Ground-Based Radar Interferometry of Sea Ice
Abstract
:1. Introduction
2. Data and Methods
2.1. Interferometric Concepts
2.2. Interferometric Processing with the Gamma Portable Radar Interferometer (GPRI)
2.3. Data Acquisition during ICEX 2020
3. Results
3.1. Deriving Phase Sensitivity to Motion and Topography of Sea Ice
3.2. Modeling Repeat-Scan Interferometric Response to Sea Ice Strain
3.3. Modeling Stare-Mode Interferometric Response to Sea Ice Strain
4. Data Examples from Drifting Sea Ice
4.1. Observing Shear Strain Using Repeat-Scan Interferometry
4.2. Observing Compressional Strain Using Stare-Mode Interferometry
5. Discussion
5.1. Geometrical Constraints of Sea Ice Strain Measurement
5.2. Sensitivity to Vertical Ice Motion
5.3. Sensitivity to Antenna Movement
5.4. Sensitivity to Topography
6. Conclusions
- Acquire longer series of acquisitions for different ice regimes including longer stare acquisitions to evaluate wave periods and capture fracturing events.
- Obtain validation data and identify methods to combine observation systems for improved monitoring and reduced directional ambiguities (e.g., second GPRI system, on-ice accelerometers, laser strain profilers).
- Explore optimal processing routines (e.g., filtering techniques) and develop automatic identification of deformation and strain.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and trends in the A rctic S ea ice cover: Results from different techniques. J. Geophys. Res. Oceans 2017, 122, 6883–6900. [Google Scholar] [CrossRef]
- CMIP. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Meier, W.N.; Hovelsrud, G.K.; Oort, B.E.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 52, 185–217. [Google Scholar] [CrossRef]
- Melia, N.; Haines, K.; Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys Res. Lett. 2016, 43, 9720–9728. [Google Scholar] [CrossRef]
- Stephenson, S.R.; Smith, L.C.; Agnew, J.A. Divergent long-term trajectories of human access to the Arctic. Nat. Clim. Chang. 2011, 1, 156–160. [Google Scholar] [CrossRef]
- Ng, A.K.; Andrews, J.; Babb, D.; Lin, Y.; Becker, A. Implications of climate change for shipping: Opening the Arctic seas. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e507. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.; Meyer, F.; Betcher, S. Assessing sea ice trafficability in a changing Arctic. Arctic 2018, 71, 59–75. [Google Scholar] [CrossRef]
- Ford, J.D.; Maillet, M.; Pouliot, V.; Meredith, T.; Cavanaugh, A.; Team, I.R. Adaptation and Indigenous peoples in the United Nations Framework Convention on Climate Change. Clim. Chang. 2016, 139, 429–443. [Google Scholar] [CrossRef]
- Ford, J.; Clark, D.; Pearce, T.; Berrang-Ford, L.; Copland, L.; Dawson, J.; New, M.; Harper, S. Changing access to ice, land and water in Arctic communities. Nat. Clim. Chang. 2019, 9, 335–339. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.; Meyer, F.; Freymueller, J.; Kaufman, A.M. Evaluating landfast sea ice stress and fracture in support of operations on sea ice using SAR interferometry. Cold Reg. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Fraser, A.D.; Massom, R.A.; Ohshima, K.I.; Willmes, S.; Kappes, P.J.; Cartwright, J.; Porter-Smith, R. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data Discuss. 2020, 12, 2987–2999. [Google Scholar] [CrossRef]
