Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity
Abstract
:1. Introduction
2. Data and Methods
2.1. Himawari-8 and Reanalysis Data
2.2. Convection Identification and Tracking Algorithm
2.3. Estimation of Vertical Velocity
3. Characteristics of the Convective Systems
3.1. Lifetime, Areas, Speed and Direction of Propagation
3.2. Cloud Top Vertical Velocity
3.3. Spatiotemporal Distribution of Deep Convective Systems
3.4. Regional Features and Temporal Variability of DCSI
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houze, R.A., Jr.; Wilton, D.C.; Smull, B.F. Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Q. J. R. Meteorol. Soc. 2007, 133, 1389–1411. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Zhang, X.; Zhu, P. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China. Acta Meteorol. Sin. 2013, 27, 868–888. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Yu, X.D.; Zhang, Y.J.; Zhou, Z.J.; Xie, W.S.; Lu, Y.Y.; Yu, J.L.; Wei, L.X. Climate analysis of tornadoes in China. J. Meteorol. Res. 2015, 29, 359–369. [Google Scholar] [CrossRef]
- Liu, D.X.; Sun, M.Y.; Su, D.B.; Xu, W.J.; Yu, H.; Chen, Y.C. A five-year climatological lightning characteristics of linear mesoscale convective systems over North China. Atmos. Res. 2021, 256, 105580. [Google Scholar] [CrossRef]
- Li, X.F.; Zhang, Q.H.; Zou, T.; Lin, J.P.; Kong, H.; Ren, Z.H. Climatology of hail frequency and size in China, 1980–2015. J. Appl. Meteorol. Climatol. 2018, 57, 875–887. [Google Scholar] [CrossRef]
- Bai, L.Q.; Meng, Z.Y.; Sueki, K.; Chen, G.X.; Zhou, R.L. Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Sci. China Earth Sci. 2020, 63, 37–51. [Google Scholar] [CrossRef]
- Horel, J.D.; Hahmann, A.N.; Geisler, J.E. An investigation of the annual cycle of convective activity over the tropical Americas. J. Clim. 1989, 2, 1388–1403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.B.; Hogg, W.D.; Mekis, É. Spatial and temporal characteristics of heavy precipitation events over Canada. J. Clim. 2001, 14, 1923–1936. [Google Scholar] [CrossRef]
- Ashley, W.S.; Mote, T.L.; Dixon, P.G.; Trotter, S.L.; Powell, E.J.; Durkee, J.D.; Grundstein, A.J. Distribution of mesoscale convective complex rainfall in the United States. Mon. Weather Rev. 2003, 131, 3003–3017. [Google Scholar] [CrossRef]
- Feng, Z.; Houze, R.A.; Leung, L.R.; Song, F.; Hardin, J.C.; Wang, J.Y.; Gustafson, W.I.; Homeyer, C.R. Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Clim. 2019, 32, 7303–7328. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.N.; Sun, J.H.; Zhang, Y.C.; Fu, S.M. A 10-Year Climatology of Mesoscale Convective Systems and Their Synoptic Circulations in the Southwest Mountain Area of China. J. Hydrometeorol. 2021, 22, 23–41. [Google Scholar] [CrossRef]
- Xu, W.X. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Weather Rev. 2013, 141, 1577–1592. [Google Scholar] [CrossRef]
- Chen, X.C.; Zhao, K.; Xue, M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos. 2014, 119, 12–447. [Google Scholar] [CrossRef]
- Yang, X.R.; Fei, J.F.; Huang, X.G.; Cheng, X.P.; Carvalho, L.M.V.; He, H.R. Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J. Clim. 2015, 28, 4890–4907. [Google Scholar] [CrossRef]
- Mai, Z.; Fu, S.M.; Sun, J.H.; Hu, L.; Wang, X.M. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and southwest vortices. Int. J. Climatol. 2021, 41, E875–E896. [Google Scholar] [CrossRef]
- Qian, T.T.; Zhao, P.; Zhang, F.Q.; Bao, X.H. Rainy-season precipitation over the Sichuan basin and adjacent regions in southwestern China. Mon. Weather Rev. 2015, 143, 383–394. [Google Scholar] [CrossRef]
- He, Z.W.; Zhang, Q.H.; Bai, L.Q.; Meng, Z.Y. Characteristics of mesoscale convective systems in central East China and their reliance on atmospheric circulation patterns. Int. J. Climatol. 2017, 37, 3276–3290. [Google Scholar] [CrossRef]
