The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cattle Handling
2.2. Satellite Data and Calculation of Vegetation Indices
2.3. Live Weight and Live Weight Change Data
2.4. Statistical Analysis and Linear Mixed-Effects Modelling
2.5. Predictive Machine Learning Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLean, R.W.; McCown, R.L.; Little, D.A.; Winter, W.H.; Dance, R.A. Persistence and growth of lotononis bainesii-digitaria decumbens an analysis of cattle liveweight changes on tropical grass pasture during the dry and early wet seasons in northern australia. J. Agric. Sci. 1983, 101, 17–24. [Google Scholar] [CrossRef]
- Cowley, T.; Oxley, T.; MacDonald, N.; Cameron, A.G.; Conradie, P.; Collier, C.; Norwood, D. The 2010 Pastoral Industry Survey. Northern Territory Wide; Northern Territory Government: Darwin, Australia, 2015.
- Durante, M.; Oesterheld, M.; Piñeiro, G.; Vassallo, M.M. Estimating forage quantity and quality under different stress and senescent biomass conditions via spectral reflectance. Int. J. Remote Sens. 2014, 35, 2963–2981. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Holroyd, R.G.; Entwistle, K.W.; Shepherd, R.K. Effects on reproduction of estrous cycle variations, rectal temperatures and liveweights in mated Brahman cross heifers. Theriogenology 1993, 40, 453–464. [Google Scholar] [CrossRef]
- Mayer, D.G.; McKeon, G.M.; Moore, A.D. Prediction of mortality and conception rates of beef breeding cattle in northern Australia. Anim. Prod. Sci. 2012, 52, 329–337. [Google Scholar] [CrossRef] [Green Version]
- González, L.A.; Charmley, E.; Henry, B.K. Modelling methane emissions from remotely collected liveweight data and faecal near-infrared spectroscopy in beef cattle. Anim. Prod. Sci. 2014, 54, 1980–1987. [Google Scholar] [CrossRef]
- González, L.A.; Kyriazakis, I.; Tedeschi, L.O. Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal 2018, 12, 246–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausseil, A.; Dymond, J.; Dynes, R.; Shepherd, J.; DeVantier, B.; Sutherland, A. Estimating pasture quality using Landsat ETM+: Application for the greenhouse gas inventory of New Zealand. In Proceedings of the 34th International Society for Photogrammetry and Remote Sensing, Sydney, Australia, 10–15 April 2011; pp. 1–4. [Google Scholar]
- Flynn, E.S.; Dougherty, C.T.; Wendroth, O. Assessment of pasture biomass with the normalized difference vegetation index from active ground-based sensors. Agron. J. 2008, 100, 114–121. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant. Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Gredell, D.A.; Schroeder, A.R.; Belk, K.E.; Broeckling, C.D.; Heuberger, A.L.; Kim, S.Y.; King, D.A.; Shackelford, S.D.; Sharp, J.L.; Wheeler, T.L.; et al. Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A.; Mitchell, M.; Barker, Z.E.; Giebel, K.; Codling, E.A.; Amory, J.R.; Michie, C.; Davison, C.; Tachtatzis, C.; Andonovic, I.; et al. Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows. Animal 2020, 14, 1304–1312. [Google Scholar] [CrossRef]
- Bureau of Meteorology Daily Maximum Temperature. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=122&p_display_type=dailyDataFile&p_startYear=2018&p_c=-864745&p_stn_num=002056 (accessed on 9 April 2019).
- Pearson, C.; Lush, L.; González, L.A. Intravaginal devices and gnss collars with satellite communication to detect calving events in extensive beef production in northern australia. Remote Sens. 2020, 12, 3963. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Filippi, P.; Whelan, B.M.; Vervoort, R.W.; Bishop, T.F.A. Mid-season empirical cotton yield forecasts at fine resolutions using large yield mapping datasets and diverse spatial covariates. Agric. Syst. 2020, 184, 102894. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Colwell, J.E. Vegetation canopy reflectance. Remote Sens. Environ. 1974, 3, 175–183. [Google Scholar] [CrossRef]
- Ahmad, S.; Chandra Pandey, A.; Kumar, A.; Parida, B.R.; Lele, N.V.; Bhattacharya, B.K. Chlorophyll deficiency (chlorosis) detection based on spectral shift and yellowness index using hyperspectral AVIRIS-NG data in Sholayar reserve forest, Kerala. Remote Sens. Appl. Soc. Environ. 2020, 19, 100369. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Ihse, M. Colour infrared aerial photography as a tool for vegetation mapping and change detection in environmental studies of Nordic ecosystems: A review. Nor. Geogr. Tidsskr. 2007, 61, 170–191. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Int. Geosci. Remote Sens. Symp. 2005, 3, 1666–1668. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Marx, B.D.; Ellers, P.H.C. Flexible Smoothing with B-splines and Penalties. Stat. Sci. 1996, 11, 89–102. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 29 April 2020).
- Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.-M. Random Forests with R; Springer: Cham, Switzerland, 2020; ISBN 9783030564841. [Google Scholar]
- Li, J.; Alvarez, B.; Siwabessy, J.; Tran, M.; Huang, Z.; Przeslawski, R.; Radke, L.; Howard, F.; Nichol, S. Application of random forest and generalised linear model and their hybrid methods with geostatistical techniques to count data: Predicting sponge species richness. Environ. Model. Softw. 2017, 97, 112–129. [Google Scholar] [CrossRef]
- Nembrini, S. On the behaviour of permutation-based variable importance measures in random forest clustering. J. Chemom. 2019, 33, 1–5. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biomatrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Baruselli, P.S.; Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019, 125, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Burns, B.M.; Fordyce, G.; Holroyd, R.G. A review of factors that impact on the capacity of beef cattle females to conceive, maintain a pregnancy and wean a calf-Implications for reproductive efficiency in northern Australia. Anim. Reprod. Sci. 2010, 122, 1–22. [Google Scholar] [CrossRef]
- Shahinfar, S.; Al-Mamun, H.A.; Park, B.; Kim, S.; Gondro, C. Prediction of marbling score and carcass traits in Korean Hanwoo beef cattle using machine learning methods and synthetic minority oversampling technique. Meat Sci. 2020, 161, 107997. [Google Scholar] [CrossRef] [PubMed]
- Higaki, S.; Miura, R.; Suda, T.; Andersson, L.M.; Okada, H.; Zhang, Y.; Itoh, T.; Miwakeichi, F.; Yoshioka, K. Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle. Theriogenology 2019, 123, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Alexandre, P.A.; Ribeiro, G.; Fukumasu, H.; Sun, W.; Reverter, A.; Li, Y. Identification of Predictor Genes for Feed Efficiency in Beef Cattle by Applying Machine Learning Methods to Multi-Tissue Transcriptome Data. Front. Genet. 2021, 12, 103. [Google Scholar] [CrossRef]
- Shahinfar, S.; Page, D.; Guenther, J.; Cabrera, V.; Fricke, P.; Weigel, K. Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms. J. Dairy Sci. 2014, 97, 731–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop. Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.; Han, B.; Chen, S.; Yang, W. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images. Environ. Earth Sci. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Morresi, D.; Vitali, A.; Urbinati, C.; Garbarino, M. Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of central Apennines derived from Landsat time series. Remote Sens. 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron. J. 2008, 100, 1694–1702. [Google Scholar] [CrossRef] [Green Version]
- Bowen, M.K.; Chudleigh, F.; Dixon, R.M.; Sullivan, M.T.; Schatz, T.; Oxley, T. The economics of phosphorus supplementation of beef cattle grazing northern Australian rangelands. Anim. Prod. Sci. 2020, 60, 683–693. [Google Scholar] [CrossRef]
- Coates, D.B.; Dixon, R.M.; Mayer, R.J. Between-year variation in the effects of phosphorus deficiency in breeder cows grazing tropical pastures in northern Australia. Trop. Grassl.-Forrajes Trop. 2019, 7, 223–233. [Google Scholar] [CrossRef]
- Kogan, F.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebed, L. AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity: Calibration and Validation. Photogramm. Eng. Remote Sens. 2003, 69, 899–906. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Wang, Z.; Mao, D.; Liang, C.; Wen, L.; Li, Z.; Zhang, J.; Liu, D.; Zhuo, Y.; et al. Vegetation Dynamic Assessment by NDVI and Field Observations for Sustainability of China’s Wulagai River Basin. Int. J. Environ. Res. Public Health 2021, 18, 2528. [Google Scholar] [CrossRef] [PubMed]
- Dingaan, M.N.V.; Tsubo, M. Improved assessment of pasture availability in semi-arid grassland of South Africa. Environ. Monit. Assess. 2019, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ash, A.; Hunt, L.; McDonald, C.; Scanlan, J.; Bell, L.; Cowley, R.; Watson, I.; McIvor, J.; MacLeod, N. Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis. Agric. Syst. 2015, 139, 50–65. [Google Scholar] [CrossRef] [Green Version]
