Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities
Abstract
:1. Introduction
2. State of the Art
2.1. Using Documented Search Terms
2.2. Urban Growth Analysis along the Mexican-US Border
2.3. Usage of Aerial and Satellite Imagery for Measuring Urban Growth Related to Hazards
2.4. Flood Hazard and Risk Research
2.5. State-of-the-Art Classification Models
2.6. Summary of Major Gaps Identified
Authors | Abstract or Full-Text | Cities | Remote Sensing (and Data Range) | Hazard | Social Vulnerability |
---|---|---|---|---|---|
Korbulic 2012 | Full-text | Tijuana & San Diego; Mexicali & Calexico; San Luis RC & San Luis; El Centro; Yuma | Yes, 1985–2010 | No | No |
Sánchez Rodríguez & Morales Santos, 2018 | Full-text | Tijuana | Yes, 1972–2014 | Climate Change, flood, landslides | Yes |
Leyva–Camacho et al., 2010 | Full-text | Mexicali | Yes, 1990–2005 | No | No |
Norman et al., 2004 | Full-text | Agua Prieta & Douglas | Yes, 1973–2000 | No | No |
Myint et al., 2014 | Abstract | Nogales & Nogales | Yes, 1984–2004 | - | - |
Norman et al., 2009 | Full-text | Nogales & Nogales | Yes, 1975–2002 | No | No |
Norman et al., 2010 | Full-text | Nogales & Nogales | Yes | Flood | No |
Mubako et al., 2018 | Full-text | Ciudad Juarez & El Paso, Las Cruzes | Yes, 1990–2015 | No | No |
Zhao et al., 2017 | Abstract | Nuevo Laredo & Laredo | Yes | - | - |
Zhao et al., 2020 | Full-text | Nuevo Laredo & Laredo | Yes, 1985–2014 | No | No |
Pena 2012 | Full-text | Rio Grande City-Roma, McAllen-Edinburg-Mission, Harlingen-Brownsville | Yes, 1990–2010 | No | No |
Leigh et al., 2009 | Full-text | Counties Cameron, El Paso, Hidalgo, Maverick, Willacy | Yes, 1996–2006 | No | No |
3. Method
3.1. Data Used
3.2. Methodological Steps
4. Results
4.1. Urban Area Size and Growth
4.2. Analysing Urban Area Sizes from Remote Sensing Data
4.3. Flood Hazard Exposure Mapping
4.4. Comparing Existing Social Vulnerability Data
4.5. Summary of Urban and Flood Exposure Growth Factors Contributing to Overall Disaster Risk
City in Mexico | Population 2010 | City Area 2020 (km2) | Area Growth Factor | Population Growth Factor | SVI 2010 (Municipio/County) | SVI 2018 Census Tract (Mean Value) | Flood Exposure 2020 (km2) | Flood Exposure Growth Factor 1940–2020 |
---|---|---|---|---|---|---|---|---|
Tijuana | 1559,683 | 388 | 46 | 24 | medium | - | 87 | 23 |
Mexicali | 936,826 | 194 | 18 | 8 | low | - | 50 | 17 |
San Luis Rio Colorado | 178,380 | 65 | >100 | 13 | low | - | 16 | >100 |
Nogales | 220,292 | 44 | 14 | 8 | medium | - | 7 | 6 |
Agua Prieta | 79,138 | 26 | 9 | 6 | low | - | 5 | 4 |
Ciudad Juarez | 1332,131 | 313 | 23 | 10 | low | - | 62 | 15 |
Ciudad Acuna | 134233 | 37 | 16 | 10 | low | - | 15 | 10 |
Piedras Negras | 150178 | 45 | 1 | 5 | low | - | 7 | 10 |
Nuevo Laredo | 384,033 | 96 | 1 | 6 | low | - | 35 | 13 |
Reynosa | 589,466 | 120 | 1 | 8 | low | - | 51 | 53 |
Matamoros, Mexico | 449,815 | 109 | 0 | 4 | low | - | 76 | 34 |
City in USA | ||||||||
San Ysidro | 28,008 | 8 | 7 | 3 | high | 0.803 | 2 | 0 |
Imperial Beach city | 51,332 | 49 | 8 | 3 | high | 0.650 | 1 | 0 |
Calexico | 38,573 | 16 | 7 | 6 | highest | 0.923 | 0 | 0 |
San Luis | 27,909 | 9 | >100 | >100 | highest | 0.837 | 9 | >100 |
Nogales | 20,839 | 18 | 8 | 8 | highest | 0.927 | 5 | 5 |
Douglas | 17,509 | 13 | 2 | 2 | highest | 0.902 | 9 | 2 |
El Paso | 648,245 | 712 | 8 | 5 | highest | 0.686 | 0 | 1 |
Del Rio | 35,591 | 28 | 4 | 3 | highest | 0.794 | 4 | 4 |
Eagle Pass | 26,248 | 33 | 1 | 4 | highest | 0.916 | 5 | 10 |
Laredo | 235,780 | 162 | 1 | 5 | highest | 0.825 | 17 | 15 |
Hidalgo | 141,075 | 23 | 1 | 7 | highest | 0.887 | 21 | >100 |
Brownsville | 175,023 | 135 | 0 | 5 | highest | 0.865 | 134 | 23 |
5. Discussion
5.1. Data Availability
5.2. Opportunities by Exploring Old Aerial and Satellite Imagery—Urban Growth into Hazard Areas Detected by Comparison to the Previous Land Surface
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Search Term | Search Engine | Date of Search | Comment |
---|---|---|---|
