Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Source Acquisition
2.3. The Establishment of Urban LAND Boundary
2.4. Production of the Fractional Lands of Intra-Urban Impervious Surface Area and Intra-Urban Vegetation Space
2.4.1. Selection of Training Samples
2.4.2. Retrieval of the Sub-Lands within Urban Regions Using the Random Forest Model
2.5. Accuracy Evaluation of Urban Land and Its Sub-Land Scheme
2.6. Geographical Division of Africa
3. Results
3.1. Accuracy Assessment for Urban Land and Its Fractional Sub-Structures
3.2. Analysis of Urban Expansion and Regional Urban Land Differences in Africa during 2000–2020
3.3. Assessment of the Fractional Intra-Urban Impervious Surface Area and the Fractional Intra-urban Vegetation Space Change in Africa during 2000–2020
3.3.1. Intra-Urban Land Structure Analysis and Its Differentiated Characteristics in Different Urban Level Areas in Africa
3.3.2. Differences in Spatial Evolution of the Fractional Intra-Urban Impervious Surface Area and Vegetation Space in Sub-Africa Regions
3.4. Analysis of the Fractional Urban Land Change under Climate and Socioeconomic Environments
4. Discussion
4.1. A Turning Green Africa Is Taking Place in Its Intra-Urban Regions since 2000
4.2. Comparison of the Urban Expansion Process between Africa and Other Regions
4.3. Potential Environmental Effects of Intra-Urban Land Change in Africa during 2000–2020
4.4. A Preliminary Discussion between Urban Land Change and Other Potential Variables
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donou-Adonsou, F.; Lim, S.; Mathey, S.A. Technological Progress and Economic Growth in Sub-Saharan Africa: Evidence from Telecommunications Infrastructure. Int. Adv. Econ. Res. 2016, 22, 65–75. [Google Scholar] [CrossRef]
- Meso, P.; Musa, P.F.; Straub, D.; Mbarika, V.W.A. Information infrastructure, governance, and socio-economic development in developing countries. Eur. J. Inf. Syst. 2009, 18, 52–65. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, Y.-J. Developments and General Features of National Health Insurance in Korea. Soc. Work. Public Health 2010, 25, 142–157. [Google Scholar] [CrossRef]
- Flannery, D.; Jarrin, R. Building A Regulatory And Payment Framework Flexible Enough To Withstand Technological Progress. Health Aff. 2018, 37, 2052–2059. [Google Scholar] [CrossRef]
- Akizu-Gardoki, O.; Bueno, G.; Wiedmann, T.; Lopez-Guede, J.M.; Arto, I.; Hernandez, P.; Moran, D. Decoupling between human development and energy consumption within footprint accounts. J. Clean. Prod. 2018, 202, 1145–1157. [Google Scholar] [CrossRef]
- Nguyen, K.-A.; Liou, Y.-A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef]
- Christidis, N.; Stott, P.A.; Brown, S.J. The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures. J. Clim. 2011, 24, 1922–1930. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, G.; Li, Z.; Ye, X.; Fu, B.; Lv, Y. Impacts of Drought and Human Activity on Vegetation Growth in the Grain for Green Program Region, China. Chin. Geogr. Sci. 2018, 28, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Steinberger, J.; Roberts, J.T.; Peters, G.; Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Chang. 2012, 2, 81–85. [Google Scholar] [CrossRef]
- Siri, J.G.; Newell, B.; Proust, K.; Capon, A. Urbanization, extreme events, and health: The case for systems approaches in mitigation, management, and response. Asia Pac. J. Public Health 2016, 28, 15S–27S. [Google Scholar] [CrossRef]
- Gibney, E. Coronavirus lockdowns have changed the way Earth moves. Nature 2020, 580, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Sandifer, P.A.; Sutton-Grier, A.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, Y.D.; He, C.; Li, H. Urban land expansion under economic transition in China: A multi-level modeling analysis. Habitat Int. 2015, 47, 69–82. [Google Scholar] [CrossRef]
