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Abstract: To address the registration problem in current machine vision, a new three-dimensional
(3-D) point cloud registration algorithm that combines fast point feature histograms (FPFH) and
greedy projection triangulation is proposed. First, the feature information is comprehensively
described using FPFH feature description and the local correlation of the feature information is
established using greedy projection triangulation. Thereafter, the sample consensus initial alignment
method is applied for initial transformation to implement initial registration. By adjusting the initial
attitude between the two cloud points, the improved initial registration values can be obtained. Finally,
the iterative closest point method is used to obtain a precise conversion relationship; thus, accurate
registration is completed. Specific registration experiments on simple target objects and complex
target objects have been performed. The registration speed increased by 1.1% and the registration
accuracy increased by 27.3% to 50% in the experiment on target object. The experimental results
show that the accuracy and speed of registration have been improved and the efficient registration
of the target object has successfully been performed using the greedy projection triangulation,
which significantly improves the efficiency of matching feature points in machine vision.
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1. Introduction

With the rapid development of optical measurement technology and three-dimensional (3-D)
imaging [1–3], point cloud data has received substantial attention as a special information format that
contains complete 3-D spatial data. The application of the 3-D image information is widespread in the
fields of 3-D reconstruction for medical applications [4], 3-D object recognition, reverse engineering of
mechanical components [5], virtual reality, and many others such as image processing and machine
vision [6,7].

There have been many efforts to achieve point cloud registration. The classic algorithm for this
purpose is the iterative closest point [8], proposed by Besl and Mckay. This algorithm can be efficiently
applied to registration problems for simple situations. However, if there is significant variance in the
initial position of the two cloud points, it is easy to fall into a local optimum and thus increase the
possibility of inaccurate registration. In order to provide improved initial parameters, it is necessary
to perform the initial registration before accurate registration using algorithms such as the sampling
consistency initial registration algorithm [9]. Due to the large capacity and complexity of point cloud
data models, describing feature points is one of the most important and decisive steps in the processing
for initial registration. Various methods have been developed to obtain feature information, such as
local binary patterns (LBP) [10], local reference frame (LRF) [11], signatures of histogram of orientations
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(SHOT) [12], and point feature histograms (PFH) [13]. These feature operators can only provide a single
description for feature information with high feature dimensions and high computational complexity.

Other efforts have been made in terms of feature matching. Scale-invariant feature transform
(SIFT) [14–16] utilizes difference of gaussian (DOG) images to calculate key points. It describes local
features of images and obtains the corresponding 3-D feature points through mapping relationships.
It has certain stability in terms of the change of view and affine transformation; however, the matching
speed for this algorithm is the main limitation. The speeded-up robust features (SURF) algorithm
can be used to extract the feature points of the image [17–20] and implement image matching
according to the correlation. However, this algorithm relies too much on the gradient direction
of the pixels in the local area, which yields unsatisfactory feature matching results. The intrinsic shape
signature (ISS) algorithm has been proposed for feature extraction to complete the initial registration
process [21,22]; however, wide range in searching feature point pairs and low computational efficiency
are the limitations for this algorithm. The method for interpolating point cloud models using basis
functions has been proposed for establishing local correlation to reduce computational complexity [23].
There are some limitations in traditional methods, such as the inability to comprehensively describe
feature information and slow matching of feature point pairs. These issues limit the accuracy and
speed of 3-D point cloud registration and significantly impacts its application in practical fields.
Based on the traditional sampling consistency initial registration, and iterative closest point accurate
registration, a new point cloud registration algorithm is proposed herein. The proposed algorithm
combines fast point feature histograms (FPFH) feature description with greedy projection triangulation.
The FPFH feature descriptor describes feature information accurately and comprehensively, and greedy
projection triangulation reflects the topological connection between data points and its neighbors,
establishes local optimal correlation, narrows the search scope, and eliminate unnecessary matching
times. The combination solves the problems of the slow speed and the low accuracy in traditional
point cloud registration, which leads to improvements in the optical 3-D measurement technology.
The effectiveness of the proposed algorithm is experimentally verified by performing point cloud
registration on a target object.