social vulnerability index mexico | Google Scholar | 18 April 2021 | |
mexico vulnerabilidad social | Google Scholar | 18 April 2021 | |
mexico USA border cities flood | Google Scholar | 18 April 2021 | |
Urban growth border Mexic | Google Scholar | 18 April 2021 | Many hits |
Urban sprawl border Mexic | Google Scholar | 20 April 2021 | Very few additional hits |
Urban sprawl border Mexic remote sensing | Google Scholar | 20 April 2021 | Few additional hits |
border Mexic “CORONA satellite” | Google Scholar | 20 April 2021 | No significant hits |
Mexic border flood analysis | Google Scholar | 20 April 2021 | Very few additional hits |
Urban growth (city name) remote sensing | Google Scholar | 20 April 2021 | Some hits |
Urban growth (city name) | Google Scholar | 20 April 2021 | Few relevant hits |
Urban growth OR sprawl OR expansion (city name) | Google Scholar | 20 April 2021 | Few relevant hits |
Urban growth OR sprawl OR expansion (city name) remote sensing | Google Scholar | 20 April 2021 | Few relevant hits |
City name AND flood | Google Scholar | 2 May 2021 | Hits depending on city |
City name AND flood map OR flood plain | Google Scholar | 3 May 2021 | |
City name AND flood map | 3 May 2021 | ||
City name ANDinundación OR aluvión AND mapa | 3 May 2021 | ||
Cross-border flood risk map | Google Scholar | 15 May 2021 | Few hits, mostly for European cross-border river basins |
Zonas de riesgo por desbordamiento | 20 May 2021 | Works for some cities |
Description | File Type | Provider/Author | File Name | File Date | Access Date | Link |
---|---|---|---|---|---|---|
Admin. boundaries, municipios Mexico | Shapefile | CONABIO | División política municipal, 1:250000. 2018 | 10 Feb 2021 | 13 May 2021 | http://www.conabio.gob.mx/informacion/gis/ |
SVI 2010 Mexico | Shapefile | CONABIO | Grado de vulnerabilidad social por municipio, 2010 | 10 Feb 2021 | 13 May 2021 | http://www.conabio.gob.mx/informacion/gis/ |
Flood risk MX | Shapefile | CONABIO/CENAPRED | Grado de riesgo por inundaciones por municipio | 12 Sep 2007 | 13 May 2021 | http://www.conabio.gob.mx/informacion/gis/ |
Rivers_MX | Shapefile | CONABIO/Maderey-R, L. E. y Torres-Ruata, C. | Hidrografía | 1990 | 13 May 2021 | http://www.conabio.gob.mx/informacion/gis/ |
SVI 2010 USA | Geodatabase | CDC | CDC/ATSDR SVI Data and Documentation Download. Counties or Census tract (RPL_Themes) | 2010, 2018 | 13,26 May 2021 | https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html |
Admin boundaries, counties, USA | US census/MAF/TIGER | County and Equivalent | 2020 | 13 May 2021 | https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html | |
Floodzones USA | Shapefile | FEMA’s National Flood Hazard Layer (NFHL) Viewer | FEMA’s National Flood Hazard Layer (NFHL) Viewer/S_FLD_HAZ_AR.shp | varies | 13 May 2021 | https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd |
Floodzones Mexico | KMZ | Gobierno de Mexico/CENAPRED | Atlas Nacional de Riesgos por Inundacion (ANRI) | 13 May 2021 | http://atlasnacionalderiesgos.gob.mx/archivo/visor-capas.html | |
Aerial images; CORONA satellite date | TIFF | USGS Earth Explorer | Aerial Photo Single Frames; Declassified Data | varies | 1 December 2020–31 May 2021 | https://earthexplorer.usgs.gov |
Basemap | WMS | Open Street Map | 1 December 2020 | https://tile.openstreetmap.org/ | ||
Sentinel 2 satellite data | WMS | EOX::Maps | Sentinel-2 cloudless layer for 2020 by EOX-4326 | 2020 | 20 April 2021 | https://tiles.maps.eox.at/wms? |
Border, US states | Shapefile | US census/MAF/TIGER | State and Equivalent | 2020 | 14 May 2021 | https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html |
Border encounters | Table | US Customs and Border Protection | Southwest Land Border Encounters (By Component) | 2021 | 14 May 2021 | https://www.cbp.gov/newsroom/stats/southwest-land-border-encounters-by-component |
City in USA | SVI 2010 (Municipium/Counties) | SVI Change (2000–2010) | SVI 2018 Census Tract (Mean Value) * | SVI Census Tract (Min) | SVI Census Tract (Max) |