- Pan, T.; Lu, D.; Zhang, C.; Chen, X.; Shao, H.; Kuang, W.; Chi, W.; Liu, Z.; Du, G.; Cao, L. Urban Land-Cover Dynamics in Arid China Based on High-Resolution Urban Land Mapping Products. Remote Sens. 2017, 9, 730. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the US: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Pan, T.; Kuang, W.; Hamdi, R.; Zhang, C.; Zhang, S.; Li, Z.; Chen, X. City-Level Comparison of Urban Land-Cover Configurations from 2000–2015 across 65 Countries within the Global Belt and Road. Remote Sens. 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Stathakis, D.; Tselios, V.; Faraslis, I. Urbanization in European regions based on night lights. Remote Sens. Appl. Soc. Environ. 2015, 2, 26–34. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Kuang, W. Mapping global impervious surface area and green space within urban environments. Sci. China Earth Sci. 2019, 62, 1591–1606. [Google Scholar] [CrossRef]
- Mat, N.; Cerceau, J.; Shi, L.; Park, H.-S.; Junqua, G.; Lopez-Ferber, M. Socio-ecological transitions toward low-carbon port cities: Trends, changes and adaptation processes in Asia and Europe. J. Clean. Prod. 2016, 114, 362–375. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Li, X.; Lu, D. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018. Earth Syst. Sci. Data 2021, 13, 63–82. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Alphan, H.; Çelik, N. Monitoring changes in landscape pattern: Use of Ikonos and Quickbird images. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Lu, D.; Guo, W.; Kuang, W. Mapping impervious surface distribution in China using multi-source remotely sensed data. GISci. Remote Sens. 2020, 57, 543–552. [Google Scholar] [CrossRef]
- Yue, W.; Gao, J.; Yang, X. Estimation of Gross Domestic Product Using Multi-Sensor Remote Sensing Data: A Case Study in Zhejiang Province, East China. Remote Sens. 2014, 6, 7260–7275. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- Olufadewa, I.I.; Adesina, M.; Ayorinde, T. From Africa to the World: Reimagining Africa’s research capacity and culture in the global knowledge economy. J. Glob. Health 2020, 10, 010321. [Google Scholar] [CrossRef]
- Smythe, K.R. Africa’s Past, Our Future; Indiana University Press: Bloomington, India, 2015. [Google Scholar]
- Dick, A.L. The Hidden History of South Africa’s Book and Reading Cultures; University of Toronto Press: Toronto, Canada, 2017. [Google Scholar]
- Resnick, D. The Political Economy of Africa’s Emergent Middle Class: Retrospect and Prospects. J. Int. Dev. 2015, 27, 573–587. [Google Scholar] [CrossRef]
- Rogerson, C.M. South Africa’s informal economy: Reframing debates in national policy. Local Econ. J. Local Econ. Policy Unit 2015, 31, 172–186. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Verdiguier, E.; Zurita-Milla, R. An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2020, 88. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Lu, D. Mapping the land-cover distribution in arid and semiarid urban landscapes with Landsat Thematic Mapper imagery. Int. J. Remote Sens. 2015, 36, 4483–4500. [Google Scholar] [CrossRef]
- Lavaysse, C.; Flamant, C.; Evan, A.; Janicot, S.; Gaetani, M. Recent climatological trend of the Saharan heat low and its impact on the West African climate. Clim. Dyn. 2015, 47, 3479–3498. [Google Scholar] [CrossRef] [Green Version]
- Skinner, C.B.; Ashfaq, M.; Diffenbaugh, N.S. Influence of Twenty-First-Century Atmospheric and Sea Surface Temperature Forcing on West African Climate. J. Clim. 2012, 25, 527–542. [Google Scholar] [CrossRef]
- Trauth, M.H.; Asrat, A.; Berner, N.; Bibi, F.; Foerster, V.; Grove, M.; Kaboth-Bahr, S.; Maslin, M.A.; Mudelsee, M.; Schäbitz, F. Northern Hemisphere Glaciation, African climate and human evolution. Quat. Sci. Rev. 2021, 268, 107095. [Google Scholar] [CrossRef]
- Krinner, G.; Lezine, A.-M.; Braconnot, P.; Sepulchre, P.; Ramstein, G.; Grenier, C.; Gouttevin, I. A reassessment of lake and wetland feedbacks on the North African Holocene climate. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Simon, D.; Leck, H. Understanding climate adaptation and transformation challenges in African cities. Curr. Opin. Environ. Sustain. 2015, 13, 109–116. [Google Scholar] [CrossRef]
- Jiang, L.; O’Neill, B.C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Parnell, S.; Elmqvist, T. A global outlook on urbanization. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 1–12. [Google Scholar]
