C.; Mercier, D. What drives riparian vegetation encroachment in braided river channels at patch to reach scales? Insights from annual airborne surveys (Drôme River, SE France, 2005–2011). Ecohydrology 2017, 10, e1886. [Google Scholar] [CrossRef]
- Hollenhorst, T.P.; Host, G.E.; Johnson, L.B. Scaling Issues in Mapping Riparian Zones with Remote Sensing Data: Quantifying Errors and Sources of Uncertainty. In Scaling and Uncertainty Analysis in Ecology; Springer: Dordrecht, The Netherlands, 2006; pp. 275–295. [Google Scholar] [CrossRef]
- Donovan, M.; Belmont, P.; Notebaert, B.; Coombs, T.; Larson, P.; Souffront, M. Accounting for uncertainty in remotely-sensed measurements of river planform change. Earth-Sci. Rev. 2019, 193, 220–236. [Google Scholar] [CrossRef]
- Finlayson, G.D.; Hordley, S.D.; Lu, C.; Drew, M.S. On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.L.; Goebel, P.C. A functional approach to riparian area delineation using geospatial methods. J. For. 2011, 109, 233–241. [Google Scholar] [CrossRef]
- NYS DEC. Trees for Tribs. Available online: www.dec.ny.gov/animals/77710.html (accessed on 16 November 2021).
- Makarewicz, J.C.; Lewis, T.W.; Rea, E.; Winslow, M.J.; Pettenski, D. Using SWAT to determine reference nutrient conditions for small and large streams. J. Great Lakes Res. 2015, 41, 123–135. [Google Scholar] [CrossRef]
- Conley, A.K.; Howard, T.G.; White, E.L. Great Lakes Basin Riparian Opportunity Assessment; New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry: Albany, NY, USA, 2016; Available online: https://www.nynhp.org/projects/great-lakes-riparian-assessment/ (accessed on 16 November 2021).
- Martino, F. Description and Inventory of the Stockport Creek Watershed. 2012. Available online: http://www.stockportwatershed.org/docs/Stockport_Watershed_Description_and_Inventory.pdf (accessed on 16 November 2021).
- USDA-FSA-APFO Aerial Photography Field Office National Geospatial Data Asset (NGDA) NAIP Imagery. 2016. Available online: https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/ (accessed on 16 November 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- United States Geological Survey National Hydrography Dataset. Available online: https://viewer.nationalmap.gov/basic/?basemap=b1&category=nhd&title=NHDView (accessed on 16 November 2021).
- United States Census Bureau Places and Urban Area Dataset. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2015.html (accessed on 16 November 2021).
- New York State Parks Recreation & Historic Preservation New York State Historic Sites and Park Boundary. Available online: https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=430 (accessed on 16 November 2021).
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip. Rev. Water 2021, 8, e21496. [Google Scholar] [CrossRef]
- Monegaglia, F.; Zolezzi, G.; Güneralp, I.; Henshaw, A.J.; Tubino, M. Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data. Environ. Model. Softw. 2018, 105, 171–186. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, B.W.; Newbold, J.D. Streamside Forest Buffer Width Needed to Protect Stream Water Quality, Habitat, and Organisms: A Literature Review. JAWRA J. Am. Water Resour. Assoc. 2013, 50, 560–584. [Google Scholar] [CrossRef]
- Hill, A.R. Landscape Hydrogeology and its Influence on Patterns of Groundwater Flux and Nitrate Removal Efficiency in Riparian Buffers. JAWRA J. Am. Water Resour. Assoc. 2017, 54, 240–254. [Google Scholar] [CrossRef]
- Abood, S.A.; MacLean, A.L.; Mason, L. Modeling Riparian Zones Utilizing DEMS and Flood Height Data. Photogramm. Eng. Remote Sens. 2012, 78, 259–269. [Google Scholar] [CrossRef]
- Dufour, S.; Muller, E.; Straatsma, M.; Corgne, S. Image Utilisation for the Study and Management of Riparian Vegetation: Overview and Applications. In Fluvial Remote Sensing for Science and Management; Carbonneau, R.E., Piégay, H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 215–239. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Hayes, M.M.; Miller, S.N.; Murphy, M. High-resolution landcover classification using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- NYS DEC. Hudson River Estuary Action Agenda 2015–2020. Available online: https://hudsonwatershed.org/wp-content/uploads/HREP-AA-2015.pdf (accessed on 16 November 2021).
