Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison of In Situ and Satellite Measurements of Salinity
3.2. Interannual Variability of the Lena Plume Propagation from Satellite Salinity Measurements
3.3. Lena Plume Propagation from Satellite Altimetry and Temperature Measurements
3.4. Long-Term Variability of the Lena River Plume Propagation on the Base of Altimetry and Infrared Satellite Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haine, T.W.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Change 2015, 125, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Nummelin, A.; Ilicak, M.; Li, C.; Smedsrud, L.H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 2016, 121, 617–637. [Google Scholar] [CrossRef] [Green Version]
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.N.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.-L.; et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 2016, 121, 675–717. [Google Scholar] [CrossRef]
- Aagaard, K.; Carmack, E. The Role of Sea Ice and Other Fresh Water in the Arctic Circulation. J. Geophys. Res. Ocean. 1989, 94, 14485–14498. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Martin, J.M.; Sidorov, J.S.; Sidorova, M.V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. J. Geophys. Atmos. 1996, 296, 664–691. [Google Scholar] [CrossRef]
- Bryzgalo, V.A.; Nikanor, A.M.; Kosmenko, L.S.; Reshetnyak, O.S. Estuarine Ecosystem of Major Rivers in Russia: Anthropogenic Load and the Ecological State: Monograph; Publishing House of the Southern Federal University: Rostov, Russia, 2015; p. 46. (In Russian) [Google Scholar]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Shchuka, S.A.; Semiletov, I.P. Freshwater transport between the Kara, Laptev, and East-Siberian sea. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Krumpen, T.; Makhotin, M.; Abrahamsen, E.P.; Willmes, S.; Bloshkina, E.; Holemann, J.A.; Kassens, H.; Wegner, C. Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: Evidence from summer-to-winter hydrographic records of 2007–2009. Cont. Shelf Res. 2010, 30, 1656–1664. [Google Scholar] [CrossRef]
- Tarasenko, A.; Supply, A.; Kusse-Tiuz, N.; Ivanov, V.; Makhotin, M.; Tournadre, J.; Chapron, B.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G. Properties of surface water masses in the Laptev and the East Siberian seas in summer 2018 from in situ and satellite data. Ocean Sci. 2021, 17, 221–247. [Google Scholar] [CrossRef]
- Janout, M.A.; Hölemann, J.; Laukert, G.; Smirnov, A.; Krumpen, T.; Bauch, D.; Timokhov, L. On the Variability of Stratification in the Freshwater-Influenced Laptev Sea Region. Front. Mar. Sci. 2020, 7, 543489. [Google Scholar] [CrossRef]
- Fofonova, V.; Danilov, S.; Androsov, A.; Janout, M.; Bauer, M.; Overduin, P.; Itkin, P.; Wiltshire, K.H. Impact of wind and tides on the Lena River freshwater plume dynamics in the summer sea. Ocean Dyn. 2015, 65, 951–968. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Zatsepin, A.G. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data. Remote. Sens. Environ. 2016, 176, 177–187. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Kremenetsky, V.V.; Kubryakov, A.A.; Stanichny, S.V.; Soloviev, D.M. Propagation and transformation of water surface desalinated layer in the Kara Sea. Oceanology 2015, 55, 502. [Google Scholar] [CrossRef]
- Kattner, G.; Lobbes, J.M.; Fitznar, H.P.; Engbrodt, R.; Nöthig, E.M.; Lara, R.J. Tracing dissolved organic substances and nutrients from the Lena River through Laptev Sea (Arctic). Mar. Chem. 1999, 65, 25–39. [Google Scholar] [CrossRef]
- Loginova, A.N. Chromophoric Dissolved Organic Matter in the Laptev Sea (SiberianArctic): A Comparison of In-Situ Observations, Laboratory Measurements, and Remote Sensing. Ph.D. Thesis, Saint Petersburg State University, Saint Petersburg, Russia, University of Hamburg, Hamburg, Germany, 2011; 98p. [Google Scholar]
- Sukhanova, I.N.; Flint, M.V.; Georgieva, E.J.; Lange, E.K.; Kravchishina, M.D.; Demidov, A.B.; Nedospasov, A.A.; Polukhin, A.A. The structure of phytoplankton communities in the eastern part of the Laptev Sea. Oceanology 2017, 57, 75–90. [Google Scholar] [CrossRef]
- Park, H.; Yoshikawa, Y.; Yang, D.; Oshima, K. Warming water in Arctic terrestrial rivers under climate change. J. Hydrometeorol. 2017, 18, 1983–1995. [Google Scholar] [CrossRef]