- Kuang, W.; Chen, L.; Liu, J.; Xiang, W.; Chi, W.; Lu, D.; Yang, T.; Pan, T.; Liu, A. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Sci. China Earth Sci. 2016, 59, 1720–1737. [Google Scholar] [CrossRef]
- Wei, Y.H.D. Restructuring for growth in urban China: Transitional institutions, urban development, and spatial transformation. Habitat Int. 2012, 36, 396–405. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Park, M.-S.; Park, S.-H.; Chae, J.-H.; Choi, M.-H.; Song, Y.; Kang, M.; Roh, J.-W. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech. 2017, 10, 1575–1594. [Google Scholar] [CrossRef]
- Sekertekin, A.; Zadbagher, E. Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecol. Indic. 2020, 122, 107230. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.A.; Srivanit, M.; Weng, Q. A Review on Remote Sensing of Urban Heat and Cool Islands. Land 2017, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinform. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Yan, Y.; Kuang, W.; Zhang, C.; Chen, C. Impacts of impervious surface expansion on soil organic carbon–a spatially explicit study. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Raciti, S.M.; Hutyra, L.R.; Finzi, A. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ. Pollut. 2012, 164, 248–251. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Milne, R.; Hargreaves, K.J.; Brown, T.A.W.; Cruickshank, M.M.; Bradley, R.I.; Spencer, T.; Hope, D.; Billett, M.F.; Adger, W.N.; et al. National Inventories of Terrestrial Carbon Sources and Sinks: The U.K. Experience. Clim. Chang. 1999, 42, 505–530. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.H. Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences 2014, 11, 7107–7124. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, Z.-H. Environmental co-benefits of urban greening for mitigating heat and carbon emissions. J. Environ. Manag. 2021, 293, 112963. [Google Scholar] [CrossRef]
- Imam, A.U.K.; Banerjee, U.K. Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio 2016, 45, 442–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koondhar, M.A.; Tan, Z.; Alam, G.M.; Khan, Z.A.; Wang, L.; Kong, R. Bioenergy consumption, carbon emissions, and agricultural bioeconomic growth: A systematic approach to carbon neutrality in China. J. Environ. Manag. 2021, 296, 113242. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zheng, Y.; Lei, Y.; Xue, W.; Yan, G.; Liu, X.; Cai, B.; Tong, D.; Wang, J. Air quality benefits of achieving carbon neutrality in China. Sci. Total Environ. 2021, 795, 148784. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Zhong, Y.; Liu, W.; Li, R.Y.M. Modeling the effect of green technology innovation and renewable energy on carbon neutrality in N-11 countries? Evidence from advance panel estimations. J. Environ. Manag. 2021, 296, 113189. [Google Scholar] [CrossRef]
- Coquery-Vidrovitch, C. The Process of Urbanization in Africa (From the Origins to the Beginning of Independence). Afr. Stud. Rev. 1991, 34. [Google Scholar] [CrossRef]
- Hay, S.I.; Guerra, C.A.; Tatem, A.J.; Atkinson, P.M.; Snow, R. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Genet. 2005, 3, 81–90. [Google Scholar] [CrossRef]
- Brenner, L. Histories of religion in Africa. J. Relig. Afr. 2000, 30, 143–167. [Google Scholar] [CrossRef]
- Meyer, B. What Is Religion in Africa? Relational Dynamics in an Entangled World. J. Relig. Afr. 2021, 50, 156–181. [Google Scholar] [CrossRef]
- Atim, G. The impact of refugees on conflicts in Africa. IOSR J. Humanit. Soc. Sci. 2013, 14, 4–9. [Google Scholar] [CrossRef]
- Holter, K. Interpreting Solomon in colonial and post-colonial Africa. Old Testam. Essays 2006, 19, 851–862. [Google Scholar]
- Geda, A.; Seid, E.H. The potential for internal trade and regional integration in Africa. J. Afr. Trade 2015, 2, 19. [Google Scholar] [CrossRef] [Green Version]
Data Type | Data Name | Resolution /Format | Data Source |
---|---|---|---|
Basic Geographic data | African boundary | vector | http://www.openstreetmap.org/ (accessed on 16 September 2021) |
National border | vector | http://www.openstreetmap.org/ (accessed on 16 September 2021) | |
Urban location | vector | http://www.openstreetmap.org/ (accessed on 16 September 2021) | |