The contents of the paper consist of four sections. In Section 2, the specifications of the point
cloud registration algorithm are discussed. In Section 3, experiments and analysis performed using the
point cloud library (PCL) are presented. Finally, the conclusions are presented in Section 4.

2. Point Cloud Registration Algorithm

Regarding the complexity of the target, integral information can only be obtained by scanning
multiple stations from different directions. The data scanned by each direction is based on its own
coordinate system, and then unify them to the same coordinate system. Control points and target
points are set in the scan area such that there are multiple control points or control targets with the
same name on the map of the adjacent area. Thus, the adjacent scan data has the same coordinate
system through the forced attachment of control points. The specific algorithm is as follows.

First, the FPFH of the point cloud is calculated and the local correlation is established to speed-up
the search for the closest eigenvalue using the greedy projection triangulation network. Because of the
unknown relative position between the two point cloud models, sample consensus initial alignment
is used to obtain an approximate rotation translation matrix to realize the initial transformation.
In addition, the iterative closest point is further refined to obtain a more accurate matrix with the initial
value. The point cloud registration chart is shown in Figure 1.
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Figure 1. Point cloud registration chart. FPFH (fast point feature histograms).

2.1. Feature Information Description

FPFH is a simplification algorithm for point feature histograms (PFH), which is a histogram of
point features reflecting the local geometric features around a given sample point. All neighboring
points in the neighborhood K of the sample point P are examined and a local UVW coordinate system
is defined as follows: 

u = ns

v = u× (Pt−Ps)
‖Pt−Ps‖

w = u× v
. (1)

The relationship between pairs of points in the neighborhood K is represented by the parameters
(α, β, θ) and can be obtained as follows:

α = v× ns

β = u× (Pt−Ps)
‖Pt−Ps‖

θ = arctan(w · ns, u · nt)

, (2)

where Ps and Pt (s 6= t) denote the point pairs and ns and nt denote their corresponding normals in the
sample point neighborhood K.

The eigenvalues of all point pairs are then calculated and the PFH of each sample point Pc is then
statistically integrated. Next, the neighborhood K of each point is determined to form a simplified
point feature histogram (SPFH), which is then integrated into the final FPFH. Hence, each sample point
is uniquely represented by the FPFH feature descriptor. The eigenvalues of FPFH can be calculated
using the following equation:

FPFH(Pc) = SPFH(Pc) +
1
k

k

∑
i=1

1
wk
·SPFH(Pi), (3)

where wk denotes the distance between the sample point Pc and the neighboring point Pk in the known
metric space.

2.2. Greedy Projection Triangulation

Greedy projection triangulation bridges computer vision and computer graphics. It converts
the scattered point cloud into an optimized spatial triangle mesh, thereby reflecting the topological
connection relationship between data points and their neighboring points, and maintaining the global
information of the point cloud data [24]. The established triangulation network reflects the topological
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structure of the target object that is represented by the scattered data-set. The triangulation process is
shown in Figure 2. The specific steps are given as follows:
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Step 1: A point V and its normal vector exist on the surface of the three-dimensional object.
The tangent plane perpendicular to the normal vector must first be determined.

Step 2: The point V and its vicinity are projected to the tangent plane passing through V, denoted
as the point set {S}, and the point set {S}, which forms all N/2 edges between the two points,
is linearly arranged in order of distance from small to large.

Step 3: The local projection method is used to add the shortest edge at each stage and remove
the shortest edge from the memory. If the edge does not intersect any of the current triangulation
edges, then it is added to the triangulation, otherwise, it is removed. When the memory is empty,
the triangulation process ends.

Step 4: Triangulation is used to obtain the connection relationship of the points and return it to
the three-dimensional space, which forms the space triangulation of the point V and its nearby points.

Greedy projection triangulation can establish a reasonable data structure for a large number
of scattered point clouds in the 3-D space. When positioning a point, the path is unique, and the
tetrahedron can be located accurately and quickly, thereby narrowing the search range and eliminating
unnecessary matching. This fundamentally improves the overall efficiency of matching feature points.

2.3. Sample Consensus Initial Registration

The sample consensus initial alignment is used for initial registration. Assuming that there exists
a source cloud Os = {Pi} and a target cloud Ot = {Qj}, then the specific steps are as follows:

Step 1: Based on the FPFH feature descriptor of each sample point, greedy projection triangulation
is performed on the target point cloud to establish local correlation of the scattered point cloud data.