- Magritsky, D.V.; Frolova, N.L.; Evstigneev, V.M.; Povalishnikova, E.S.; Kireeva, M.B.; Pakhomova, O.M. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforsch. Bremerhav. Alfred Wegener Inst. Polar Mar. Res. 2018, 87, 177–194. [Google Scholar] [CrossRef]
- Lammers, R.B.; Pundsack, J.W.; Shiklomanov, A.I. Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res. Biogeosci. 2007, 112, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kraineva, M.V.; Malakhova, V.V.; Golubeva, E.N. Numerical simulation of forming temperature anomalies in the Laptev Sea. Bull. Novosib. Comput. Cent. Ser. Numer. Model. Atmos. Ocean. Environ. Stud. 2014, 14, 27–34. [Google Scholar]
- Kraineva, M.V.; Malakhova, V.V.; Golubeva, E.N. Numerical modeling of the formation of temperature anomalies in the Laptev Sea caused by the flow of the Lena River. Opt. Atmos. Ocean. 2015, 28, 534–539. [Google Scholar] [CrossRef]
- Park, H.; Watanabe, E.; Kim, Y.; Polyakov, I.; Oshima, K.; Zhang, X.; Kimball, J.S.; Yang, D. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Sci. Adv. 2020, 6, Eabc4699. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Hall, D.K.; Rigor, I.G.; Li, P.; Neumann, G. Effects of Mackenzie River discharge and bathymetryon sea ice in the Beaufort Sea. Geophys. Res. Lett. 2014, 41, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, I.; Kirillov, S.; Eicken, H.; Markova, N. Wind-driven summer surface hydrography of the eastern Siberian shelf. Geophys. Res. Lett. 2005, 32, 14. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, I.; Kirillov, S.; Tremblay, L.B. The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change. J. Geophys. Res. 2008, 113, C03007. [Google Scholar] [CrossRef] [Green Version]
- Guay, C.K.; Falkner, K.; Muench, R.D.; Mensch, M.; Frank, M.; Bayer, R. Wind-driven transport pathways for Eurasian Arctic river discharge. J. Geophys. Res. 2001, 106, 11469–11480. [Google Scholar] [CrossRef]
- Golubeva, E.; Platov, G.; Malakhova, V.; Kraineva, M.; Iakshina, D. Modelling the long-term and inter-annual variability in the Laptev Sea hydrography and subsea permafrost state. Polarforsch. 2017, 87, 195–210. [Google Scholar] [CrossRef]
- Golubeva, E.; Platov, G.; Malakhova, V.; Iakshina, D.; Kraineva, M. Modeling the impact of the Lena River on the Laptev Sea summer hydrography and submarine permafrost state. Bull. Novosib. Comput. Center. Ser. Numer. Model. Atmos. Ocean. Environ. Stud. 2015, 15, 13–22. [Google Scholar]
- Kubryakov, A.A.; Kozlov, I.E.; Manucharyan, G.E. Large mesoscale eddies in the Western Arctic Ocean from satellite altimetry measurements. J. Geophys. Res. Ocean. 2021, 126, e2020JC016. [Google Scholar] [CrossRef]
- Osadchiev, A.; Silvestrova, K.; Myslenkov, S. Wind-Driven Coastal Upwelling near Large River Deltas in the Laptev and East-Siberian Seas. Remote Sens. 2020, 12, 844. [Google Scholar] [CrossRef] [Green Version]
- Janout, M.A.; Aksenov, Y.; Hölemann, J.A.; Rabe, B.; Schauer, U.; Polyakov, I.V.; Bacon, S.; Coward, A.C.; Karcher, M.; Lenn, Y.-D.; et al. Kara Sea freshwater transport through VilkitskyStrait: Variability, forcing, and furtherpathways toward the western ArcticOcean from a model and observations. J. Geophys. Res. Oceans 2015, 120, 4925–4944. [Google Scholar] [CrossRef]
- Makkaveev, P.N.; Polukhin, A.A.; Shchuka, S.A.; Stepanova, S.V. Transport of Continental Runoff Through the Vilkitskiy Strait in September 2017 and 2018. Oceanology 2020, 60, 308–315. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Frey, D.I.; Shchuka, S.A.; Tilinina, N.D.; Morozov, E.G.; Zavialov, P.O. Structure of the freshened surface layer in the Kara Sea during ice-free periods. J. Geophys. Res. Oceans 2021, 126, e2020JC016486. [Google Scholar] [CrossRef]
- Glukhovets, D.I.; Artemiev, V.A. Satellite observations of the river runoff distribution in the Laptev Sea. Mod. Probl. Remote Sens.Earth Space 2017, 14, 175–184. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Wensnahan, M.; Rigor, I.; Zwally, H.J.; Yi, D. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. 2009, 114, C07005. [Google Scholar] [CrossRef]
- Druckenmiller, M.L.; Moon, T.A.; Thoman, R.L.; Ballinger, T.J.; Berner, L.T.; Bernhard, G.H.; Bhatt, U.S.; Bjerke, J.W.; Box, J.E.; Brown, R.; et al. The Arctic. Bull. Amer. Meteor. Soc. 2021, 102, S263–S315. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and intercomparison of SMOS, Aquarius, and SMAP sea surface salinity products in the Arctic Ocean. Remote Sens. 2019, 11, 3043. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J.; Manaster, A.; Lindsle, R. Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-Day, Level 3 Monthly]; Version 4.0 Validated Release; Remote Sensing Systems: Santa Rosa, CA, USA, 2019. [Google Scholar] [CrossRef]
