High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review
Abstract
:1. Introduction
2. Methodology
3. Acquisition of Original Point Cloud Data
3.1. Principle of Laser Triangulation Measurement
3.2. Point Cloud Filtering and Decorating Methods
- Statistics-based filtering methods;
- Neighborhood-based filtering methods;
- Projection-based filtering methods;
- Filtering methods based on signal processing;
- Filtering methods based on partial differential equations;
- Hybrid filtering methods;
- Other filtering methods.
4. Point Cloud Reduction Methods
4.1. Traditional Down-Sampling Reduction Methods
4.2. Reduction Methods Based on Geometric Features
4.3. Reduction Methods Based on Component Analysis
4.4. Reduction Methods Based on Spatial Subdivision
4.5. Reduction Methods Based on Deep Neural Networks
5. Point Cloud Registration Methods
- The point cloud density inconsistent, caused by different distances and perspectives of data acquisition sources, or the overlap rate between multiple sets of point clouds being lower, making it difficult to converge the registration algorithm;
- Self-similar or symmetric objects can easily cause misregistration in the absence of practical constraints;
- Loss of point cloud data caused by occlusion in a complex environment makes the registration process lack valid input;
- The noise or outliers introduced in the data acquisition process make the iterative direction not unique and prone to phenomena such as “artifacts”;
- A large number of point clouds in a single time leads to a large amount of calculation, increased time-consuming, and lower time efficiency.
5.1. Registration Methods Based on Mathematical Solutions
5.2. Registration Methods Based on Statistical Models
5.3. Registration Methods Based on Point Cloud Features
5.4. Registration Methods Based on ICP Deformation
5.5. Registration Methods Based on Deep Learning
6. Three-Dimensional Shape Representation Methods
6.1. Parametric Shape Representation Methods
6.2. Implicit Surfaces Representation Methods
6.2.1. Global Implicit Surface Representation Methods
6.2.2. Local Implicit Surface Representation Methods
6.3. Mesh/Voxel Representation Methods
6.3.1. Mesh Representation Methods
6.3.2. Voxel Representation Methods
7. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Patil, A.K.; Holi, P.; Lee, S.K.; Chai, Y.H. An adaptive approach for the reconstruction and modeling of as-built 3D pipelines from point clouds. Autom. Constr. 2017, 75, 65–78. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Adv. Eng. Inform. 2019, 39, 306–319. [Google Scholar] [CrossRef]
- Louvrier, A.; Marty, P.; Barrabe, A.; Euvrard, E.; Chatelain, B.; Weber, E.; Meyer, C. How useful is 3D printing in maxillofacial surgery? J. Stomatol. Oral Maxillofac. Surg. 2017, 118, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.L.; Liu, J.H.; Jin, P.; Wang, X. Tube measurement based on stereo-vision: A review. Int. J. Adv. Manuf. Technol. 2017, 92, 2017–2032. [Google Scholar] [CrossRef]
- Sun, M.J.; Zhang, J.M. Single-Pixel Imaging and Its Application in Three-Dimensional Reconstruction: A Brief Review. Sensors 2019, 19, 732. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Zhang, G.F. A review of interferometry for geometric measurement. Meas. Sci. Technol. 2018, 29, 29. [Google Scholar] [CrossRef]
- Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Lyu, C.G.; Bai, Y.; Yang, J.C.; Qi, H.; Ma, J.J. An iterative high dynamic range image processing approach adapted to overexposure 3D scene. Opt. Lasers Eng. 2020, 124, 7. [Google Scholar] [CrossRef]
- Xu, X.B.; Fei, Z.W.; Yang, J.; Tan, Z.Y.; Luo, M.Z. Line structured light calibration method and centerline extraction: A review. Results Phys. 2020, 19, 17. [Google Scholar] [CrossRef]
- Li, T.T.; Yang, F.; Li, S.G.; He, Y. Extraction Method of Line-Structured Light Stripe Center Based on Gauss-Lorenz Decomposition Peak Fitting. Laser Optoelectron. Prog. 2019, 56, 10. [Google Scholar] [CrossRef]