---|---|---|---|---|---|
San Ysidro | high | no change | 0.803 | 0.412 | 0.993 |
Imperial Beach city | high | no change | 0.650 | 0.050 | 0.978 |
Calexico | highest | no change | 0.923 | 0.770 | 0.995 |
San Luis | highest | no change | 0.837 | 0.745 | 0.958 |
Nogales | highest | no change | 0.927 | 0.655 | 0.998 |
Douglas | highest | no change | 0.902 | 0.773 | 0.990 |
El Paso | highest | no change | 0.686 | 0.051 | 1.000 |
Del Rio | highest | no change | 0.794 | 0.549 | 0.974 |
Eagle Pass | highest | no change | 0.916 | 0.801 | 0.990 |
Laredo | highest | no change | 0.825 | 0.297 | 1.000 |
Hidalgo | highest | no change | 0.887 | 0.752 | 0.975 |
References
- UN/HABITAT. New urban agenda. In Proceedings of the United Nations, Habitat III Secretariat, Quito, Ecuador, 20 October 2016; p. 65. [Google Scholar]
- United Nations. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Bogardi, J.J. Hazards, risks and vulnerabilities in a changing environment: The unexpected onslaught on human security? Glob. Environ. Chang. 2004, 14, 361–365. [Google Scholar] [CrossRef]
- Guadagno, L. Human Mobility in the Sendai Framework for Disaster Risk Reduction. Int. J. Disaster Risk Sci. 2016, 7, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Warner, K.; Hamza, M.; Oliver-Smith, A.; Renaud, F.; Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 2010, 55, 689–715. [Google Scholar] [CrossRef]
- Wachtendorf, T. When Disaster Defy Borders: What We can Learn from the Red River Flood about Transnational Disasters. Aust. J. Emerg. Manag. 2000, 15, 36–41. [Google Scholar]
- Berchtold, C.; Vollmer, M.; Sendrowski, P.; Neisser, F.; Müller, L.; Grigoleit, S. Barriers and Facilitators in Interorganizational Disaster Response: Identifying Examples Across Europe. Int. J. Disaster Risk Sci. 2020, 11, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Hannigan, J. Disasters across borders: Borderlands as spaces of hope and innovation in the geopolitics of environmental disasters. In Crossing Borders: Governing Environmental Disasters in a Global Urban Age in Asia and the Pacific; Miller, M.A., Douglass, M., Garschagen, M., Eds.; Springer: Singapore, 2018; pp. 79–94. [Google Scholar]
- Chute, N. See Drone Footage, Satellite Images Showing Thousands of Haitian Migrants Gathered at Del Rio Border. Available online: https://eu.elpasotimes.com/story/news/2021/09/20/del-rio-bridge-drone-video-texas-border-photos-haiti-migrants/8418312002/ (accessed on 22 October 2021).
- Roberts, K. Haitians Under Its Bridge, Del Rio Ranks Among Top 25% of Nation’s Trade Gateways. Available online: https://www.forbes.com/sites/kenroberts/2021/09/22/haitians-under-its-bridge-del-rio-ranks-among-top-25-of-nations-trade-gateways/?sh=1164daec1847 (accessed on 22 October 2021).
- Villarreal, A. ‘Sleeping in the Dust’: Migrants Face Harsh Conditions in Del Rio as 5000 Remain. Available online: https://www.theguardian.com/us-news/2021/sep/24/haitian-migrants-del-rio-border-camp (accessed on 22 October 2021).
- Flanagan, B.E.; Hallisey, E.J.; Adams, E.; Lavery, A. Measuring community vulnerability to natural and anthropogenic hazards: The Centers for Disease Control and Prevention’s Social Vulnerability Index. J. Environ. Health 2018, 80, 34. [Google Scholar]
- Gobierne De México. Atlas Nacional De Riesgos. Indicadores. Grado De Vulnerabilidad Social (Indicadores Socioeconómicos). Available online: http://atlasnacionalderiesgos.gob.mx/archivo/visor-capas.html (accessed on 1 October 2021).
- Mueller, E.R.; Schmidt, J.C.; Topping, D.; Grams, P.E. Geomorphic change in the limitrophe reach of the Colorado River in response to the 2014 delta pulse flow, United States and Mexico. In Proceedings of the SEDHYD 2015, Reno, NV, USA, 19–23 April 2015. [Google Scholar]
- Sadasivam, N. Fenced in and Flooded out. The US-Mexico Border Wall’s Dangerous, Costly Side-Effect: Enormous Floods. Available online: https://qz.com/1353798/the-us-mexico-border-walls-dangerous-costly-side-effect-enormous-floods/ (accessed on 1 November 2021).