- Rio, M.H.; Mulet, S.; Picot, N. New global Mean Dynamic Topography from a GOCE geoid model, altimeter measurements and oceanographic in-situ data. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. ESA SP-722. [Google Scholar]
- Le Traon, P.Y.; Nadal, F.; Ducet, N. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol. 1998, 15, 522–534. [Google Scholar] [CrossRef]
- Pascual, A.; Faugere, Y.; Larnicol, G.; Le Traon, P.-Y. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Volkov, D.L.; Pujol, M.-I. Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas. J. Geophys. Res. 2012, 117, C03025. [Google Scholar] [CrossRef] [Green Version]
- Naumov, L.; Gordeeva, S.; Belonenko, T. Quality assessment of a satellite altimetry data product DT18 in the Norwegian Sea: A comparison to tide gauge records and drifters data. Adv. Space Res. 2021, 68, 432–446. [Google Scholar] [CrossRef]
- Minnett, P.; Evans, R.; Kearns, E.; Brown, O. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 2, pp. 1177–1179. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Reanalysis. Quart. J. Roy. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Domanitsky, A.P.; Dubrovina, R.G.; Isaeva, A.I. The Rivers and Lakes of the Soviet Union; Reference Data; Gidrometeoizdat: Leningrad, USSR, 1971. (In Russian) [Google Scholar]
- Pavlov, V.K.; Timokhov, L.A.; Baskakov, G.A.; Kulakov, M.Y.; Kurazhov, V.K.; Pavlov, P.V.; Pivovarov, S.V.; Stanovoy, V.V. Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas; University of Washington: Washington, DC, USA, 1996. [Google Scholar]
- Bauch, D.; Hölemann, J.A.; Nikulina, A.; Wegner, C.; Janout, M.A.; Timokhov, L.A.; Kassens, H. Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic). J. Geophys. Res. Oceans 2013, 118, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Ferriz, C.; Woodgate, R.A. The dominant role of the East Siberian Sea in driving the oceanic flow through the Bering Strait—Conclusions from GRACE ocean mass satellite data and in situ mooring observations between 2002 and 2016. Geophys. Res. Lett. 2017, 44, 11472–11481. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Woodgate, R.A.; Heimbach, P. Elucidating large-scale atmospheric controls on Bering Strait throughflow variability using a data-constrained ocean model and its adjoint. J. Geophys. Res. Ocean. 2020, 125, 9. [Google Scholar] [CrossRef]
- Zhuk, V.R.; Kubryakov, A.A. Impact of the Eastern Siberian current on water exchange in the Bering strait on the base of satellite altimetry measurements. Oceanology 2021, in press. [Google Scholar]
Year | Correlation with ADT | Correlation with SST |
---|---|---|
2015 | –0.66 | –0.54 |
2016 | –0.88 | –0.82 |
2017 | –0.73 | –0.62 |
2018 | –0.85 | –0.7 |
2019 | –0.54 | –0.69 |
2020 | no delayed data on ADT | –0.56 |
Average | –0.74 | –0.66 |
ADT | SST | ||||||
---|---|---|---|---|---|---|---|
Year | Northen | Eastern | Mixed | Max° E | Northen | Eastern | Mixed |
93 | X | ||||||
94 | X | 168 | |||||
95 | X | ||||||
96 | X | ||||||
97 | X | ||||||
98 | X | ||||||
99 | X | ||||||
0 | X | ||||||
1 | X | 169 | |||||
2 | X | 169 | X | ||||
3 | X | X | |||||
4 | X | 164 | X | ||||
5 | X | X | |||||
6 | X | X | |||||
7 | X | 158 | X | ||||
8 | X | X | |||||
9 | X | 167 | X | ||||
10 | X | 166 | X | ||||
11 | X | X | |||||
12 | X | 175 | X | ||||
13 | X | X | |||||
14 | X | X | |||||
15 | X | X | |||||
16 | X | 173 | X | ||||
17 | X | 170 | X | ||||
18 | X | 170 | X | ||||
19 | X | 180 | X | ||||
20 | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuk, V.R.; Kubryakov, A.A. Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements. Remote Sens. 2021, 13, 4252. https://doi.org/10.3390/rs13214252
Zhuk VR, Kubryakov AA. Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements. Remote Sensing. 2021; 13(21):4252. https://doi.org/10.3390/rs13214252
Chicago/Turabian StyleZhuk, Vladislav R., and Arseny Alexandrovich Kubryakov. 2021. "Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements" Remote Sensing 13, no. 21: 4252. https://doi.org/10.3390/rs13214252
APA StyleZhuk, V. R., & Kubryakov, A. A. (2021). Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements. Remote Sensing, 13(21), 4252. https://doi.org/10.3390/rs13214252