- Yin, X.Q.; Tao, W.; Zheng, C.; Yang, H.W.; He, Q.Z.; Zhao, H. Analysis and simplification of lens distortion model for the scheimpflug imaging system calibration. Opt. Commun. 2019, 430, 380–384. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H.; Deng, H.X.; Chai, Z.W.; Ma, M.C.; Zhong, X. A Robust and Rapid Camera Calibration Method by One Captured Image. IEEE Trans. Instrum. Meas. 2019, 68, 4112–4121. [Google Scholar] [CrossRef]
- Cui, B.; Fu, Q.W.; Sun, H.; Tao, W.; Lv, N.; Zhao, H. Cross-point calibration method or the Scheimpflug measurement system. Appl. Optics 2020, 59, 8618–8627. [Google Scholar] [CrossRef]
- Han, X.F.; Jin, J.S.; Wang, M.J.; Jiang, W.; Gao, L.; Xiao, L.P. A review of algorithms for filtering the 3D point cloud. Signal Process.-Image Commun. 2017, 57, 103–112. [Google Scholar] [CrossRef]
- Turk, G.; Levoy, M. Zippered polygon meshes from range images. In Computer Graphics Proceedings. Annual Conference Series 1994, Proceedings of the SIGGRAPH 94 Conference Proceedings, Orlando, Floria, USA, 24–29 July 1994; Association for Computing Machinery: New York, NY, USA, 1994; pp. 311–318. [Google Scholar] [CrossRef]
- Wang, J.Q.; Fan, Y.G.; Li, G.S.; Yu, D.F. Adaptive Point Cloud Reduction Based on Multi Parameter k-Means Clustering. Laser Optoelectron. Prog. 2021, 58, 9. [Google Scholar] [CrossRef]
- Sommen, P.; Janse, K. On the relationship between uniform and recurrent nonuniform discrete-time sampling schemes. IEEE Trans. Signal Process. 2008, 56, 5147–5156. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.J.; Benziger, R.R.; Habib, A. Planar-Based Adaptive Down-Sampling of Point Clouds. Photogramm. Eng. Remote Sens. 2016, 82, 955–966. [Google Scholar] [CrossRef]
- Zou, B.C.; Qiu, H.D.; Lu, Y.F. Point Cloud Reduction and Denoising Based on Optimized Downsampling and Bilateral Filtering. IEEE Access 2020, 8, 136316–136326. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhang, T.Y.; Cao, J.; Zhang, Y.J.; Wang, C. Point cloud resampling using centroidal Voronoi tessellation methods. Computer-Aided Design 2018, 102, 12–21. [Google Scholar] [CrossRef]
- Rahmani, M.; Ping, L. Graph Analysis and Graph Pooling in the Spatial Domain. arXiv 2019, arXiv:1910.01589. [Google Scholar]
- Al-Rawabdeh, A.; He, F.N.; Habib, A. Automated Feature-Based Down-Sampling Approaches for Fine Registration of Irregular Point Clouds. Remote Sens. 2020, 12, 1224. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Wang, Y.Q.; Liu, H.B.; Li, M. On-line three-dimensional point cloud data extraction method for scan-tracking measurement of irregular surface using bi-Akima spline. Measurement 2016, 92, 382–390. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.B.; Tao, Y.; Liao, J.X. Reasoning mechanism: An effective data reduction algorithm for on-line point cloud selective sampling of sculptured surfaces. Computer Aided Design 2019, 113, 48–61. [Google Scholar] [CrossRef]
- Han, H.Y.; Han, X.; Sun, F.S.; Huang, C.Y. Point cloud simplification with preserved edge based on normal vector. Optik 2015, 126, 2157–2162. [Google Scholar] [CrossRef]
- Sayed, H.M.; Taie, S.A.; Ei-Khoribi, R.A.; Abdelrahman, I.F.; Helmy, A.K. Point clouds reduction model based on 3D feature extraction. Int. J. Embed. Syst. 2019, 11, 78–83. [Google Scholar] [CrossRef]
- Xuan, W.; Hua, X.H.; Chen, X.J.; Zou, J.G.; He, X.X. A New Progressive Simplification Method for Point Cloud Using Local Entropy of Normal Angle. J. Indian Soc. Remote. Sens. 2018, 46, 581–589. [Google Scholar] [CrossRef]
- Ji, C.Y.; Li, Y.; Fan, J.H.; Lan, S.M. A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of Point. IEEE Access 2019, 7, 129029–129042. [Google Scholar] [CrossRef]
- Guo, H.Y.; Yan, L. Method for compressing point cloud according to curvature standard. In Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xian, China, 19–21 June 2019; pp. 932–936. [Google Scholar]
- Tazir, M.L.; Checchin, P.; Trassoudaine, L. Color-based 3D point cloud reduction. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Thakur, S.; Peethambaran, J. Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection. arXiv 2020, arXiv:2009.08253. [Google Scholar]