- Story, M.; Congalton, R.G. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Radoux, J.; Bogaert, P. Good Practices for Object-Based Accuracy Assessment. Remote Sens. 2017, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, M.; Hay, G.; Ghaffarian, S.; Hugenholtz, C. Geographic Object-Based Image Analysis: A Primer and Future Directions. Remote Sens. 2020, 12, 2012. [Google Scholar] [CrossRef]
- Schöpfer, E.; Lang, S.; Albrecht, F. Object-fate analysis: Spatial relationships for the assessment of object transition and correspondence. In Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 785–801. [Google Scholar] [CrossRef]
- Tatem, A.; Noor, A.; Hay, S. Assessing the accuracy of satellite derived global and national urban maps in Kenya. Remote Sens. Environ. 2005, 96, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; Dover Books on Earth Sciences; Dover Publications: New York, NY, USA, 1995; ISBN 9780486685885. [Google Scholar]
- Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.; Melack, J.M.; Prairie, Y.; Kortelainen, P.; Striegl, R.G.; McDowell, W.; Tranvik, L.J. Global abundance and size distribution of streams and rivers. Inland Waters 2012, 2, 229–236. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Gleyzer, A.; Denisyuk, M.; Rimmer, A.; Salingar, Y. A Fast Recursive Gis Algorithm for Computing Strahler Stream Order in Braided Aand Nonbraided Networks. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 937–946. [Google Scholar] [CrossRef]
- Besheer, M.; Abdelhafiz, A. Modified invariant colour model for shadow detection. Int. J. Remote Sens. 2015, 36, 6214–6223. [Google Scholar] [CrossRef]
- Gergel, S.E.; Stange, Y.; Coops, N.C.; Johansen, K.; Kirby, K.R. What is the Value of a Good Map? An Example Using High Spatial Resolution Imagery to Aid Riparian Restoration. Ecosystems 2007, 10, 688–702. [Google Scholar] [CrossRef]
- Lohani, B.; Ghosh, S.; Dashora, A. A review of standards for airborne LiDAR data acquisition, processing, QA/QC, and delivery. In Geospatial Infrastructure, Applications and Technologies: India Case Studies; Springer: Singapore, 2018; pp. 305–312. ISBN 9789811323300. [Google Scholar]
- Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manag. 2020, 267, 110652. [Google Scholar] [CrossRef]
- Lea, D.M.; Legleiter, C.J. Refining measurements of lateral channel movement from image time series by quantifying spatial variations in registration error. Geomorphology 2016, 258, 11–20. [Google Scholar] [CrossRef]
- Leonard, C.M.; Legleiter, C.J.; Lea, D.M.; Schmidt, J.C. Measuring channel planform change from image time series: A generalizable, spatially distributed, probabilistic method for quantifying uncertainty. Earth Surf. Process. Landf. 2020, 45, 2727–2744. [Google Scholar] [CrossRef]
- Foody, G.M.; Atkinson, P.M. Uncertainty in Remote Sensing and GIS; Wiley: Chichester, UK, 2002; pp. 287–302. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Stanislawski, L.V.; Jiang, Z.; Jaroenchai, N.; Sainju, A.M.; Shavers, E.; Usery, E.L.; Chen, L.; Li, Z.; et al. An attention U-Net model for detection of fine-scale hydrologic streamlines. Environ. Model. Softw. 2021, 140, 104992. [Google Scholar] [CrossRef]
- Tsintikidis, D.; Georgakakos, K.P.; Sperfslage, J.A.; Smith, D.E.; Carpenter, T.M. Precipitation Uncertainty and Raingauge Network Design within Folsom Lake Watershed. J. Hydrol. Eng. 2002, 7, 175–184. [Google Scholar] [CrossRef]