- Kwok, R.; Markus, T.; Kurtz, N.; Petty, A.; Neumann, T.; Farrell, S.; Cunningham, G.; Hancock, D.; Ivanoff, A.; Wimert, J. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results. J. Geophys. Res. Ocean. 2019, 124, 6942–6959. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite sar data-based sea ice classification: An overview. Geosciences 2019, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; Eriksson, L.E.B. Investigation of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5023–5033. [Google Scholar] [CrossRef] [Green Version]
- Dammann, D.O.; Eicken, H.; Saiet, E.; Mahoney, A.; Meyer, F.; George, J.C. Traversing sea ice—Linking surface roughness and ice trafficability through SAR polarimetry and interferometry IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 416–433. [Google Scholar] [CrossRef]
- Bell, T.; Briggs, R.; Bachmayer, R.; Li, S. Augmenting Inuit knowledge for safe sea-ice travel—The SmartICE information system. In Proceedings of the 2014 Oceans’14 St. John’s, Newfoundland, NL, Canada, 14–19 September 2014; pp. 1–9. [Google Scholar]
- Dammann, D.O.; Eriksson, L.E.; Mahoney, A.R.; Eicken, H.; Meyer, F.J. Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry. Cryosphere 2019, 13, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Marbouti, M.; Eriksson, L.E.; Dammann, D.O.; Demchev, D.; Jones, J.; Berg, A.; Antropov, O. Evaluating Landfast Sea Ice Ridging near UtqiaġVik Alaska Using TanDEM-X Interferometry. Remote Sens. 2020, 12, 1247. [Google Scholar] [CrossRef] [Green Version]
- Dammann, D.O.; Eriksson, L.E.B.; Jones, J.M.; Romeiser, R.; Mahoney, A.R.; Fukamachi, Y. Instantaneous sea ice drift speed from TanDEM-X interferometry. Cryosphere 2019. [Google Scholar] [CrossRef]
- Rohith, M.; Jones, J.; Eicken, H.; Kambhamettu, C. Extracting quantitative information on coastal ice dynamics and ice hazard events from marine radar digital imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2556–2570. [Google Scholar]
- Jones, J.M.; Eicken, H.; Mahoney, A.R.; Rohith, M.V.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K.I.; George, J.C. Landfast sea ice breakouts: Stabilizing ice features, oceanic and atmospheric forcing at Barrow, Alaska. Cont. Shelf Res. 2016, 126. [Google Scholar] [CrossRef] [Green Version]
- Rabault, J.; Sutherland, G.; Gundersen, O.; Jensen, A.; Marchenko, A.; Breivik, Ø. An open source, versatile, affordable waves in ice instrument for scientific measurements in the Polar Regions. Cold Reg. Sci. Technol. 2020, 170, 102955. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Mahoney, A.; Sybrandy, A.; Montgomery, G. Measuring Acceleration and Short-Lived Motion in Landfast SEA-ICE. J. Ocean. Technol. 2020, 15, 115–131. [Google Scholar]
- Strozzi, T.; Werner, C.; Wiesmann, A.; Wegmüller, U. Topography mapping with a portable real-aperture radar interferometer. IEEE Geosci. Remote Sens. Lett. 2011, 9, 277–281. [Google Scholar] [CrossRef]
- Kos, A.; Strozzi, T.; Stockmann, R.; Wiesmann, A.; Werner, C. Detection and characterization of rock slope instabilities using a portable radar interferometer (GPRI). In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 325–329. [Google Scholar]
- Strozzi, T.; Raetzo, H.; Wegmüller, U.; Papke, J.; Caduff, R.; Werner, C.; Wiesmann, A. Satellite and terrestrial radar interferometry for the measurement of slope deformation. In Engineering Geology for Society and Territory-Volume 5; Springer: Cham, Switzerland, 2015; pp. 161–165. [Google Scholar]
- Wiesmann, A.; Caduff, R.; Strozzi, T.; Papke, J.; Mätzler, C. Monitoring of dynamic changes in alpine snow with terrestrial radar imagery. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3662–3665. [Google Scholar]