- Markovic, V.; Jakovljevic, Z.; Miljkovic, Z. Feature Sensitive Three-Dimensional Point Cloud Simplification using Support Vector Regression. Teh. Vjesn. 2019, 26, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Chuanchuan, Y.; Hao, C.; Weizhen, Y.; Hongbin, L. Low-complexity point cloud filtering for LiDAR by PCA-based dimension reduction arXiv. arXiv 2020, arXiv:1904.08506. [Google Scholar]
- El-Sayed, E.; Abdel-Kader, R.F.; Nashaat, H.; Marei, M. Plane detection in 3D point cloud using octree-balanced density down-sampling and iterative adaptive plane extraction. IET Image Process. 2018, 12, 1595–1605. [Google Scholar] [CrossRef] [Green Version]
- Song, S.W.; Liu, J.; Yin, C.Q. Data Reduction for Point Cloud Using Octree Coding. In Proceedings of the 13th International Conference on Intelligent Computing (ICIC), Liverpool, UK, 7–10 August 2017; pp. 376–383. [Google Scholar]
- Lang, D.; Friedmann, S.; Paulus, D. Adaptivity of conditional random field based outdoor point cloud classification. Pattern Recognit. Image Anal. 2016, 26, 309–315. [Google Scholar] [CrossRef]
- Shoaib, M.; Cheong, J.; Kim, Y.; Cho, H. Fractal bubble algorithm for simplification of 3D point cloud data. J. Intell. Fuzzy Syst. 2019, 37, 7815–7830. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Xin, M.T.; Li, B.; Yan, X.; Chen, L.; Wei, X. A robust cloud registration method based on redundant data reduction using backpropagation neural network and shift window. Rev. Sci. Instrum. 2018, 89, 8. [Google Scholar] [CrossRef] [PubMed]
- Nezhadarya, E.; Taghavi, E.; Razani, R.; Bingbing, L.; Jun, L. Adaptive Hierarchical Down-Sampling for Point Cloud Classification. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12953–12961. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation (Cat. No.91CH2969-4), Sacramento, CA, USA, 9–11 April 1991; Volume 2723, pp. 2724–2729. [Google Scholar] [CrossRef]
- Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 2743–2748. [Google Scholar]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008, 27, 10. [Google Scholar] [CrossRef] [Green Version]
- Myronenko, A.; Song, X.B. Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.E.; Hebert, M.; IEEE Comp, S.O.C.; IEEE Comp, S.O.C. Efficient multiple model recognition in cluttered 3-D scenes. In Proceedings of the 1998 IEEE Computer-Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 23–25 June 1998; pp. 671–677. [Google Scholar]
- Dongmei, Z.; Hebert, M. Harmonic shape images: A representation for 3D free-form surfaces based on energy minimization. In Energy Minimization Methods in Computer Vision and Pattern Recognition, Proceedings of the Second International Workshop, EMMCVPR’99, York, UK, 26–29 July 1999; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1654, pp. 30–43. [Google Scholar]
- Frome, A.; Huber, D.; Kolluri, R.; Bulow, T.; Malik, J. Recognizing objects in range data using regional point descriptors. In Computer Vision—Eccv 2004, Pt 3; Pajdla, T., Matas, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2004; Volume 3023, pp. 224–237. [Google Scholar]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning Point Cloud Views using Persistent Feature Histograms. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1848–1853. [Google Scholar]
- Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2155–2162. [Google Scholar]
- Sun, J.A.; Ovsjanikov, M.; Guibas, L. A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Comput. Graph. Forum 2009, 28, 1383–1392. [Google Scholar] [CrossRef]
- Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition. In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 998–1005. [Google Scholar]
- Besl, P.; McKay, N. Method for Registration of 3-D Shapes. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1611/1/Method-for-registration-of-3-D-shapes/10.1117/12.57955.short (accessed on 5 September 2015).