Step 2: A number of sampling points are selected in the source point cloud Os. In order to ensure
that the sampling points are representative, the distance between two sampling points must be greater
than the preset minimum distance threshold d.

Step 3: Search for the feature points in the target point cloud Ot, whose feature value are close
to the sample points in the source point cloud Os. Given that the greedy projection triangulation
establishes a reasonable data structure for the target point cloud and then performs feature matching,
it directly locates the tetrahedron with a large correlation and searches for the corresponding point
pairs within the local scope.
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Step 4: The transformation matrix between the corresponding points is obtained. The performance
of registration is evaluated according to the total distance error function by solving the corresponding
point transformation, which is expressed as follows:

H(li) =

{
1
2 li2 ‖li‖ < mi
1
2 mi(2‖li‖ −mi) ‖li‖ > mi

, (4)

in which, mi is the specified value and li is the distance difference after the corresponding point
transformation. When the registration process is completed, the one with the smallest error in all the
transformations is considered as the optimal transformation matrix for initial registration.

2.4. Iterative Closest Point Accurate Registration

The initial transformation matrix is the key to improved matching for accurate registration.
An optimized rotational translation matrix [R0, T0] was obtained by initial registration, which is used
as an initial value for accurate registration to obtain a more accurate transformation relationship by
the iterative closest point algorithm.

Based on the optimal rotation translation matrix obtained from the initial registration, the source
point cloud Os is transformed into Os

′, and it is used together with Ot as the initial set for accurate
registration. For each point in the source point cloud, the nearest corresponding point in the target
point cloud is determined to form the initial corresponding point pair and the corresponding point
pair with the direction vector threshold is deleted. The rotation matrix R and translation vector T
are then determined. Given that R and T have six degrees of freedom while the number of points
is huge, a series of new R and T are obtained by continuous optimization. The nearest neighbor
point changes with the position of the relevant point after the conversion; therefore, it returns to the
process of continuous iteration to find the nearest neighbor point. The objective function is constructed
as follows:

f (R, T) =
1

NP

NP

∑
i=1
|Oi

t − R ·Oi
s − T|

2

, (5)

when the change of the objective function is smaller than a certain value, it is believed that the iterative
termination condition has been satisfied. More precisely, accurate registration has been completed.

3. Experiment and Analysis

During the experiment, Kinect was used as a 3-D vision sensor to realize point cloud data
acquisition. The original point cloud data that was collected was processed on the Geomagic
Studio 12 (Geomagic Corporation, North Carolina, the United States) platform and the experiment
was completed in Microsoft Visual C++ (Microsoft Corporation, Washington, the United States).
The traditional algorithm collects two point cloud data under different orientations of the same object,
performs initial registration and fine registration without applying greedy projection triangulation.
The greedy projection triangulation is added to address the limitations in terms of registration speed
and accuracy, and the superiority of the proposed algorithm is analyzed by comparing with the
traditional algorithm.

3.1. Point Cloud Registration Experiment for Simple Target Object

In this experiment, a cup is used as an example for registration. Figure 3a shows the original point
cloud data and Figure 3b shows cup point cloud data after removing the background. Figure 3c shows
the registration result obtained by the traditional algorithm while Figure 3d shows the registration
result obtained using the registration algorithm proposed in this paper. The red regions in the point
cloud represents the source point cloud data while the green and the blue regions represent the target
point cloud and the rotated cloud point data, respectively.
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Table 1 lists the experimental parameters. Table 2 lists the results of the target point cloud
conversion obtained using the traditional point cloud registration algorithm and the results obtained
using the proposed algorithm, which reflect the relative transformation relationship of the target object.
Table 3 compares the registration times of different algorithms.

Table 1. The experimental parameters.

The Number of Point
Clouds Iterative Closest Point Accurate Registration Parameters

Source
point cloud

Target point
cloud Threshold (m) The maximum number

of iterations
Transform matrix

difference (m)
Mean square

error (m)
7009 5566 0.01 500 1 × 10−10 0.1

Table 2. Point cloud conversion results of different algorithms.

