Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change
Abstract
:1. Introduction
2. Model Setup, Study Area, and Data Sets
3. Projected Variations of Temperature
4. Projected Trends of Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stern, P.C.; Perkins, J.H.; Sparks, R.E.; Knox, R.A. The challenge of climate-change neoskepticism. Science 2016, 353, 653–654. [Google Scholar] [CrossRef]
- McCreath, M. Report of the Conference on Climate Change and the Law of the Sea: Adapting the Law of the Sea to Address the Challenges of Climate Change, Centre for International Law, National University of Singapore, Singapore, 13–14 March 2018. Int. J. Mar. Coast. Law 2018, 33, 836–846. [Google Scholar] [CrossRef]
- Lewandowsky, S. Future Global Change and Cognition. Top. Cogn. Sci. 2016, 8, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, E. Debrief: Meeting the climate change challenge. Br. J. Gen. Pract. 2019, 69, 343. [Google Scholar] [CrossRef]
- Kipling, R.; Topp, C.; Bannink, A.; Bartley, D.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; et al. To what extent is climate change adaptation a novel challenge for agricultural modellers? Environ. Model. Softw. 2019, 120. [Google Scholar] [CrossRef]
- Balasubramanian, M. Climate change, famine, and low-income communities challenge Sustainable Development Goals. Lancet Planet. Health 2018, 2, e421–e422. [Google Scholar] [CrossRef] [Green Version]
- Argo, E.E. Migration Mismatch: Bird Migration and Phenological Mismatching. Am. Biol. Teach. 2018, 80, 540–543. [Google Scholar] [CrossRef]
- Abdulai, A. The challenges and adaptation to climate change by farmers in Sub-Saharan Africa. Agrekon 2018, 57, 28–39. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Wang, X.; Fan, Y.; Cheng, G. A coupled dynamical-copula downscaling approach for temperature projections over the Canadian Prairies. Clim. Dyn. 2017, 51, 2413–2431. [Google Scholar] [CrossRef]
- Peel, M.C.; Srikanthan, R.; McMahon, T.A.; Karoly, D.J. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data. Hydrol. Earth Syst. Sci. 2015, 19, 1615–1639. [Google Scholar] [CrossRef] [Green Version]
- Nover, D.M.; Witt, J.W.; Butcher, J.; Johnson, T.E.; Weaver, C.P. The Effects of Downscaling Method on the Variability of Simulated Watershed Response to Climate Change in Five U.S. Basins. Earth Interact. 2016, 20, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wallace, C.W.; Sadeghi, A.M.; Mccarty, G.W.; Zhong, H.; Yeo, I.-Y. Impacts of Global Circulation Model (GCM) bias and WXGEN on Modeling Hydrologic Variables. Water 2018, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How many model runs do we need? Int. J. Clim. 2017, 37, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Li, W.; Hou, N.; Wei, Y.; Jia, K.; Yao, Y.; Cheng, J. Evaluation of Bayesian Multimodel Estimation in Surface Incident Shortwave Radiation Simulation over High Latitude Areas. Remote Sens. 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Han, G.; Ma, X.; Xu, H.; Shi, T.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Hong, S.; Cho, J.; Lee, Y.-W.; Lee, H. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012. Remote Sens. 2014, 6, 5520–5540. [Google Scholar] [CrossRef] [Green Version]
- Addo, K.A.; Larbi, L.; Amisigo, B.; Ofori-Danson, P.K. Impacts of Coastal Inundation Due to Climate Change in a CLUSTER of Urban Coastal Communities in Ghana, West Africa. Remote Sens. 2011, 3, 2029–2050. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.M.; Weiss, R.M.; Olfert, O.; Hallett, R.H.; Newman, J. Will climate change be beneficial or detrimental to the invasive swede midge in North America? Contrasting predictions using climate projections from different general circulation models. Glob. Chang. Biol. 2008, 14, 1721–1733. [Google Scholar] [CrossRef]
- McGinn, S.M.; Shepherd, A. Impact of climate change scenarios on the agroclimate of the Canadian prairies. Can. J. Soil Sci. 2003, 83, 623–630. [Google Scholar] [CrossRef]
- Thorpe, J.; Wolfe, S.A.; Houston, B. Potential impacts of climate change on grazing capacity of native grasslands in the Canadian prairies. Can. J. Soil Sci. 2008, 88, 595–609. [Google Scholar] [CrossRef]
- Bonsal, B.; Liu, Z.; Wheaton, E.; Stewart, R. Historical and Projected Changes to the Stages and Other Characteristics of Severe Canadian Prairie Droughts. Water 2020, 12, 3370. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L.; Logan, K.A. Climate Change and People-Caused Forest Fire Occurrence in Ontario. Clim. Chang. 2003, 60, 275–295. [Google Scholar] [CrossRef]
- Thorne, R. Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 1483–1492. [Google Scholar] [CrossRef] [Green Version]
- Sultana, Z.; Coulibaly, P. Distributed modelling of future changes in hydrological processes of Spencer Creek watershed. Hydrol. Process. 2010, 25, 1254–1270. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Schnorbus, M.A.; Werner, A.T.; Zwiers, F.W. Evaluating Hydroclimatic Change Signals from Statistically and Dynamically Downscaled GCMs and Hydrologic Models. J. Hydrometeorol. 2014, 15, 844–860. [Google Scholar] [CrossRef]
- Schertzer, W.M.; Croley, T.E. Climate change impact on hydrology and lake thermal structure. In Proceedings of the 27th Congress of the International-Association-for-Hydraulic-Research, San Francisco, CA, USA, 10–15 August 1997; pp. 919–924. [Google Scholar]