- Lu, F.; Milios, E. Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 1997, 18, 249–275. [Google Scholar] [CrossRef]
- Elbaz, G.; Avraham, T.; Fischer, A. 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2472–2481. [Google Scholar]
- Jauer, P.; Kuhlemann, I.; Bruder, R.; Schweikard, A.; Ernst, F. Efficient Registration of High-Resolution Feature Enhanced Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, L.R.; Giraldi, G.A.; Vieira, M.B. Rigid Registration of Point Clouds Based on Indirect Lie Group Approach. In Proceedings of the 21st Symposium on Virtual and Augmented Reality (SVR), Rio de Janeiro, Brazil, 28–31 October 2019; pp. 130–139. [Google Scholar]
- Parkison, S.A.; Ghaffari, M.; Gan, L.; Zhang, R.; Ushani, A.K.; Eustice, R.M. Boosting Shape Registration Algorithms via Reproducing Kernel Hilbert Space Regularizers. IEEE Robot. Autom. Lett. 2019, 4, 4563–4570. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.X.; Shu, Q.; Yu, C.X.; Cui, Z.M. Point Cloud Registration Algorithm Based on Cauchy Mixture Model. IEEE Photonics J. 2021, 13, 14. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Tang, J.L.; Su, B.H.; Su, Q.L.; Zhou, Z. Point Cloud Registration Algorithm Based on the Grey Wolf Optimizer. IEEE Access 2020, 8, 143375–143382. [Google Scholar] [CrossRef]
- Shi, X.J.; Liu, T.; Han, X. Improved Iterative Closest Point(ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration. Int. J. Remote Sens. 2020, 41, 3197–3220. [Google Scholar] [CrossRef]
- Mohamad, M.; Ahmed, M.T.; Rappaport, D.; Greenspan, M. Super Generalized 4PCS for 3D Registration. In Proceedings of the 2015 International Conference on 3D Vision (ENS), Lyon, France, 19–22 October 2015; pp. 598–606. [Google Scholar]
- Xu, Z.H.; Xu, E.S.; Zhang, Z.X.; Wu, L.X. Multiscale Sparse Features Embedded 4-Points Congruent Sets for Global Registration of TLS Point Clouds. IEEE Geosci. Remote Sens. Lett. 2019, 16, 286–290. [Google Scholar] [CrossRef]
- Huang, J.D.; Kwok, T.H.; Zhou, C. V4PCS: Volumetric 4PCS Algorithm for Global Registration. J. Mech. Des. 2017, 139, 9. [Google Scholar] [CrossRef]
- Hahnel, D.; Burgard, W. A probabilistic method for recording of 3D images. In Proceedings of the Robotik 2002 Conference, Ludwigsburg, Germany, 19–20 June 2002; pp. 137–143. [Google Scholar]
- Boughorbel, F.; Koschan, A.; Abidi, B.; Abidi, M. Gaussian fields: A new criterion for 3D rigid registration. Pattern Recognition 2004, 37, 1567–1571. [Google Scholar] [CrossRef]
- Korenkov, M.; Dralle, H.; Klar, E.; Saad, S.; Senninger, N.; Standop, J.; Stier, A.; Strik, M.; Ulrich, A.; Weiner, R. Register of Difficult Surgical Situations. Zent. Chir. 2018, 143, 55–59. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Wang, C.X.; Wang, B. Robust Point Set Registration Using Signature Quadratic Form Distance. IEEE T. Cybern. 2020, 50, 2097–2109. [Google Scholar] [CrossRef]
- Zang, Y.F.; Lindenbergh, R.; Yang, B.S.; Guan, H.Y. Density-Adaptive and Geometry-Aware Registration of TLS Point Clouds Based on Coherent Point Drift. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1628–1632. [Google Scholar] [CrossRef]
- Zhe, M.; Jiaole, W.; Meng, M.Q.H. Joint registration of multiple generalized point sets. In Shape in Medical Imaging, Proceedings of the International Workshop, ShapeMI 2018, Granada, Spain, 20 September 2018; Lecture Notes in Computer Science (LNCS 11167); Springer: Cham, Switzerland, 2018; pp. 169–177. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.R.; Wang, M.N. Efficient Similarity Point Set Registration by Transformation Decomposition. Sensors 2020, 20, 4103. [Google Scholar] [CrossRef] [PubMed]
- Zobel, V.; Reininghaus, J.; Hotz, I. Visualizing Symmetric Indefinite 2D Tensor Fields Using the Heat Kernel Signature. In Proceedings of the Workshop on the Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, Dagstuhl, Germany, Febuary 2014; pp. 257–267. [Google Scholar]
- Ahmed, M.T.; Marshall, J.A.; Greenspan, M. Point Cloud Registration with Virtual Interest Points from Implicit Quadric Surface Intersections. In Proceedings of the International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 649–657. [Google Scholar]