Algorithms Transormation matrix of Initial
Registration (m)

Transormation matrix of Accurate
Registration (m)

Traditional algorithm


0.999 0.008 −0.031 −0.049
−0.003 0.985 0.170 −0.040
0.032 −0.170 0.985 0.027

0 0 0 1




0.999 0.007 −0.017 −0.057
−0.004 0.983 0.185 −0.049
0.018 −0.185 0.983 0.026

0 0 0 1


Proposed algorithm


0.999 0.008 −0.031 −0.049
−0.030 0.985 0.170 −0.040
0.032 −0.170 0.985 0.028

0 0 0 1




0.999 0.012 −0.005 −0.062
−0.011 0.980 0.201 −0.059
0.007 −0.200 0.980 0.025

0 0 0 1


Table 3. Registration time of different algorithms.

Algorithm Total Registration Time
(s)

Initial Registration Time
(s)

Accurate Registration Time
(s)

Traditional algorithm 0.347 0.340 0.007
Proposed algorithm 0.257 0.252 0.005

When analyzing the above experiments, the attitude of the source cloud is considered as
a reference and the attitude of the target object is decomposed into three directions, namely X, Y,
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and Z. The rotation angle in three directions and the matching error distance between the source cloud
and the transformed point cloud are considered as the evaluation indices. The rotation angle and the
registration error distance in this experiment are shown in Table 4.

Table 4. Experimental results of different algorithms.

Algorithms X-Direction Rotation
Angle (rad)

Y-Direction Rotation
Angle (rad)

Z-Direction Rotation
Angle (rad)

Average Error
Distance (cm)

Traditional
algorithm 0.186 0.018 −0.625 0.158

Proposed
algorithm 0.202 0.007 −0.617 0.149

From Table 3, it can be observed that for the same point cloud sample with the same experimental
parameters, the initial registration time using the traditional algorithm is 0.340 s. Because of the
combination of FPFH feature description and greedy projection triangulation, the initial registration
time obtained using the proposed algorithm is 0.252 s. Table 4 shows a comparison of the two
algorithms. The average error distance obtained is 1.58 mm and 1.49 mm using the traditional algorithm
and the proposed algorithm, respectively. As shown in Table 2, the point cloud is transformed
by the different transformation matrix, and the average error distance obtained is smaller by the
proposed algorithm.

3.2. Point Cloud Registration Experiment for Complex Target Object

In this experiment, the point cloud models of the same person in different orientations are collected
and then registered using different algorithms. Figure 4a shows the results of 3-D reconstruction.
Figure 4b,c show the registration results of the traditional algorithm and the proposed algorithm,
respectively. As can be seen from the figure, the blue point cloud and the red point cloud are more
highly integrated in Figure 4c than that in Figure 4b, which can be known the proposed algorithm is
more accurate than the traditional algorithm. Table 5 shows a comparison of the registration time of
different algorithms. Table 6 shows the obtained rotation angle and the registration error distance in
this experiment. The eight groups affine transformations are performed on the input point cloud data,
which verify the reliability of the algorithm. Table 7 shows a comparison of the average registration
error distance and the total registration time of the eight groups of experiments. The ratio of average
registration error reduction is between 27.3% and 50%, and the ratio of total registration time reduction
is about 1.1%. It can be seen that the average registration error distance of the proposed algorithm is
smaller and the total registration time is shorter than the traditional one, which verifies the reliability
of the proposed algorithm.

Table 5. Registration time of different algorithms.

Orientation Algorithms Total Registration
Time (s)

Initial Registration
Time (s)

Accurate Registration
Time (s)

1
Traditional
algorithm 11.680 11.428 0.252

Proposed
algorithm 11.553 11.336 0.217

2
Traditional
algorithm 8.287 8.196 0.091

Proposed
algorithm 8.029 7.955 0.074



Appl. Sci. 2018, 8, 1776 8 of 10

Appl. Sci. 2018, 8, x 8 of 11 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. (a; b) 3-D reconstruction; (c; d) Traditional algorithm; (e; f) Proposed algorithm. 

Table 5. Registration time of different algorithms. 