- Mahat, V.; Anderson, A. Impacts of climate and catastrophic forest changes on streamflow and water balance in a mountainous headwater stream in Southern Alberta. Hydrol. Earth Syst. Sci. 2013, 17, 4941–4956. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.S.; Lopes, E.; Fu, C.; Huang, Z. Possible Impacts of Climate Change on Wind Gusts under Downscaled Future Climate Conditions: Updated for Canada. J. Clim. 2014, 27, 1255–1270. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Prowse, T.D.; Pietroniro, A. An assessment of global climate model-simulated climate for the western cordillera of Canada (1961–90). Hydrol. Process. 2003, 17, 3703–3716. [Google Scholar] [CrossRef]
- St-Jacques, J.-M.; Andreichuk, Y.; Sauchyn, D.J.; Barrow, E. Projecting Canadian Prairie Runoff for 2041-2070 with North American Regional Climate Change Assessment Program (NARCCAP) Data. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 660–675. [Google Scholar] [CrossRef]
- Qian, B.; Wang, H.; He, Y.; Liu, J.; De Jong, R. Projecting spring wheat yield changes on the Canadian Prairies: Effects of resolutions of a regional climate model and statistical processing. Int. J. Clim. 2015, 36, 3492–3506. [Google Scholar] [CrossRef] [Green Version]
- PaiMazumder, D.; Sushama, L.; Laprise, R.; Khaliq, M.N.; Sauchyn, D. Canadian RCM projected changes to short- and long-term drought characteristics over the Canadian Prairies. Int. J. Clim. 2012, 33, 1409–1423. [Google Scholar] [CrossRef]
- Kerr, S.A.; Andreichuk, Y.; Sauchyn, D.J. Re-Evaluating the Climate Factor in Agricultural Land Assessment in a Changing Climate—Saskatchewan, Canada. Land 2019, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Huang, G.; Piwowar, J.; Fan, Y.; Wang, X.; Li, Z.; Cheng, G. Hydrologic Impacts of Ensemble-RCM-Projected Climate Changes in the Athabasca River Basin, Canada. J. Hydrometeorol. 2018, 19, 1953–1971. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, V.; Fernández, A.; Justino, F.; Comin, A. WRF High Resolution Dynamical Downscaling of Precipitation for the Central Andes of Chile and Argentina. Front. Earth Sci. 2020, 8, 328. [Google Scholar] [CrossRef]
- Shalaby, A.; Zakey, A.S.; Tawfik, A.B.; Solmon, F.; Giorgi, F.; Stordal, F.; Sillman, S.; Zaveri, R.A.; Steiner, A.L. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev. 2012, 5, 741–760. [Google Scholar] [CrossRef] [Green Version]
- Sylla, M.; Giorgi, F.; Stordal, F. Large-Scale origins of rainfall and temperature bias in high-resolution simulations over southern Africa. Clim. Res. 2012, 52, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, M.; Lionello, P. Anthropic land use causes summer cooling in Central Europe. Clim. Res. 2011, 46, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Maurya, R.K.S.; Mohanty, M.R.; Sinha, P.; Mohanty, U.C. Performance of hydrostatic and non-hydrostatic dynamical cores in RegCM4.6 for Indian summer monsoon simulation. Meteorol. Appl. 2020, 27, e1915. [Google Scholar] [CrossRef]
- Balov, M.N.; Altunkaynak, A. Trend Analyses of Extreme Precipitation Indices Based on Downscaled Outputs of Global Circulation Models in Western Black Sea Basin, Turkey. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 821–834. [Google Scholar] [CrossRef]
- Kohyama, T.; Hartmann, D.L.; Battisti, D.S. La Niña–like Mean-State Response to Global Warming and Potential Oceanic Roles. J. Clim. 2017, 30, 4207–4225. [Google Scholar] [CrossRef]
- Matveeva, T.A.; Gushchina, D.Y.; Zolina, O.G. Large-Scale indicators of extreme precipitation in coastal natural-economic zones of the European part of Russia. Russ. Meteorol. Hydrol. 2015, 40, 722–730. [Google Scholar] [CrossRef]
- Ng, B.; Cai, W.; Walsh, K. Nonlinear Feedbacks Associated with the Indian Ocean Dipole and Their Response to Global Warming in the GFDL-ESM2M Coupled Climate Model. J. Clim. 2014, 27, 3904–3919. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Wang, X.; Cheng, G. Dynamically-Downscaled temperature and precipitation changes over Saskatchewan using the PRECIS model. Clim. Dyn. 2017, 50, 1321–1334. [Google Scholar] [CrossRef]
- Fisher, R.A.; Muszala, S.; Verteinstein, M.; Lawrence, P.; Xu, C.; McDowell, N.G.; Knox, R.G.; Koven, C.; Holm, J.; Rogers, B.M.; et al. Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geosci. Model Dev. 2015, 8, 3593–3619. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, M.O. Sensitivity of different convection schemes in RegCM4. 0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa. Theor. Appl. Climatol. 2014, 115, 305–322. [Google Scholar] [CrossRef]
- Davies, H.C. A lateral boundary formulation for multi-level prediction models. Q. J. R. Meteorol. Soc. 1976, 102, 405–418. [Google Scholar] [CrossRef]
- Holtslag, A.; De Bruijn, E.; Pan, H.L. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Živković-Rothman, M. Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 1999, 56, 1766–1782. [Google Scholar] [CrossRef] [Green Version]
- Skinner, W.; Majorowicz, J. Regional climatic warming and associated twentieth century land-cover changes in north-western North America. Clim. Res. 1999, 12, 39–52. [Google Scholar] [CrossRef] [Green Version]
- NLWIS. A Daily 10 km Gridded Climate Dataset for Canada, 1961–2003. Available online: https://www.mcgill.ca/library/find/maps/dgcd10km (accessed on 14 February 2017).