- Norman, L.M.; Huth, H.; Levick, L.; Shea Burns, I.; Phillip Guertin, D.; Lara-Valencia, F.; Semmens, D. Flood hazard awareness and hydrologic modelling at Ambos Nogales, United States–Mexico border. J. Flood Risk Manag. 2010, 3, 151–165. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40years. Remote Sens. Environ. 2012, 127, 210–222. [Google Scholar] [CrossRef]
- Masek, J.; Lindsay, F.; Goward, S. Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from Landsat observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [Google Scholar] [CrossRef]
- Song, X.-P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Kötter, T.; Weiss, D. The multi-scale patterns of urban disaster resilience: Case study of Tehran City, Iran. In Proceedings of the Extended Abstract. IDRC DAVOS 2016 “Integrative Risk Management—Towards Resilient Cities”, Davos, Switzerland, 28 August–1 September 2016; pp. 62–65. [Google Scholar]
- Contreras Mojica, D.M.; Chamorro, A. A socio-economic vulnerability to natural hazards: A spatial model including dependencies to critical urban infrastructure. In Proceedings of the Deutscher Kongress für Geographie 2019, Kiel, Germany, 25 September–1 October 2019. [Google Scholar]
- Kraff, N.J.; Wurm, M.; Taubenböck, H. The dynamics of poor urban areas-analyzing morphologic transformations across the globe using Earth observation data. Cities 2020, 107, 102905. [Google Scholar] [CrossRef]
- Bayram, B.; Bayraktar, H.; Helvaci, C.; Acar, U. Coastline change detection using CORONA, SPOT and IRS 1D images. Int. Arch. Photogramm. Remote Sens. 2004, 35, 437–441. [Google Scholar]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Song, D.-X.; Huang, C.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Tappan, G.G.; Hadj, A.; Wood, E.C.; Lietzow, R.W. Use of Argon, Corona, and Landsat imagery to assess 30 years of land resource changes in west-central Senegal. Photogramm. Eng. Remote Sens. 2000, 66, 727–736. [Google Scholar]
- Stewart, D.J.; Yin, Z.-Y.; Bullard, S.M.; MacLachlan, J.T. Assessing the spatial structure of urban and population growth in the Greater Cairo area, Egypt: A GIS and imagery analysis approach. Urban Stud. 2004, 41, 95–116. [Google Scholar] [CrossRef]
- Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban sprawl and the ‘olive’landscape: Sustainable land management for ‘crisis’ cities. GeoJournal 2019, 84, 237–255. [Google Scholar] [CrossRef]
- Hepcan, S.; Hepcan, C.C.; Kilicaslan, C.; Ozkan, M.B.; Kocan, N. Analyzing landscape change and urban sprawl in a Mediterranean coastal landscape: A case study from Izmir, Turkey. J. Coast. Res. 2013, 29, 301–310. [Google Scholar]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Ktter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Criado, M.; Santos-Francés, F.; Martínez-Graña, A.; Sánchez, Y.; Merchán, L. Multitemporal Analysis of Soil Sealing and Land Use Changes Linked to Urban Expansion of Salamanca (Spain) Using Landsat Images and Soil Carbon Management as a Mitigating Tool for Climate Change. Remote Sens. 2020, 12, 1131. [Google Scholar] [CrossRef] [Green Version]
- UNISDR. Technical Guidance for Monitoring and Reporting on Progress in Achieving the Global Targets of the Sendai Framework for Disaster Risk Reduction, New ed.; United Nations: Geneva, Switzerland, 2017; p. 179. [Google Scholar]
- Taubenböck, H.; Esch, T.; Wurm, M.; Thiel, M.; Ullmann, T.; Roth, A.; Schmidt, M.; Mehl, H.; Dech, S. Urban structure analysis of mega city Mexico City using multisensoral remote sensing data. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VIII, Cardiff, Wales, 16 September 2008; p. 71100E. [Google Scholar]
- Cutter, S.L.; Emrich, C.T.; Morath, D.P.; Dunning, C.M. Integrating social vulnerability into federal flood risk management planning. J. Flood Risk Manag. 2013, 6, 332–344. [Google Scholar] [CrossRef]
- Chatfield, W.H. The Twin Cities (Brownsville, Texas; Matamoros, Mexico) of the Border and the Country of the Lower Rio Grande; Harbert Davenport Memorial Fund, E.P. Brandao: New Orleans, LA, USA, 1893. [Google Scholar]
- Dillman, C.D. Border Town Symbiosis Along the Lower Rio Grande as Exemplified by the Twin Cities, Brownsville, Texas and Matamoros, Tamaulipas. Rev. Geográfica 1969, 71, 93–113. [Google Scholar]
- Dillman, C.D. Urban growth along Mexico’s northern border and the Mexican national border program. J. Dev. Areas 1970, 4, 487–508. [Google Scholar]
- Arbeláez, M.S.; Arreola, D.D.; De Baca, J.C.; De Baca, V.C.; Du Bry, T.; Hayman, J.M.; Macías-González, V.M.; Pilcher, J.M.; Schantz, E.M.; Taylor, L.D. On the Border: Society and Culture between the United States and Mexico; Rowman & Littlefield Publishers: Lanham, MD, USA, 2004. [Google Scholar]