- Liu, J.; Bai, D.; Chen, L. 3-D Point Cloud Registration Algorithm Based on Greedy Projection Triangulation. Appl. Sci. 2018, 8, 1776. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Q.H.; Hong, R.; Wang, B.; Wang, Q. Line Matching of Point Clouds Based on Encoded Asymmetric Boundary. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1983–1987. [Google Scholar] [CrossRef]
- Truong, G.; Gilani, S.Z.; Islam, S.M.S.; Suter, D. Fast Point Cloud Registration using Semantic Segmentation. In Proceedings of the APRS International Conference on Digital Image Computing—Techniques and Applications (DICTA), Perth, Australia, 2–4 December 2019; pp. 200–207. [Google Scholar]
- Zou, X.Y.; He, H.W.; Wu, Y.M.; Chen, Y.B.; Xu, M.X. Automatic 3D point cloud registration algorithm based on triangle similarity ratio consistency. IET Image Process. 2020, 14, 3314–3323. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.L.; Wang, M.Y.; Zhong, D.X.; Du, S.Y. Color Point Cloud Registration Based on Supervoxel Correspondence. IEEE Access 2020, 8, 7362–7372. [Google Scholar] [CrossRef]
- Wan, T.; Du, S.Y.; Cui, W.T.; Yang, Y.; Li, C. Robust Rigid Registration Algorithm Based on Correntropy and Bi-Directional Distance. IEEE Access 2020, 8, 22225–22234. [Google Scholar] [CrossRef]
- Eslami, M.; Saadatseresht, M. Imagery Network Fine Registration by Reference Point Cloud Data Based on the Tie Points and Planes. Sensors 2021, 21, 317. [Google Scholar] [CrossRef]
- Ji, S.J.; Ren, Y.C.; Zhao, J.; Liu, X.L.; Gao, H. An improved method for registration of point cloud. Optik 2017, 140, 451–458. [Google Scholar] [CrossRef]
- Bustos, A.P.; Chin, T.J. Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2868–2882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.B.; Liu, T.R.; Li, Y.P.; Xi, M.M.; Li, T.; Wang, Y.Q. Point Cloud Registration Based on MCMC-SA ICP Algorithm. IEEE Access 2019, 7, 73637–73648. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.H.; Ying, S.H.; Shen, C.M. An Accelerated and Robust Partial Registration Algorithm for Point Clouds. IEEE Access 2020, 8, 156504–156518. [Google Scholar] [CrossRef]
- Du, S.Y.; Xu, G.L.; Zhang, S.R.; Zhang, X.T.; Gao, Y.; Chen, B.D. Robust rigid registration algorithm based on pointwise correspondence and correntropy. Pattern Recognit. Lett. 2020, 132, 91–98. [Google Scholar] [CrossRef]
- Chang, W.C.; Pham, V.T. 3-D Point Cloud Registration Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 3273. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gonzalez, J.; Luna-Madrigal, F.; Pina-Ramirez, O. Deep Learning Point Cloud Registration based on Distance Features. IEEE Latin Am. Trans. 2019, 17, 2053–2060. [Google Scholar] [CrossRef]
- Weixin, L.; Guowei, W.; Yao, Z.; Xiangyu, F.; Pengfei, Y.; Shiyu, S. DeepVCP: An end-to-end deep neural network for point cloud registration. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 12–21. [Google Scholar] [CrossRef]
- Kurobe, A.; Sekikawa, Y.; Ishikawa, K.; Saito, H. CorsNet: 3D Point Cloud Registration by Deep Neural Network. IEEE Robot. Autom. Lett. 2020, 5, 3960–3966. [Google Scholar] [CrossRef]
- Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface elements as rendering primitives. In Proceedings of the Computer Graphics Annual Conference, New Orleans, LA, USA, 23–28 July 2000; pp. 335–342. [Google Scholar]
- Zwicker, M.; Pfister, H.; Van Baar, J.; Gross, M. Surface splatting. In Proceedings of the Siggraph 2001, Los Angeles, CA, USA, 12–17 August 2001; pp. 371–378. [Google Scholar]
- Rusinkiewicz, S.; Levoy, M. QSplat: A multiresolution point rendering system for large meshes. In Proceedings of the Computer Graphics Annual Conference, New Orleans, LA, USA, 23–28 July 2000; pp. 343–352. [Google Scholar]
- Coons, S.A.; Herzog, B. Surfaces for computer-aided aircraft design. J. Aircr. 1968, 5, 402–406. [Google Scholar] [CrossRef]
- Bezier, P.E. Example of an existing system in the motor industry: The Unisurf system. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 321, 207–218. [Google Scholar] [CrossRef]
- Gordon, W.J.; Riesenfeld, R.F. Bernstein-Bezier methods for the computer-aided design of free- form curves and surfaces. J. Assoc. Comput. Mach. 1974, 21, 293–310. [Google Scholar] [CrossRef]
- Versprille, K.J. Computer-Aided Design Applications of the Rational b-Spline Approximation Form. 1975. Available online: https://www.proquest.com/openview/4963196bb4672664bfa12bf07150d024/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 5 September 2015).