Global continental distribution | vector | http://www.openstreetmap.org/ (accessed on 16 September 2021) | |
Köppen–Geiger climate map of the world | 0.1 degree | https://people.eng.unimelb.edu.au/mpeel/koppen.html (accessed on 16 September 2021) | |
Remotely Sensed data | Night-time light image (NTL) | 1000-m | https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 16 September 2021) |
Night-time light image (NTL) | 500-m | https://earthobservatory.nasa.gov/features/NightLights (accessed on 16 September 2021) | |
Landsat Thematic Mapper (TM) | 30-m | https://glovis.usgs.gov/ (accessed on 16 September 2021) | |
Enhanced Thematic Mapper Plus (ETM+) | 30-m | https://glovis.usgs.gov/ (accessed on 16 September 2021) | |
Operational Land Imager (OLI) | 30-m | https://glovis.usgs.gov/ (accessed on 16 September 2021) | |
Huan Jing satellite (HJ-1A and HJ-1B) | 30-m | http://www.cresda.com/CN/ (accessed on 16 September 2021) | |
Google images | 2-m | http://www.91weitu.com/ (accessed on 16 September 2021) | |
Digital elevation model (DEM) | 30-m | http://srtm.csi.cgiar.org/ (accessed on 16 September 2021) | |
Socio economic data | Gross Domestic Product (GDP) | Statistics | https://www.kylc.com/stats/global/yearly_overview/g_gdp.html (accessed on 16 September 2021) https://data.imf.org/ (accessed on 16 September 2021) |
Urban population | Statistics | http://un.org/en/development/ (accessed on 16 September 2021) https://data.imf.org/ (accessed on 16 September 2021) |
Ground Truth Pixels | Reference | Classified | Number | Producer’s | User’s | ||
---|---|---|---|---|---|---|---|
Land Cover | Urban | Nonurban | Pixels | Pixels | Correct | Accuracy | Accuracy |
Urban | 721 | 78 | 792 | 799 | 721 | 91.04 | 90.24 |
Nonurban | 71 | 630 | 708 | 701 | 630 | 88.98 | 89.87 |
Year: 2000, Overall Classification Accuracy = 90.07% (i.e., 1351/1500), Kappa Statistics = 0.82 | |||||||
Urban | 764 | 69 | 836 | 833 | 764 | 91.39 | 91.72 |
Nonurban | 72 | 595 | 664 | 667 | 595 | 89.61 | 89.21 |
Year: 2010, Overall Classification Accuracy = 90.60% (i.e., 1359/1500), Kappa Statistics = 0.84 | |||||||
Urban | 834 | 63 | 905 | 897 | 834 | 92.15 | 92.98 |
Nonurban | 71 | 532 | 595 | 603 | 532 | 89.41 | 88.23 |
Year: 2020, Overall Classification Accuracy = 91.40% (i.e., 1366/1500), Kappa Statistics = 0.84 |
Time (Year) | Sub-Africa Regions | |||||
---|---|---|---|---|---|---|
Northern Africa | Eastern Africa | Western Africa | Middle Africa | Southern Africa | Sum (Km2) | |
2000 | 5690.10 | 1273.65 | 4646.40 | 1048.91 | 6668.45 | 19327.50 |
2010 | 7574.32 | 2448.04 | 7877.30 | 1998.85 | 11020.84 | 30919.36 |
2020 | 10270.49 | 3342.59 | 9804.58 | 2915.41 | 15508.76 | 41841.83 |
2000–2010 | 1884.22 | 1174.39 | 3230.90 | 949.94 | 4352.39 | 11591.86 |
2010–2020 | 2696.17 | 894.55 | 1927.28 | 916.56 | 4487.91 | 10922.47 |
2000–2020 | 4580.39 | 2068.94 | 5158.18 | 1866.50 | 8840.31 | 22514.33 |
Evaluated Indicators | Humid and Semi-Humid Regions | Arid and Semi-Arid Regions |
---|---|---|
Urban land expansion rate from 2000–2020 | 139.96% | 100.06% |
Average fraction of UISA in 2020 | 54.91% | 58.13% |
Average fraction of UVS in 2020 | 36.40% | 29.84% |
Average fraction of UOL in 2020 | 8.70% | 12.04% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Kuang, W.; Bao, Y.; Dou, Y.; Chi, W.; Ochege, F.U.; Pan, T. Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform. Remote Sens. 2021, 13, 4288. https://doi.org/10.3390/rs13214288
Yin Z, Kuang W, Bao Y, Dou Y, Chi W, Ochege FU, Pan T. Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform. Remote Sensing. 2021; 13(21):4288. https://doi.org/10.3390/rs13214288
Chicago/Turabian StyleYin, Zherui, Wenhui Kuang, Yuhai Bao, Yinyin Dou, Wenfeng Chi, Friday Uchenna Ochege, and Tao Pan. 2021. "Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform" Remote Sensing 13, no. 21: 4288. https://doi.org/10.3390/rs13214288
APA StyleYin, Z., Kuang, W., Bao, Y., Dou, Y., Chi, W., Ochege, F. U., & Pan, T. (2021). Evaluating the Dynamic Changes of Urban Land and Its Fractional Covers in Africa from 2000–2020 Using Time Series of Remotely Sensed Images on the Big Data Platform. Remote Sensing, 13(21), 4288. https://doi.org/10.3390/rs13214288