- Herzog, L.A. Where North Meets South: Cities, Space, and Politics on the United States-Mexico Border; University of Texas: Richardson, TX, USA, 1990. [Google Scholar]
- Peña, S. Recent developments in urban marginality along Mexico’s northern border. Habitat Int. 2005, 29, 285–301. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Zhan, B. A comparison of urban growth and their influencing factors of two border cities: Laredo in the US and Nuevo Laredo in Mexico. Appl. Geogr. 2017, 79, 223–234. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weaver, R. Global and Local Modeling of Land Use Change in the Border Cities of Laredo, Texas, USA and Nuevo Laredo, Tamaulipas, Mexico: A Comparative Analysis. Land 2020, 9, 347. [Google Scholar] [CrossRef]
- Biggs, T.W.; Atkinson, E.; Powell, R.; Ojeda-Revah, L. Land cover following rapid urbanization on the US–Mexico border: Implications for conceptual models of urban watershed processes. Landsc. Urban Plan. 2010, 96, 78–87. [Google Scholar] [CrossRef]
- Norman, L.M.; Feller, M.; Phillip Guertin, D. Forecasting urban growth across the United States–Mexico border. Comput. Environ. Urban Syst. 2009, 33, 150–159. [Google Scholar] [CrossRef]
- Myint, S.W.; Jain, J.; Lukinbeal, C.; Lara-Valencia, F. Simulating urban growth on the US-Mexico border: Nogales, Arizona, and Nogales, Sonora. Can. J. Remote Sens. 2010, 36, 166–184. [Google Scholar] [CrossRef]
- Sánchez Rodríguez, R.A.; Morales Santos, A.E. Vulnerability assessment to climate variability and climate change in Tijuana, Mexico. Sustainability 2018, 10, 2352. [Google Scholar] [CrossRef]
- Mubako, S.; Belhaj, O.; Heyman, J.; Hargrove, W.; Reyes, C. Monitoring of land use/land-cover changes in the arid transboundary middle Rio grande basin using remote sensing. Remote Sens. 2018, 10, 2005. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Camacho, O.; Venegas-Cardoso, R.; Rojas-Caldelas, R.; Ranfla-Gonzalez, A.; Pena-Salmon, C. Urban expansion and change of land uses: City of Mexicali 1990–2005. WIT Trans. Ecol. Environ. 2010, 129, 547–558. [Google Scholar]
- Norman, L.; Donelson, A.J.; Pfeifer, E.L.; Lam, A.H.; Osborn, K.J. Monitoring colonias development along the United States–Mexico border: A process application using GIS and remote sensing in Douglas, Arizona, and Agua Prieta, Sonora. USGS Menlo Park USGS Open-File Rep. 2004, 1212, 1–100. [Google Scholar]
- Korbulic, Q.P. Tracking Urban Growth and Composition along the Western Portion of the US-Mexico Border: 1985–2010. 2012. Available online: https://scholarworks.unr.edu/bitstream/handle/11714/3611/Korbulic_unr_0139D_10991.pdf?sequence=1&isAllowed=y (accessed on 1 November 2021).
- Peña, E.N. Using Census Data, Urban Land-Cover Classification, and Dasymetric Mapping to Measure Urban Growth of the Lower Rio Grande Valley, Texas; University of Southern California: Los Angeles, CA, USA, 2012; p. 46. [Google Scholar]
- Leigh, E.; Barroso, M.; Fipps, G. Expansion of Urban Area in Irrigation Districts of the Rio Grande River Basin, 1996–2006: A Map Series. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/94956 (accessed on 22 October 2021).
- Bohn, T.J.; Vivoni, E.R.; Mascaro, G.; White, D.D. Land and water use changes in the US–Mexico border region, 1992–2011. Environ. Res. Lett. 2018, 13, 114005. [Google Scholar] [CrossRef] [Green Version]
- Wilder, M.; Scott, C.A.; Pablos, N.P.; Varady, R.G.; Garfin, G.M.; McEvoy, J. Adapting Across Boundaries: Climate Change, Social Learning, and Resilience in the U.S.–Mexico Border Region. Ann. Assoc. Am. Geogr. 2010, 100, 917–928. [Google Scholar] [CrossRef]
- Tiefenbacher, J.P. The Role of Internacional Boundaries in Flood Hazard, Social Vulnerability and Disaster: A Bi-National Case Study of Ciudad Acuña, Coahuila and Del Rio, Texas. Nóesis Rev. De Cienc. Soc. Y Humanid. 2006, 15, 68–92. [Google Scholar]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data; Springer Science & Business Media: Heidelberg, Germany, 2010. [Google Scholar]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Stiller, D.; Wurm, M.; Stark, T.; Angelo, P.; Stebner, K.; Dech, S.; Taubenböck, H. Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing. J. Transp. Land Use 2021, 14, 777–803. [Google Scholar] [CrossRef]
- Di Pilato, A.; Taggio, N.; Pompili, A.; Iacobellis, M.; Di Florio, A.; Passarelli, D.; Samarelli, S. Deep learning approaches to Earth Observation change detection. Remote Sens. 2021, 13, 4083. [Google Scholar] [CrossRef]
- Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 1995, 16, 3033–3058. [Google Scholar] [CrossRef]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Al-Shaibah, B.; Nath, B.; Kafy, A.-A.; Hu, G.; Al-Aizari, A. Remote Sensing-Based Urban Sprawl Modeling Using Multilayer Perceptron Neural Network Markov Chain in Baghdad, Iraq. Remote Sens. 2021, 13, 4034. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine vs. random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Qiming, Z. Review on Change detection using multi-temporal remotely sensed imagery. Geomat. World 2011, 9, 28–33. [Google Scholar]