- Tran, T.V.; Julian, J.P.; De Beurs, K.M. Land Cover Heterogeneity Effects on Sub-Pixel and Per-Pixel Classifications. ISPRS Int. J. Geo-Inf. 2014, 3, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.C.; Wynn-Thompson, T.M.; Kopp, D.A.; Cardinale, B.J. Riparian plant biodiversity reduces stream channel migration rates in three rivers in Michigan, U.S.A. Ecohydrology 2018, 11, e1972. [Google Scholar] [CrossRef]
Stream | Total Area within 90 m Riparian Zone (km2) | Area within Channel Boundaries (km2) | Area of Riparian Vegetation (km2) |
---|---|---|---|
Genesee River | 43.88 | 9.71 | 22.51 |
Stockport and Kinderhook Creek | 12.86 | 1.91 | 10.50 |
Stream Order | Shadow Present | Water Class | Object Based | ||||
---|---|---|---|---|---|---|---|
UA (%) | PA (%) | D50 (m) | |||||
GR | SKC | GR | SKC | GR | SKC | ||
5th | Yes | 76 | 85 | 86 | 81 | 3.5 | 3.1 |
No | 75 | 85 | 87 | 82 | 3.2 | 1.2 | |
6th | Yes | 83 | 96 | 91 | 92 | 5.2 | 1.5 |
No | 82 | 96 | 91 | 95 | 3.0 | 0.3 | |
7th | Yes | 95 | NA | 80 | NA | 3.5 | NA |
No | 94 | NA | 83 | NA | 0.2 | NA |
RZ Width (m) | Land Use | Shadow/No Shadow | Overall Map (%) | Vegetation (%) | Non-Vegetation (%) | ||
---|---|---|---|---|---|---|---|
OA (SE) | UA (SE) | PA (SE) | UA (SE) | PA (SE) | |||
90 | All types | Both | 87 (1) | 96 (0) | 81 (1) | 76 (1) | 95 (1) |
90 | Agriculture | Both | 88 (1) | 96 (0) | 82 (1) | 79 (1) | 95 (1) |
90 | Developed | Both | 79 (2) | 96 (1) | 67 (2) | 66 (3) | 96 (1) |
90 | Natural | Both | 88 (1) | 98 (1) | 85 (1) | 68 (3) | 95 (2) |
90 | All types | No Shadow only | 87 (1) | 97 (0) | 82 (1) | 74 (1) | 95 (1) |
90 | All types | Shadow only | 88 (2) | 67 (17) | 19 (6) | 89 (2) | 98 (1) |
60 | All types | All areas | 87 (1) | 97 (0) | 82 (1) | 75 (1) | 95 (1) |
30 | All types | All areas | 87 (1) | 97 (1) | 83 (1) | 74 (2) | 95 (1) |
RZ Width (m) | Land Use | Shadow/No Shadow | Overall Map (%) | Vegetation (%) | Non-Vegetation (%) | ||
---|---|---|---|---|---|---|---|
OA (SE) | UA (SE) | PA (SE) | UA (SE) | PA (SE) | |||
90 | All types | Both | 96 (0) | 98 (0) | 97 (0) | 85 (1) | 91 (1) |
90 | Agriculture | Both | 95 (0) | 97 (0) | 96 (0) | 85 (1) | 91 (1) |
90 | Developed | Both | 94 (1) | 96 (2) | 94 (1) | 90 (3) | 93 (3) |
90 | Natural | Both | 98 (0) | 99 (0) | 99 (0) | 67 (6) | 80 (5) |
90 | All types | No Shadow only | 97 (0) | 99 (0) | 96 (0) | 84 (1 | 97 (1) |
90 | All types | Shadow only | 91 (1) | 92 (1) | 98 (1) | 86 (3) | 62 (3) |
60 | All types | All areas | 96 (3) | 98 (0) | 97 (0) | 84 (2) | 87 (1) |
30 | All types | All areas | 95 (1) | 97 (1) | 97 (0) | 77 (3) | 72 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, G.; Quackenbush, L.J.; Stehman, S.V. Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data. Remote Sens. 2021, 13, 4645. https://doi.org/10.3390/rs13224645
Pu G, Quackenbush LJ, Stehman SV. Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data. Remote Sensing. 2021; 13(22):4645. https://doi.org/10.3390/rs13224645
Chicago/Turabian StylePu, Ge, Lindi J. Quackenbush, and Stephen V. Stehman. 2021. "Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data" Remote Sensing 13, no. 22: 4645. https://doi.org/10.3390/rs13224645
APA StylePu, G., Quackenbush, L. J., & Stehman, S. V. (2021). Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data. Remote Sensing, 13(22), 4645. https://doi.org/10.3390/rs13224645