- Barequet, G.; Sharir, M. Piecewise-linear interpolation between polygonal slices. Comput. Vis. Image Underst. 1996, 63, 251–272. [Google Scholar] [CrossRef]
- Hardy, R.L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. (USA) 1971, 76, 1905–1915. [Google Scholar] [CrossRef]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation of 3D objects with Radial Basis Functions. In Proceedings of the Siggraph 2001, Los Angeles, CA, USA, 12–17 August 2001; pp. 67–76. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry processing, Cagliari, Italy, 26–28 June 2006; pp. 61–70. [Google Scholar]
- Kazhdan, M.; Hoppe, H. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 2013, 32, 13. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, P.; Salkauskas, K. Surfaces generated by moving least squares methods. Math. Comput. 1981, 37, 141–158. [Google Scholar] [CrossRef]
- Scitovski, R.; Ungar, S.; Jukic, D. Approximating surfaces by moving total least squares method. Appl. Math. Comput. 1998, 93, 219–232. [Google Scholar] [CrossRef]
- Ohtake, Y.; Belyaev, A.; Alexa, M.; Turk, G.; Seidel, H.P. Multi-level partition of unity implicits. ACM Trans. Graph. 2003, 22, 463–470. [Google Scholar] [CrossRef]
- Guennebaud, G.; Gross, M.; Zurich, E. Algebraic point set surfaces. ACM Trans. Graph. 2007, 26, 9. [Google Scholar] [CrossRef]
- Oztireli, A.C.; Guennebaud, G.; Gross, M. Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression. Comput. Graph. Forum 2009, 28, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Hamza, Y.F.; Lin, H.W.; Li, Z.H. Implicit progressive-iterative approximation for curve and surface reconstruction. Comput. Aided Geom. Des. 2020, 77, 15. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.L. Software for C1 Surface interpolation. Available online: https://www.sciencedirect.com/science/article/pii/B978012587260750011X (accessed on 5 September 2021).
- Bowyer, A. Computing dirichlet tessellations. Comput. J. 1981, 24, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 1981, 24, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, R.A. A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 1987, 2, 137–151. [Google Scholar] [CrossRef]
- Lee, D.T.; Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242. [Google Scholar] [CrossRef]
- Lewis, B.A.; Robinson, J.S. Triangulation of planar regions with applications. Comput. J. 1978, 21, 324–332. [Google Scholar] [CrossRef]
- Chew, L.P. Constrained Delaunay triangulations. Algorithmica 1989, 4, 97–108. [Google Scholar] [CrossRef]
- Amenta, N.; Bern, M.; Eppstein, D. The crust and the β-skeleton: Combinatorial curve reconstruction. Graph. Models Image Process. 1998, 60, 125–135. [Google Scholar] [CrossRef]
- Amenta, N.; Choi, S.; Kolluri, R.K. The power crust, unions of balls, and the medial axis transform. Comput. Geom. 2001, 19, 127–153. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 1999, 5, 349–359. [Google Scholar] [CrossRef]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Doi, A.; Koide, A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. 1991, E74, 214–224. [Google Scholar]
- Meyers, D.; Skinner, S.; Sloan, K. Surfaces from contours. ACM Trans. Graph. 1992, 11, 228–258. [Google Scholar] [CrossRef]
- De Boor, C.; Hollig, K.; Sabin, M. High accuracy geometric Hermite interpolation. Comput. Aided Geom. Des. 1987, 4, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Shirman, L.A.; Sequin, C.H. Local surface interpolation with Bezier patches. Comput.-Aided Geom. Des. 1987, 4, 279–295. [Google Scholar] [CrossRef]
- Catmull, E.; Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 1978, 10, 350–355. [Google Scholar] [CrossRef]
- Mestre, M. Least Squares Best Fit Using Linear Prediction for Engineering Surfaces Metrology. Available online: https://bit.ly/3ERSUp6 (accessed on 5 September 2015).