- Plank, S. Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Brito, P.; Quintanilha, J. A literature review, 2001–2008, of classification methods and inner urban characteristics identified in multispectral remote sensing images. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; pp. 586–591. [Google Scholar]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [Google Scholar] [CrossRef]
- Acevedo, W.; Masuoka, P. Time-series animation techniques for visualizing urban growth. Comput. Geosci. 1997, 23, 423–435. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhu, Z.; Liang, L.; Yu, B.; Cao, W. Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens. Environ. 2018, 216, 674–683. [Google Scholar] [CrossRef]
- Lawton, M.N.; Martí-Cardona, B.; Hagen-Zanker, A. Urban Growth Derived from Landsat Time Series Using Harmonic Analysis: A Case Study in South England with High Levels of Cloud Cover. Remote Sens. 2021, 13, 3339. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Bai, L.; Xu, C.; Wang, C. A review of fusion methods of multi-spectral image. Optik 2015, 126, 4804–4807. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Hong, D.; Yao, J.; Zhang, B.; Gamba, P.; Chanussot, J. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2269–2280. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, M.; Hay, G.J.; Ghaffarian, S.; Hugenholtz, C.H. Geographic object-based image analysis: A primer and future directions. Remote Sens. 2020, 12, 2012. [Google Scholar] [CrossRef]
- Soergel, U. Review of radar remote sensing on urban areas. In Radar Remote Sensing of Urban Areas; Springer: Dordrecht, The Netherlands, 2010; pp. 1–47. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Wedajo, G. LiDAR DEM Data for flood mapping and assessment; opportunities and challenges: A Review. J. Remote Sens. Gis 2017, 6, 2015–2018. [Google Scholar] [CrossRef]
- Wentz, E.A.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.W.; Quattrochi, D.; Rahman, A.; Seto, K.C. Supporting global environmental change research: A review of trends and knowledge gaps in urban remote sensing. Remote Sens. 2014, 6, 3879–3905. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Glass, C.E. Interpreting Aerial Photographs to Identify Natural Hazards; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef] [Green Version]
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed.; United Nations University Press: Tokyo, Japan, 2013; p. 460. [Google Scholar]
- Stevens, D. Geospatial Information, Sustainable Development and Decision Making in Developing Countries. In Geoinformation for Development; Zeil, P., Ed.; Herbert Wichmann Verlag: Heidelberg, Germany, 2007. [Google Scholar]
- Zollner, K. United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). In Satellite-Based Earth Observation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 235–241. [Google Scholar]
- Post, J.; de Léon Villagrán, J.C.; St-Pierre, L. Some remarks on making remote sensing-based mapping of elements at risk usable in international development cooperation. Nat. Hazards 2017, 86, 189–191. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Karimi, P.; Bastiaanssen, W.G. Spatial evapotranspiration, rainfall and land use data in water accounting–Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Wang, K. The role of satellite-based remote sensing in improving simulated streamflow: A review. Water 2019, 11, 1615. [Google Scholar] [CrossRef] [Green Version]
- Donaubauer, A.; Fichtinger, A.; Schilcher, M.; Straub, F. Model driven approach for accessing distributed spatial data using web services-demonstrated for cross-border gis applications. In Proceedings of the XXIII International FIG Congress, Munich, Germany, 8–13 October 2006; pp. 8–13. [Google Scholar]
- Guigoz, Y.; Giuliani, G.; Nonguierma, A.; Lehmann, A.; Mlisa, A.; Ray, N. Spatial Data Infrastructures in Africa: A Gap Analysis. J. Environ. Inform. 2017, 30, 53–62. [Google Scholar] [CrossRef]
- Osuteye, E.; Johnson, C.; Brown, D. The data gap: An analysis of data availability on disaster losses in sub-Saharan African cities. Int. J. Disaster Risk Reduct. 2017, 26, 24–33. [Google Scholar] [CrossRef]
- Suir, G.M.; Saltus, C.L.; Sasser, C.E.; Harris, J.M.; Reif, M.K.; Diaz, R.; Giffin, G. Evaluating drone truthing as an alternative to ground truthing: An example with wetland plant identification. 2021. Available online: https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/42201/1/ERDC-TN%20APCRP-MI-9.pdf (accessed on 1 November 2021).