- Riesen, P.; Strozzi, T.; Bauder, A.; Wiesmann, A.; Funk, M. Short-term surface ice motion variations measured with a ground-based portable real aperture radar interferometer. J. Glaciol. 2011, 57, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Asbjørnslett, A.H. Analysis of the potential of the Ku-band Gamma Portable Radar Interferometer for sea ice information extraction. Master’s Thesis, UiT Norges arktiske universitet, Tromsø, Norway, 2020. [Google Scholar]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonet, D. InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation; ESA Publications: Auckland, New Zealand, 2007; p. TM-19. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Ding, X.; Li, Z.; Zhu, J.; Feng, G.; Long, J. Atmospheric effects on InSAR measurements and their mitigation. Sensors 2008, 8, 5426–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadge, G.; Costa, A.; Pascal, K.; Werner, C.; Webb, T. The variability of refractivity in the atmospheric boundary layer of a tropical island volcano measured by ground-based interferometric radar. Bound.-layer Meteorol. 2016, 161, 309–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Werner, C.; Wiesmann, A.; Strozzi, T.; Kos, A.; Caduff, R.; Wegmiüler, U. The GPRI multi-mode differential interferometric radar for ground-based observations. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 304–307. [Google Scholar]
- Weeks, W. On Sea Ice; University of Alaska Press: Fairbanks, Alaska, 2010; 664p. [Google Scholar]
- Rampal, P.; Weiss, J.; Marsan, D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Meyer, F.; Mahoney, A. Assessing small-scale deformation and stability of landfast sea ice on seasonal timescales through L-band SAR interferometry and inverse modeling. Remote Sens. Environ. 2016, 187, 492–504. [Google Scholar] [CrossRef] [Green Version]
Horizontal | Vertical | Elevation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
r (m) | (°) | (mm) | (mm) | (mm) | (m) | (m) | (m) | (m) | (m) | (m) |
20 | 76 | 9.0 | 1.03 | 0.45 | 0.026 | 3.0 × 10−3 | 1.3 × 10−3 | 0.90 | 0.10 | 1.3 × 10−3 |
100 | 87 | 8.5 | 0.98 | 0.43 | 0.126 | 1.4 × 10−2 | 6.3 × 10−2 | 3.14 | 0.36 | 6.3 × 10−3 |
500 | 89 | 8.5 | 0.98 | 0.43 | 0.63 | 7.2 × 10−2 | 3.1 × 10−2 | 14.5 | 1.66 | 3.1 × 10−2 |
1000 | 90 | 8.5 | 0.98 | 0.43 | 1.25 | 0.14 | 6.3 × 10−2 | 28.6 | 3.28 | 6.3 × 10−2 |
5000 | 90 | 8.5 | 0.98 | 0.43 | 6.26 | 0.71 | 0.31 | 142 | 16.3 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dammann, D.O.; Johnson, M.A.; Fedders, E.R.; Mahoney, A.R.; Werner, C.L.; Polashenski, C.M.; Meyer, F.J.; Hutchings, J.K. Ground-Based Radar Interferometry of Sea Ice. Remote Sens. 2021, 13, 43. https://doi.org/10.3390/rs13010043
Dammann DO, Johnson MA, Fedders ER, Mahoney AR, Werner CL, Polashenski CM, Meyer FJ, Hutchings JK. Ground-Based Radar Interferometry of Sea Ice. Remote Sensing. 2021; 13(1):43. https://doi.org/10.3390/rs13010043
Chicago/Turabian StyleDammann, Dyre Oliver, Mark A. Johnson, Emily R. Fedders, Andrew R. Mahoney, Charles L. Werner, Christopher M. Polashenski, Franz J. Meyer, and Jennifer K. Hutchings. 2021. "Ground-Based Radar Interferometry of Sea Ice" Remote Sensing 13, no. 1: 43. https://doi.org/10.3390/rs13010043
APA StyleDammann, D. O., Johnson, M. A., Fedders, E. R., Mahoney, A. R., Werner, C. L., Polashenski, C. M., Meyer, F. J., & Hutchings, J. K. (2021). Ground-Based Radar Interferometry of Sea Ice. Remote Sensing, 13(1), 43. https://doi.org/10.3390/rs13010043