- Davies, A.M.; Owen, A. Three-dimensional numerical sea model using the Galerkin method with a polynomial basis set. Appl. Math. Model. 1979, 3, 421–428. [Google Scholar] [CrossRef]
- Kong, D.M.; Tian, X.Q.; Kong, D.H.; Zhang, X.D.; Yuan, L. An Improved Method for NURBS Free-Form Surface Based on Discrete Stationary Wavelet Transform. IEEE Access 2020, 8, 67015–67023. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Y.; Ye, L.; Chen, R.; Leach, R. Efficient analysis-suitable T-spline fitting for freeform surface reconstruction and intelligent sampling. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2020, 66, 417–428. [Google Scholar] [CrossRef]
- Fuhrmann, S.; Goesele, M. Floating Scale Surface Reconstruction. ACM Trans. Graph. 2014, 33, 11. [Google Scholar] [CrossRef]
- Guarda, A.F.R.; Bioucas-Dias, J.M.; Rodrigues, N.M.M.; Pereira, F. Improving Point Cloud to Surface Reconstruction with Generalized Tikhonov Regularization. In Proceedings of the 19th IEEE International Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 16–18 October 2017. [Google Scholar]
- Juszczyk, J.M.; Wijata, A.; Czajkowska, J.; Krecichwost, M.; Rudzki, M.; Biesok, M.; Pycinski, B.; Majewski, J.; Kostecki, J.; Pietka, E. Wound 3D Geometrical Feature Estimation Using Poisson Reconstruction. IEEE Access 2021, 9, 7894–7907. [Google Scholar] [CrossRef]
- He, Y.C.; Kang, S.H.; Liu, H. Curvature Regularized Surface Reconstruction from Point Clouds. SIAM J. Imaging Sci. 2020, 13, 1834–1859. [Google Scholar] [CrossRef]
- Lu, W.Y.; Liu, L.G. Surface reconstruction via cooperative evolutions. Comput. Aided Geom. Des. 2020, 77, 18. [Google Scholar] [CrossRef]
- Gu, T.Q.; Tu, Y.; Tang, D.W.; Lin, S.W.; Fang, B. A trimmed moving total least-squares method for curve and surface fitting. Meas. Sci. Technol. 2020, 31, 8. [Google Scholar] [CrossRef]
- Zhou, Z.; Fu, Y.; Zhao, J. An Efficient Method for Surface Reconstruction Based on Local Coordinate System Transform and Partition of Unity. Neural Netw. World 2020, 30, 161–176. [Google Scholar] [CrossRef]
- Zhong, D.Y.; Wang, L.G.; Bi, L. Implicit surface reconstruction based on generalized radial basis functions interpolant with distinct constraints. Appl. Math. Model. 2019, 71, 408–420. [Google Scholar] [CrossRef]
- Kazhdan, M.; Chuang, M.; Rusinkiewicz, S.; Hoppe, H. Poisson Surface Reconstruction with Envelope Constraints. Comput. Graph. Forum 2020, 39, 173–182. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Phillips, D.V. An automatic mesh generation scheme for plane and curved surfaces by `isoparametric’ co-ordinates. Int. J. Numer. Methods Eng. 1971, 3, 519–528. [Google Scholar] [CrossRef]
- Sloan, S.W. A fast algorithm for constructing Delaunay triangulations in the plane. Adv. Eng. Softw. 1987, 9, 34–55. [Google Scholar] [CrossRef]
- Brassel, K.E.; Reif, D. A procedure to generate Thiessen polygons. Geogr. Anal. 1979, 11, 289–303. [Google Scholar] [CrossRef]
- Mirante, A.; Weingarten, N. The radial sweep algorithm for constructing triangulated irregular networks. IEEE Comput. Graph. Appl. 1982, 2, 11–21. [Google Scholar] [CrossRef]
- Green, P.J.; Sibson, R. Computing Dirichlet tessellations in the plane. Comput. J. 1978, 21, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Amenta, N.; Choi, S.; Dey, T.K.; Leekha, N. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 2002, 12, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. Comput. Graph. 1992, 26, 71–78. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.N. Research on 3D Reconstruction Algorithm of Medical CT Image Based on Parallel Contour. IEEE Sens. J. 2020, 20, 11828–11835. [Google Scholar] [CrossRef]
- Guan, B.L.; Lin, S.J.; Wang, R.M.; Zhou, F.; Luo, X.N.; Zheng, Y.C. Voxel-based quadrilateral mesh generation from point cloud. Multimed. Tools Appl. 2020, 79, 20561–20578. [Google Scholar] [CrossRef]
Method | Type | Cost 1 | Output 2 | Resolution | Measuring Range |
---|---|---|---|---|---|
Time-of-flight method | Active | 2 | XYZD | mm | large |
Laser triangulation method | Active | 1 | XYZ | μm | medium |
Light-section scanning method | Active | 2 | XYZD/RGB | μm | medium |
Phase transform method | Active | 3 | XYZP | <mm | small |