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Ban, Y.; Yousif, O. Change detection techniques: A review. Multitemporal Remote Sens. 2016, 20, 19–43. [Google Scholar]
- Liu, M.; Liu, S.; Ning, Y.; Zhu, Y.; Valbuena, R.; Guo, R.; Li, Y.; Tang, W.; Mo, D.; Rosa, I. Co-Evolution of Emerging Multi-Cities: Rates, Patterns and Driving Policies Revealed by Continuous Change Detection and Classification of Landsat Data. Remote Sens. 2020, 12, 2905. [Google Scholar] [CrossRef]
- Fekete, A. CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sens. 2020, 12, 3246. [Google Scholar] [CrossRef]
- White, G.F. Human Adjustments to Floods; Research Paper 29; University of Chicago Press: Chicago, IL, USA, 1945. [Google Scholar]
- Day, D.A.; Logsdon, J.M.; Latell, B. Eye in the Sky: The Story of the CORONA Spy Satellites; Smithsonian Institution: Washington, DC, USA, 1998. [Google Scholar]
- Fischler, M.A.; Tenenbaum, J.M.; Wolf, H.C. Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique. In Readings in Computer Vision; Elsevier: Amsterdam, The Netherlands, 1987; pp. 741–752. [Google Scholar]
- Kyne, D.; Lomeli, A.S.; Donner, W.; Zuloaga, E. Who Will Stay, Who Will Leave: Decision-Making of Residents Living in Potential Hurricane Impact Areas During a Hypothetical Hurricane Event in the Rio Grande Valley. J. Homel. Secur. Emerg. Manag. 2018, 15, 20170010. [Google Scholar] [CrossRef] [Green Version]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef]
- Greiving, S. Multi-risk assessment of Europe’s regions. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan, 2006. [Google Scholar]
- Harb, M.M.; Dell’Acqua, F. Remote sensing in multirisk assessment: Improving disaster preparedness. IEEE Geosci. Remote Sens. Mag. 2017, 5, 53–65. [Google Scholar] [CrossRef]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. A definition of cascading disasters and cascading effects: Going beyond the ‘toppling dominos’ metaphor. Planet@ Risk 2015, 3, 58–67. [Google Scholar]
- Robert, B. A method for the study of cascading effects within lifeline networks. Int. J. Crit. Infrastruct. 2004, 1, 86–99. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Watson, C.S.; Rounce, D.R.; Shugar, D.H.; Kargel, J.S.; Haritashya, U.K.; Amatya, P.; Shean, D.; Anderson, E.R.; Jo, M. The state of remote sensing capabilities of cascading hazards over High Mountain Asia. Front. Earth Sci. 2019, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Rogers, L.; Borges, D.; Murray, J.; Molthan, A.; Bell, J.; Allen, T.; Bekaert, D.; Loftis, J.D.; Wang, H.; Cohen, S. NASA’s mid-atlantic communities and areas at intensive risk demonstration: Translating compounding hazards to societal risk. In Proceedings of the OCEANS 2018, Charleston, SC, USA, 22–25 October 2018; MTS/IEEE. pp. 1–5. [Google Scholar]
City in Mexico | City in the USA | Declassified Satellite Data Available for Download, High Resolution, Without Clouds, Date | Aerial Imagery Available and Date |
---|---|---|---|
Tijuana | San Diego | “1984-03-08” F006, “1972-11-25” F23 | “1955-01-22” F38, 39 |
Mexicali | Calexico | “1976-02-28” | “1953-05-08” F120, 122, 45 |
San Luis Rio Colorado | Yuma | “1980-08-10” “1972-11-13” | “1949-05-04” F34–36, 90 |
Nogales | Nogales | “1976-01-10”, “1976-08-07”, “1978-06-23” | “1951-09-05” F23, 33 |
Agua Prieta | Douglas | “1976-01-28” | “1958-03-10” |
Ciudad Juarez | El Paso | “1978-04-17” (20 feet) “1984-01-18” (NIR, US side) “1978-04-17” | “1956-08-30” |
Ciudad Acuna | Del Rio | “1982-08-05”, 1972-01-28 (Ciudad Acuna only) | “1947-07-31”, F26–28, F33–35, |
Piedras Negras | Eagle Pass | “1978-03-27” | “1947-08-08” F56, 96–97 |
Nueovo Laredo | Laredo | “1979-06-13” (only one tile available) “1976-02-27” | “1947-08-10” F43, 41 |
Reynosa | McAllen | Cloud coverage | “1946-10-03” F29, 27, 25, 19, 17, 15 |
Matamoros, Mexico | Brownsville | Cloud coverage | “1946-10-12” F8, 10, 35, 37, 39 |
City | Country | County/State | Population 2010 | Population 1950 | Growth Factor 1950–2010 |
---|---|---|---|---|---|
Tijuana | Mexico | Baja California | 1,559,683 | 65,364 | 23.9 |
Imperial Beach * & San Ysidro | USA | California | 51,332 | 20,154 | 2.5 |
Mexicali | Mexico | Baja California | 936,826 | 124,362 | 7.5 |
Calexico | USA | California | 38,573 | 6433 | 6.0 |
San Luis Rio Colorado | Mexico | Sonora | 178,380 | 13,593 | 13.1 |
San Luis | USA | Arizona | 27,909 | 189 * | 148 |
Heroica Nogales | Mexico | Sonora | 220,292 | 26,016 | 8.5 |
Nogales | USA | Arizona | 20,839 | 6141 | 3.4 |
Agua Prieta | Mexico | Sonora | 79,138 | 13,121 | 6.0 |
Douglas | USA | Arizona | 17,509 | 9393 | 1.9 |
Ciudad Juárez | Mexico | Chihuahua | 1,332,131 | 131,308 | 10.1 |
El Paso | USA | TX | 648,245 | 130,485 | 5.0 |