- Kukulies, J.; Chen, D.; Curio, J. The Role of Mesoscale Convective Systems in Precipitation in the Tibetan Plateau region. Earth Space Sci. Open Arch. ESSOAr 2020. [Google Scholar] [CrossRef]
- Ma, R.Y.; Sun, J.H.; Yang, X.L. A 7-Yr Climatology of the Initiation, Decay, and Morphology of Severe Convective Storms during the Warm Season over North China. Mon. Weather Rev. 2021, 149, 2599–2612. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Chen, J.; Zhu, P.J. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chin. Sci Bull. 2008, 53, 1574–1586. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, C.L. Deep convection initiation: State of the science, limits of understanding, and future directions. Presented at the 94th American Meteorological Society Annual Meeting, American Meteorological Society, Atlanta, GA, USA, 5 February 2014. [Google Scholar]
- Weckwerth, T.M.; Wilson, J.W.; Hagen, M.; Emerson, T.J.; Pinto, J.O.; Rife, D.L.; Grebe, L. Radar climatology of the COPS region. Q. J. R. Meteorol. Soc. 2011, 137, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Kaltenboeck, R.; Steinheimer, M. Radar-based severe storm climatology for Austrian complex orography related to vertical wind shear and atmospheric instability. Atmos. Res. 2015, 158, 216–230. [Google Scholar] [CrossRef]
- Reif, D.W.; Bluestein, H.B. A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Weather Rev. 2017, 145, 1615–1639. [Google Scholar] [CrossRef]
- Huang, Y.P.; Meng, Z.Y.; Li, J.; Li, W.B.; Bai, L.Q.; Zhang, M.R.; Wang, X. Distribution and Variability of Satellite-Derived Signals of Isolated Convection Initiation Events Over Central Eastern China. J. Geophys. Res. Atmos. 2017, 122, 11–357. [Google Scholar] [CrossRef]
- Bai, L.Q.; Chen, G.X.; Huang, L. Convection initiation in monsoon coastal areas (South China). Geophys. Res. Lett. 2020, 47, e2020GL087035. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Williams, J.K.; Jewett, C.P.; Ahijevych, D.; LeRoy, A.; Walker, J.R. Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteorol. Climatol. 2015, 54, 1039–1059. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Roberts, R. Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Weather Rev. 2006, 134, 23–47. [Google Scholar] [CrossRef]
- Wilson, J.W.; Schreiber, W.E. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Weather Rev. 1986, 114, 2516–2536. [Google Scholar] [CrossRef] [Green Version]
- Weckwerth, T.M.; Parsons, D.B. A review of convection initiation and motivation for IHOP_2002. Mon. Weather Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Behrendt, A.; Kottmeier, C.; Corsmeier, U.; Barthlott, C.; Craig, G.C.; Hagen, M.; Althausen, D.; Aoshima, F.; Arpagaus, M.; et al. The Convective and Orographically induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Am. Meteorol. Soc. 2011, 89, 1477–1486. [Google Scholar] [CrossRef]
- Geerts, B.; Parsons, D.; Ziegler, C.L.; Weckwerth, T.M.; Biggerstaff, M.I.; Clark, R.D.; Coniglio, M.C.; Demoz, B.B.; Ferrare, A.; Gallus, W.A.; et al. The 2015 plains elevated convection at night field project. Bull. Am. Meteorol. Soc. 2017, 98, 767–786. [Google Scholar] [CrossRef]
- Luo, Y.L.; Zhang, R.H.; Wan, Q.L.; Wang, B.; Wong, W.K.; Hu, Z.Q.; Jou, B.J.D.; Lin, Y.L.; Johnson, R.H.; Chang, C.P.; et al. The southern China monsoon rainfall experiment (SCMREX). Bull. Am. Meteorol. Soc. 2017, 98, 999–1013. [Google Scholar] [CrossRef]