- Natural Resources Canada. Canada 3D—Digital Elevation Model of the Canadian Landmass. Available online: https://open.canada.ca/data/en/dataset/042f4628-94b2-40ac-9bc1-ca3ac2a27d82 (accessed on 14 July 2021).
- Jeong, D.I.; Sushama, L.; Diro, G.T.; Khaliq, M.N. Projected changes to winter temperature characteristics over Canada based on an RCM ensemble. Clim. Dyn. 2015, 47, 1351–1366. [Google Scholar] [CrossRef] [Green Version]
- Mladjic, B.; Sushama, L.; Khaliq, M.N.; Laprise, R.; Caya, D.; Roy, R. Canadian RCM Projected Changes to Extreme Precipitation Characteristics over Canada. J. Clim. 2011, 24, 2565–2584. [Google Scholar] [CrossRef] [Green Version]
- Plummer, D.A.; Caya, D.; Frigon, A.; Côté, H.; Giguère, M.; Paquin, D.; Biner, S.; Harvey, R.; De Elia, R. Climate and Climate Change over North America as Simulated by the Canadian RCM. J. Clim. 2006, 19, 3112–3132. [Google Scholar] [CrossRef]
- Sushama, L.; Khaliq, N.; Laprise, R. Dry spell characteristics over Canada in a changing climate as simulated by the Canadian RCM. Glob. Planet. Chang. 2010, 74, 1–14. [Google Scholar] [CrossRef]
- Jeong, D.I.; Sushama, L.; Diro, G.T.; Khaliq, M.N.; Beltrami, H.; Caya, D. Projected changes to high temperature events for Canada based on a regional climate model ensemble. Clim. Dyn. 2015, 46, 3163–3180. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Baetz, B.W.; Wang, X.; Cheng, G. PRECIS-Projected increases in temperature and precipitation over Canada. Q. J. R. Meteorol. Soc. 2018, 144, 588–603. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Wang, X.; Cheng, G. Future Changes in Precipitation Extremes over Canada: Driving Factors and Inherent Mechanism. J. Geophys. Res. Atmos. 2018, 123, 5783–5803. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gorodetskaya, I.; Cane, M.A.; Tremblay, L.; Kaplan, A. The effects of sea-ice and land-snow concentrations on planetary albedo from the earth radiation budget experiment. Atmos. Ocean 2006, 44, 195–205. [Google Scholar] [CrossRef]
- Pierrehumbert, R.T. Climate dynamics of a hard snowball Earth. J. Geophys. Res. Space Phys. 2005, 110, D01111. [Google Scholar] [CrossRef]
- Sorteberg, A.; Kattsov, V.; Walsh, J.; Pavlova, T. The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim. Dyn. 2007, 29, 131–156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Huang, G.; Li, Y.; Lin, Q.; Yan, D.; He, X. Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change. Remote Sens. 2021, 13, 4350. https://doi.org/10.3390/rs13214350
Zhou X, Huang G, Li Y, Lin Q, Yan D, He X. Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change. Remote Sensing. 2021; 13(21):4350. https://doi.org/10.3390/rs13214350
Chicago/Turabian StyleZhou, Xiong, Guohe Huang, Yongping Li, Qianguo Lin, Denghua Yan, and Xiaojia He. 2021. "Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change" Remote Sensing 13, no. 21: 4350. https://doi.org/10.3390/rs13214350
APA StyleZhou, X., Huang, G., Li, Y., Lin, Q., Yan, D., & He, X. (2021). Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change. Remote Sensing, 13(21), 4350. https://doi.org/10.3390/rs13214350