Orientation Algorithms 
Total Registration 

Time (s) 

Initial Registration 

Time (s) 

Accurate Registration 

Time (s) 

1 

Traditional 

algorithm 
11.680 11.428 0.252 

Proposed 

algorithm 
11.553 11.336 0.217 

2 

Traditional 

algorithm 
8.287 8.196 0.091 

Proposed 

algorithm 
8.029 7.955 0.074 

Table 6. Experimental results of different algorithms. 

Orientation Algorithms 

X-Direction 

Rotation Angle 

(rad) 

Y-Direction 

Rotation Angle 

(rad) 

Z-Direction 

Rotation Angle 

(rad) 

Average Error 

Distance (cm) 

1 

Traditional 

algorithm 
0.283 0.702 −0.172 0.015 

Proposed 

algorithm 
0.139 0.561 −0.002 0.011 

2 

Traditional 

algorithm 
0.053 0.469 −0.587 0.009 

Proposed 

algorithm 
0.003 0.495 −0.625 0.005 

  

Figure 4. (a,b) 3-D reconstruction; (c,d) Traditional algorithm; (e,f) Proposed algorithm.

Table 6. Experimental results of different algorithms.

Orientation Algorithms
X-Direction

Rotation Angle
(rad)

Y-Direction
Rotation Angle

(rad)

Z-Direction
Rotation Angle

(rad)

Average Error
Distance (cm)

1
Traditional
algorithm 0.283 0.702 −0.172 0.015

Proposed
algorithm 0.139 0.561 −0.002 0.011

2
Traditional
algorithm 0.053 0.469 −0.587 0.009

Proposed
algorithm 0.003 0.495 −0.625 0.005

Table 7. Comparison of average error distance and total registration time of multiple sets experiment.

Group

Registration
Error of

Traditional
Algorithm

(cm)

Registration
Error of

Proposed
Algorithm

(cm)

Percentage of
Average

Registration
Error

Reduction (%)

Total
Registration

Time of
Traditional

Algorithm (s)

Total
Registration

Time of
Proposed

Algorithm (s)

Percentage of
Total

Registration
Time

Reduction (%)

1 0.015 0.011 36.4 11.680 11.553 1.1
2 0.014 0.011 27.3 11.669 11.549 1.0
3 0.014 0.010 40.0 11.684 11.559 1.1
4 0.015 0.011 36.4 11.681 11.556 1.1
5 0.013 0.010 30.0 11.685 11.558 1.1
6 0.015 0.010 50.0 11.673 11.551 1.1
7 0.015 0.011 36.4 11.678 11.551 1.1
8 0.014 0.011 27.3 11.683 11.558 1.1

Compared with the results obtained from the traditional algorithm, it is concluded that the
proposed algorithm has higher registration accuracy and faster registration speed. Its advantages can
be attributed to the following factors:

(a) The FPFH feature descriptor describes feature information accurately and comprehensively and
avoids the errors in matching feature point pairs.
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(b) Greedy projection triangulation reflects the topological connection between data points and its
neighbors, establishes local optimal correlation, narrows the search scope, and reduce unnecessary
matching times.

(c) The combination of the FPFH feature description and the greedy projection triangulation can
match similar point pairs accurately and quickly, which is the key to efficient registration.

4. Conclusions

Based on the traditional sample consensus initial alignment and iterative closest point algorithms,
a new point cloud registration algorithm based on the combination of the FPFH feature description
and the greedy projection triangulation was proposed herein. The 3-D point cloud data is used to
improve the information regarding the two-dimensional image, and the data information is completely
preserved. The FPFH comprehensively describes the local geometric feature information around the
sample point. This simplifies the complexity of feature extraction and improves the accuracy of feature
description. Greedy projection triangulation solves the problem that the feature points have a wide
search range during the registration process. Thus, the number of matching processes is reduced.

In the registration experiment for target object, the registration speed increased by 1.1% and
the registration accuracy improved by 27.3% to 50%. The results show that the optimized spatial
triangular mesh established by greedy projection triangulation narrows the search range of feature
points, which improved the registration speed and accuracy. The initial registration determines an
approximate rotational translation relationship between the two point cloud models. Using it as the
initial value, accurate registration is performed to obtain a more precise relative change relationship.
The greedy projection triangulation optimizes the traditional registration algorithm, thereby making
the registration process faster and more accurate.
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