- Luo, Y.L.; Gong, Y.; Zhang, D.L. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in east China. Mon. Weather Rev. 2014, 142, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Hua, S.F.; Xu, X.; Chen, B.J. Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. J. Geophys. Res. Atmos. 2020, 125, e2019JD031731. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G.X. Heavy rainfalls associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Weather Rev. 2019, 147, 543–565. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, Y.C.; Gao, F.; Xiao, X. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res. Atmos. 2012, 117, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Bai, L.Q.; Chen, G.X.; Sun, Q.; Meng, Z.Y. Convection Initiation Associated with Ambient Winds and Local Circulations Over a Tropical Island in South China. Geophys. Res. Lett. 2021, 48, e2021GL094382. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, J.X.; Xiao, H.R.; Wang, J.J.; Xiao, D.X. Characteristics of MCC from Convective Initiation to Mature Stage Over the Sichuan Basin Based on FY-4A Satellite Data. Chin. J. Atmos. Sci. 2021, 45, 863–873. [Google Scholar] [CrossRef]
- Li, Y.D.; Wang, Y.; Yang, S.; Hu, L.; Gao, S.T.; Fu, R. Characteristics of summer convective systems initiated from Tibetan Plateau Part I: Origin, track, development and precipitation. J. Appl. Meteorol. Climatol. 2008, 47, 2679–2695. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Deng, D.F.; Gao, S.T.; Xu, X.D. The seasonal variation of Tibetan convective systems: Satellite observation. J. Geophys. Res. Atmos. 2016, 121, 5512–5525. [Google Scholar] [CrossRef]
- Hu, L.; Deng, D.F.; Xu, X.D.; Zhao, P. The regional differences of Tibetan convective systems in boreal summer. J. Geophys. Res. Atmos. 2017, 122, 7289–7299. [Google Scholar] [CrossRef]
- Luo, Z.Z.J.; Jeyaratnam, J.; Iwasaki, S.; Takahashi, H.; Anderson, R. Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophys. Res. Lett. 2014, 41, 723–729. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N. Convective cloud top vertical velocity estimated from geostationary satellite rapid-scan measurements. Geophys. Res. Lett. 2016, 43, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Lucas, C.; Zipser, E.J.; Lemone, M.A. Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci. 1994, 51, 3183–3193. [Google Scholar] [CrossRef]
- Jorgensen, D.P.; LeMone, M.A. Vertical velocity characteristics of oceanic convection. J. Atmos. Sci. 1989, 46, 621–640. [Google Scholar] [CrossRef] [Green Version]
- May, P.T.; Rajopadhyaya, D.K. Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Weather Rev. 1999, 127, 1056–1071. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Heikenfeld, M.; Marinescu, P.J.; Christensen, M.; Watson-Parris, D.; Senf, F.; van den Heever, S.C.; Stier, P. Tobac 1.2: Towards a Flexible Framework for Tracking and Analysis of Clouds in Diverse Datasets. Geosci. Model. Dev. 2019, 12, 4551–4570. [Google Scholar] [CrossRef] [Green Version]
- Soille, P.J.; Ansoult, M.M. Automated Basin Delineation from Digital Elevation Models Using Mathematical Morphology. Signal Process. 1990, 20, 171–182. [Google Scholar] [CrossRef]
- Allan, D.; Caswell, T.; Keim, N.; van der Wel, C. TrackPy. Zenodo 2019. [Google Scholar] [CrossRef]
- Ai, Y.; Li, W.; Meng, Z.; Li, J. Life cycle characteristics of MCSs in middle East China tracked by geostationary satellite and precipitation estimates. Mon. Weather Rev. 2016, 144, 2517–2530. [Google Scholar] [CrossRef]
- Yu, X.D.; Zheng, Y.G. Advances in severe convective weather research and operational service in China. Acta Meteorol. Sinica. 2020, 78, 391–418. (In Chinese) [Google Scholar] [CrossRef]
- Li, J. Study on the characteristics of the mesoscale Convective cloud clusters occurred in east Asia during warm seasons. Inst. Atmos. Phys. Chin. Acad. Sci. 2010, 1–29. (In Chinese) [Google Scholar]