Ingredient % as Fed | Dry Season Urea—2018 | Dry Season Urea—2019 |
---|---|---|
Urea equivalent | 36.21 | 32.86 |
Phosphorus | 3.33 | 3.09 |
Crude protein | 2.88 | 4.25 |
Equivalent CP | 103.92 | 94.31 |
Total CP | 106.80 | 98.56 |
Calcium | 4.37 | 4.85 |
Sulphur | 3.32 | 3.92 |
Fibre | 0.55 | 0.95 |
Magnesium | 0.31 | 0.18 |
Potassium | 0.06 | 0.17 |
Nitrogen | 0.45 | 15.27 |
Chloride | 16.77 | 14.86 |
Sodium | 10.57 | 9.37 |
Dry matter | 76.52 | 95.07 |
Metabolizable Energy, MJ /kg DM | 0.80 | 1.57 |
VI | Red | Green | Blue | NIR | Red Edge | Description |
---|---|---|---|---|---|---|
NDVI | X | X | Chlorophyll-sensitive Identifying canopy structure | |||
NDRE | X | X | Good to estimate late season biomass and tree crops Does not oversaturate images | |||
EVI | X | X | X | Reduces soil and atmospheric noise Sensitive to changes in high biomass Detects variations in plant structure | ||
CIr | X | X | X | Assesses soil moisture Assesses soil composition | ||
VREI | X | Chlorophyll-sensitive Sensitive to small changes in vegetation | ||||
BI | X | X | X | Identifies areas of bare soil Good for detection of degradation and drought-affected areas |
Variable | Mean | Std Dev | Minimum | Maximum | CV | |
---|---|---|---|---|---|---|
Year 1 | Live weight change (kg/day) | 0.28 | 1.15 | −9.07 | 8.14 | 414.2 |
Live Weight (kg) | 380.29 | 115.67 | 36.26 | 797.53 | 30.46 | |
NDVI | 0.17 | 0.04 | 0.12 | 0.24 | 21.5 | |
NDRE | 0.13 | 0.03 | 0.10 | 0.18 | 21.2 | |
EVI | 0.14 | 0.03 | 0.11 | 0.19 | 18.6 | |
CIr | 0.36 | 0.11 | 0.24 | 0.58 | 30.9 | |
VREI | 0.03 | 0.01 | 0.02 | 0.05 | 28.9 | |
BI | 0.06 | 0.03 | 0.02 | 0.10 | 43.8 | |
Year 2 | Growth rate (kg/day) | 0.07 | 1.00 | −9.18 | 9.08 | 1440.2 |
Live Weight (kg) | 404.77 | 98.03 | 44.12 | 835.04 | 24.2 | |
NDVI | 0.16 | 0.05 | 0.10 | 0.28 | 32.4 | |
NDRE | 0.12 | 0.04 | 0.08 | 0.20 | 33.0 | |
EVI | 0.13 | 0.05 | 0.08 | 0.25 | 39.4 | |
CIr | 0.35 | 0.14 | 0.22 | 0.66 | 40.5 | |
VREI | 0.04 | 0.02 | 0.02 | 0.07 | 46.2 | |
BI | 0.07 | 0.06 | −0.04 | 0.13 | 86.6 |
Year | Vegetation Index | Intercept | Regression Coefficient | ||
---|---|---|---|---|---|
Estimate ± SE | p-Value | Estimate ± SE | p-Value | ||
Year 1 | NDVI | −0.34 ± 0.06 | <0.001 | 4.44 ± 0.10 | <0.001 |
NDRE | −0.96 ± 0.06 | <0.001 | 10.82 ± 0.13 | <0.001 | |
EVI | −0.77 ± 0.06 | <0.001 | 8.54 ± 0.13 | <0.001 | |
CIr | −0.84 ± 0.06 | <0.001 | 3.36 ± 0.03 | <0.001 | |
VREI | −0.72 ± 0.06 | <0.001 | 33.19 ± 0.36 | <0.001 | |
BI | 1.41 ± 0.06 | <0.001 | −16.46 ± 0.12 | <0.001 | |
Year 2 | NDVI | −0.84 ± 0.07 | <0.001 | 6.61 ± 0.05 | <0.001 |
NDRE | −0.94 ± 0.07 | <0.001 | 9.79 ± 0.07 | <0.001 | |
EVI | −0.66 ± 0.07 | <0.001 | 6.71 ± 0.05 | <0.001 | |
CIr | −0.75 ± 0.07 | <0.001 | 2.76 ± 0.02 | <0.001 | |
VREI | −0.57 ± 0.07 | <0.001 | 22.23 ± 0.17 | <0.001 | |
BI | 0.71 ± 0.07 | <0.001 | −7.56 ± 0.05 | <0.001 |
R2 | * LCCC | * RMSE (kg) | Bias |
---|---|---|---|
0.44 | 0.62 | 0.67 | −0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearson, C.; Filippi, P.; González, L.A. The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions. Remote Sens. 2021, 13, 4132. https://doi.org/10.3390/rs13204132
Pearson C, Filippi P, González LA. The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions. Remote Sensing. 2021; 13(20):4132. https://doi.org/10.3390/rs13204132
Chicago/Turabian StylePearson, Christie, Patrick Filippi, and Luciano A. González. 2021. "The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions" Remote Sensing 13, no. 20: 4132. https://doi.org/10.3390/rs13204132
APA StylePearson, C., Filippi, P., & González, L. A. (2021). The Relationship between Satellite-Derived Vegetation Indices and Live Weight Changes of Beef Cattle in Extensive Grazing Conditions. Remote Sensing, 13(20), 4132. https://doi.org/10.3390/rs13204132