Ciudad Acuna | Mexico | Coahuila | 134,233 | 13,540 | 10 |
Del Rio | USA | Val Verde/TX | 35,591 | 14,211 | 2.5 |
Piedras Negras | Mexico | Coahuila | 150,178 | 31,665 | 4.7 |
Eagle Pass | USA | Maverick/TX | 26,248 | 7,276 | 3.6 |
Nuevo Laredo | Mexico | Tamaulipas | 384,033 | 59,496 | 6.5 |
Laredo | USA | TX | 235,780 | 51,910 | 4.5 |
Reynosa | Mexico | Tamaulipas | 589,466 | 69,428 | 8.5 |
McAllen, Hidalgo | USA | Hidalgo/TX | 141,075 | 20,067 | 7.0 |
Matamoros | Mexico | Tamaulipas | 449,815 | 128,347 | 3.5 |
Brownsville | USA | Cameron/TX | 175,023 | 36,066 | 4.9 |
City in Mexico | Area 1940–1950s (km2) | Area 2020–2021 (km2) | Area Growth Factor | Population Growth Factor | City in USA | Area 1940–1950s (km2) | Area 2020–2021 (km2) | Area Growth Factor | Population Growth Factor |
---|---|---|---|---|---|---|---|---|---|
Tijuana | 8.489 | 387.665 | 46 | 24 | San Ysidro & Imperial Beach | 7.159 | 56.600 | 8 | 3 |
Mexicali | 10.789 | 193.847 | 18 | 8 | Calexico | 2.273 | 16.462 | 7 | 6 |
San Luis Rio Colorado | 0.511 | 64.903 | 127 | 13 | San Luis | 0.011 | 8.712 | 827 | 148 |
Nogales | 3.053 | 43.906 | 14 | 8 | Nogales | 2.215 | 17.679 | 8 | 8 |
Agua Prieta | 2.771 | 26.110 | 9 | 6 | Douglas | 5.327 | 13.070 | 2 | 2 |
Ciudad Juarez | 13.630 | 313.267 | 23 | 10 | El Paso | 87.303 | 712.264 | 8 | 5 |
Ciudad Acuna | 2.262 | 36.576 | 16 | 10 | Del Rio | 6.798 | 27.886 | 4 | 3 |
Piedras Negras | 3.377 | 44.804 | 13 | 5 | Eagle Pass | 2.832 | 33.016 | 12 | 4 |
Nuevo Laredo | 8.384 | 96.235 | 11 | 6 | Laredo | 13.117 | 162.177 | 12 | 5 |
Reynosa | 2.556 | 119.668 | 47 | 8 | Hidalgo | 0.411 | 23.163 | 56 | 7 |
Matamoros, Mexico | 4.064 | 108.771 | 27 | 4 | Brownsville | 5.855 | 135.434 | 23 | 5 |
Sum | 60 | 1048 | 306 | 68 | 142 | 1206 | 969 | 196 | |
Average | 5 | 131 | 32 | 9 | 13 | 110 | 88 | 18 | |
Average without San Luis | 22 | 9 | 14 | 5 |
City | Flood Exposure Area in 1940/1950s | Flood Exposure Area in 2020 | Exposure Area Growth Factor 1940–2020 | Urban Area in 1940s/1950s | Urban Area in 2020 | Exposure Ratio Flood Area per Urban Area 1940/1950s | Exposure Ratio Flood Area per Urban Area 2020 |
---|---|---|---|---|---|---|---|
Tijuana * | 3.777 | 86.567 | 23 | 8.489 | 387.665 | 44% | 22% |
Mexicali * | 2.852 | 49.602 | 17 | 10.789 | 193.847 | 26% | 26% |
San Luis Rio Colorado * | 0.099 | 15.542 | >100 | 0.511 | 64.903 | 19% | 24% |
Nogales * | 1.136 | 7.301 | 6 | 3.053 | 43.906 | 37% | 17% |
Agua Prieta | 1.121 | 5.001 | 4 | 2.771 | 26.110 | 40% | 19% |
Ciudad Juarez | 4.095 | 62.060 | 15 | 13.630 | 313.267 | 30% | 20% |
Ciudad Acuna * | 1.477 | 14.704 | 10 | 2.262 | 36.576 | 65% | 40% |
Piedras Negras * | 0.734 | 7.041 | 10 | 3.377 | 44.804 | 22% | 16% |
Nuevo Laredo | 2.707 | 35.478 | 13 | 8.384 | 96.235 | 32% | 37% |
Reynosa | 0.969 | 51.380 | 53 | 2.556 | 119.668 | 38% | 43% |
Matamoros * | 2.248 | 76.014 | 34 | 4.064 | 108.771 | 55% | 70% |
City | Flood Exposure Area in 1940/1950s (km2) | Flood Exposure Area in 2020 (All Zones, incl. 2PCT and Levee Breach) (km2) | Exposure Area Growth Factor 1940–2020 | Urban Area in 1940s/1950s (km2) | Urban Area in 2020 (km2) | Exposure Ratio Flood Area per Urban Area 1940/1950s | Exposure Ratio Flood Area per Urban Area 2020 |
---|---|---|---|---|---|---|---|
San Ysidro | No exposure | 1.785 | 2 | 1.019 | 7.534 | 0% | 24% |
Imperial Beach | No exposure | 1.198 | 1 | 6.140 | 49.066 | 0% | 2% |
Calexico | No exposure | 0.347 | 0 | 2.273 | 16.462 | 0% | 2% |
San Luis | 0.011 | 8.600 | >100 | 0.011 | 8.712 | 100% | 99% |
Nogales | 1.108 | 5.237 | 5 | 2.215 | 17.679 | 50% | 30% |
Douglas | 4.294 | 8.792 | 2 | 5.327 | 13.070 | 81% | 67% |
El Paso * | 0.000 | 0.000 | 1 | 87.303 | 712.264 | 0% | 0% |
Del Rio | 0.846 | 3.739 | 4 | 6.798 | 27.886 | 12% | 13% |
Eagle Pass | 0.481 | 4.873 | 10 | 2.832 | 33.016 | 17% | 15% |
Laredo | 1.167 | 17.423 | 15 | 13.117 | 162.177 | 9% | 11% |
Hidalgo | 0.007 | 21.278 | >100 | 0.411 | 23.160 | 2% | 92% |
Brownsville | 5.860 | 134.000 | 23 | 5.855 | 135.434 | 100% | 99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, A.; Priesmeier, P. Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities. Remote Sens. 2021, 13, 4422. https://doi.org/10.3390/rs13214422
Fekete A, Priesmeier P. Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities. Remote Sensing. 2021; 13(21):4422. https://doi.org/10.3390/rs13214422
Chicago/Turabian StyleFekete, Alexander, and Peter Priesmeier. 2021. "Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities" Remote Sensing 13, no. 21: 4422. https://doi.org/10.3390/rs13214422
APA StyleFekete, A., & Priesmeier, P. (2021). Cross-Border Urban Change Detection and Growth Assessment for Mexican-USA Twin Cities. Remote Sensing, 13(21), 4422. https://doi.org/10.3390/rs13214422