- Zheng, Y.G.; Lin, Y.J.; Zhu, W.J.; Lan, Y.; Tang, W.Y.; Zhang, X.L.; Mao, D.Y.; Zhou, Q.L.; Zhang, Z.G. Operational System of Severe Convective Weather Comprehensive Monitoring. Meteorol. Mon. 2013, 39, 234–240. (In Chinese) [Google Scholar] [CrossRef]
- Adler, R.F.; Fenn, D.D. Thunderstorm vertical velocities estimated from satellite data. J. Atmos. Sci. 1979, 36, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- LeMone, M.A.; Zipser, E.J. Cumulonimbus vertical velocity events in GATE: Part I. Diameter, intensity and mass flux. J. Atmos. Sci. 1980, 37, 2444–2457. [Google Scholar] [CrossRef]
- Byers, H.R. Structure and dynamics of the thunderstorm. Science 1949, 110, 291–294. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H. Rainy season of the Asian–Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.G.; Zhang, C.X.; Chen, J.; Chen, M.X.; Wang, Y.C. Climatic Background of Warm Season Convective Weather in North China Based on the NCEP Analysis. Acta Sci. Nat. Univ. Pekin. 2007, 43, 600–608. (In Chinese) [Google Scholar]
- Haberlie, A.M.; Ashleya, W.S.; Pingel, T.J. The effect of urbanisation on the climatology of thunderstorm initiation. Q. J. R. Meteorol. Soc. 2015, 141, 663–675. [Google Scholar] [CrossRef]
- Lock, N.A.; Houston, A.L. Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007. Int. J. Climatol. 2015, 35, 4047–4056. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G.X.; Han, B.; Bai, L.Q.; Li, M.H. Convection Initiation and Growth at the Coast of South China. Part II: Effects of the Terrain, Coastline and Cold Pools. Mon. Weather Rev. 2020, 2020, 1–52. [Google Scholar] [CrossRef]
- Kain, J.S.; Coniglio, M.C.; Correia, J.; Clark, A.J.; Marsh, P.T.; Ziegler, C.L.; Lakshmanan, V.; Miller, S.D.; Dembek, S.R.; Weiss, S.J.; et al. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Am. Meteorol. Soc. 2013, 94, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Laing, A.G.; Fritsch, J.M. The large-scale environments of the global populations of mesoscale convective complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Davis, L.L.B. ProPlot. Zenodo 2021. [Google Scholar] [CrossRef]
- Raspaud, M.; Hoese, D.; Dybbroe, A.; Lahtinen, P.; Devasthale, A.; Itkin, M.; Hamann, U.; Rasmussen, L.Ø.; Nielsen, E.S.; Leppelt, T.; et al. PyTroll: An Open-Source, Community-Driven Python Framework to Process Earth Observation Satellite Data. Bull. Am. Meteorol. Soc. 2018, 99, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
Region | Cover Region | Number of Tracked Convective |
---|---|---|
HT (Hetao) | 34°–42°N, 103°–110°E | 214 |
NC (North China) | 35°–45°N, 110°–120°E | 722 |
SB (Sichuan Basin) | 27°–34°N, 102°–110°E | 783 |
CE (Central Eastern China) | 27°–35°N, 110°–122°E | 1164 |
TP (Tibetan Plateau) | - | 9339 |
YP (Yunnan-Guizhou Plateau) | 21.5°–27°N, 97.5°–106°E | 1977 |
SC (South China) | 18°–27°N, 106°–121°E | 18,287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Y.; Chen, Y.; Chen, B.; Zhang, X.; Wang, W.; Shu, Z.; Huo, Z. Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity. Remote Sens. 2021, 13, 4289. https://doi.org/10.3390/rs13214289
Li Y, Liu Y, Chen Y, Chen B, Zhang X, Wang W, Shu Z, Huo Z. Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity. Remote Sensing. 2021; 13(21):4289. https://doi.org/10.3390/rs13214289
Chicago/Turabian StyleLi, Yang, Yubao Liu, Yun Chen, Baojun Chen, Xin Zhang, Weisheng Wang, Zhuozhi Shu, and Zhaoyang Huo. 2021. "Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity" Remote Sensing 13, no. 21: 4289. https://doi.org/10.3390/rs13214289
APA StyleLi, Y., Liu, Y., Chen, Y., Chen, B., Zhang, X., Wang, W., Shu, Z., & Huo, Z. (2021). Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity. Remote Sensing, 13(21), 4289. https://doi.org/10.3390/rs13214289