Phase shifting profilometry | Active | 3 | XYZP | <mm | small |
Optical interferometry method | Active | 3 | XYZIP | μm | small |
Shape from X | Passive | 1 | XYZRGBD | mm | large |
Photometric stereo method | Passive | 1 | XYZRGB | μm–mm | small |
Binocular Stereo Vision | Passive | 2 | XYZRGBD | μm–mm | medium |
Category | Algorithm Name | Author | Year | Keywords |
---|---|---|---|---|
Based on mathematical solutions | —— | —— | —— | Rotation transformation matrix; Translation transformation matrix |
Based on statistical models | RANSAC [42,43] | Fischler and Chen | 1981–1991 | Random sample consensus |
NDT [44] | Biber | 2003 | Normal distributions transform | |
4PCS [45] | Aiger | 2008 | Four coplanar points; RANSAC | |
CPD [46] | Myronenko | 2010 | Coherent point drift | |
Based on point cloud features | Spin-Images [47] | Johnson | 1997 | Cylindrical-coordinate system |
HIS [48] | Zhang | 1999 | Harmonic shape images | |
3Dsc [49] | Frome | 2004 | 3D shape context | |
SHOT [50] | Salti | 2004 | Signature of histogram of orientation | |
PFH [51] | Rusu | 2008 | Persistent feature histograms | |
FPFH [52] | Rusu | 2009 | Fast persistent feature histograms | |
VFH [53] | Rusu | 2010 | Viewpoint feature histogram | |
HKS [54] | Sun | 2009 | Heat kernel signature | |
PPF [55] | Drost | 2010 | Point pair feature | |
Based on ICP deformation | ICP [56] | Besl | 1991 | Iterative closest point |
IDC [57] | Lu | 1997 | Iterative dual correspondences | |
Based on deep learning | LORAX [58] | Elbaz | 2017 | Localization by registration using a deep auto-encoder reduced cover set |
Category | Algorithm Name | Author | Year | Keywords | |
---|---|---|---|---|---|
Parametric shape representation | Coons [96] | Coons | 1964–1967 | Four boundaries of a closed curve | |
Bezier curve [97] | Bezier | 1971 | —— | ||
B-spline curve [98] | Gordon | 1974 | —— | ||
NURBS [99] | Versprille | 1975 | Non-uniform rational B-spline curve | ||
BPLI [100] | Barequet | 1996 | Piecewise-linear interpolation | ||
Implicit surface representation | Global | RBF [101,102] | Hardy | 1971 | Radial basis function |
PSR [103] | Kazhdan | 2006 | Poisson surface reconstruction | ||
SPSR [104] | Kazhdan | 2013 | Screened poisson surface reconstruction | ||
Local | MLS [105] | Lancaster | 1981 | Moving least squares | |
MTLS [106] | Scitovski | 1998 | Moving total least squares | ||
MPU [107] | Ohtake | 2003 | Multi-level partition of unity implicits | ||
APSS [108] | Guennebaud | 2007 | Algebraic point set surfaces | ||
RIMLS [109] | Öztireli | 2009 | Robust implicit moving least squares | ||
PIA [110] | Hamza | 2020 | Progressive iterative approximation | ||
Mesh representation | LTA/FA [111] | Lawson | 1977 | Local transformation algorithm | |
B-W A [112,113] | Bowyer, Watson | 1981 | Triangulation of an m-dimensional space point set | ||
TGM [114,115,116,117] | Brassel, Mirante, Green | —— | Triangulation growth method | ||
Crust [118] | Amenta | 1998 | Vertices of the Voronoi diagram | ||
Co-cone [119] | Amenta | 2000 | Simplification of Crust | ||
BPA [120] | Bernardini | 1999 | Ball pivoting algorithm | ||
Voxel representation | MC [121] | Lorensen | 1987 | Marching cubes | |
MTA [122] | Doi | 1991 | Marching tetrahedral algorithm | ||
Other representation methods | Surfels [93] | Pfister | 2000 | Include depth, texture color, normal | |
QSplat [95] | Rusinkiewicz | 2000 | Multi-resolution hierarchy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, B.; Tao, W.; Zhao, H. High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review. Remote Sens. 2021, 13, 4457. https://doi.org/10.3390/rs13214457
Cui B, Tao W, Zhao H. High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review. Remote Sensing. 2021; 13(21):4457. https://doi.org/10.3390/rs13214457
Chicago/Turabian StyleCui, Bin, Wei Tao, and Hui Zhao. 2021. "High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review" Remote Sensing 13, no. 21: 4457. https://doi.org/10.3390/rs13214457
APA StyleCui, B., Tao, W., & Zhao, H. (2021). High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review. Remote Sensing, 13(21), 4457. https://doi.org/10.3390/rs13214457