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Abstract: Understanding post-fire regeneration dynamics is an important task for assessing the
resilience of forests and to adequately guide post-disturbance management. The main goal of this
research was to compare the ability of different Landsat-derived spectral vegetation indices (SVIs) to
track post-fire recovery occurring in burned forests of the central Apennines (Italy) at different
development stages. Normalized Difference Vegetation Index (NDVI), Normalized Difference
Moisture Index (NDMI), Normalized Burn Ratio (NBR), Normalized Burn Ratio 2 (NBR2) and
a novel index called Forest Recovery Index 2 (FRI2) were used to compute post-fire recovery metrics
throughout 11 years (2008–2018). FRI2 achieved the highest significant correlation (Pearson’s r = 0.72)
with tree canopy cover estimated by field sampling (year 2017). The Theil–Sen slope estimator
of linear regression was employed to assess the rate of change and the direction of SVIs recovery
metrics over time (2010–2018) and the Mann–Kendall test was used to evaluate the significance of the
spectral trends. NDVI displayed the highest amount of recovered pixels (38%) after 11 years since fire
occurrence, whereas the mean value of NDMI, NBR, NBR2, and FRI2 was about 27%. NDVI was more
suitable for tracking early stages of the secondary succession, suggesting greater sensitivity toward
non-arboreal vegetation development. Predicted spectral recovery timespans based on pixels with a
statistically significant monotonic trend did not highlight noticeable differences among normalized
SVIs, suggesting similar suitability for monitoring early to mid-stages of post-fire forest succession.
FRI2 achieved reliable results in mid- to long-term forest recovery as it produced up to 50% longer
periods of spectral recovery compared to normalized SVIs. Further research is needed to understand
this modeling approach at advanced stages of post-fire forest recovery.

Keywords: post-fire recovery; spectral vegetation index; NDVI; NDMI; NBR; NBR2; Integrated
Forest z-score (IFZ); Forest Recovery Index 2 (FRI2); burn severity; recovery trend modeling

1. Introduction

The interaction between climate and land-use changes is raising the frequency, surface area,
and severity of wildfires in the Mediterranean Basin [1–4]. Among climate change effects, long
periods of dry weather are expected to increase fire danger in southern European mountains both
under short- and long-term climatic scenarios [5]. The development of appropriate management
strategies is essential to prevent fire occurrence and to enhance forest recovery [6,7]. The latter is
a critical ecological process after a stand-replacing disturbance, referring to the re-establishment or
re-development of forest biomass and canopy structure [8–10]. This process affects regional and global
carbon cycles [11,12] and promotes numerous ecosystem services [8]. Furthermore, forest degradation
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in the xeric Mediterranean mountains induced by a fire frequency increase can occur even in stands
dominated by fire-adapted tree taxa [7]. Forest recovery at a landscape scale is often modeled as a
fast and homogeneous process. However, depending on the fire severity level, it might be a very
diversified one [9], with great changes in forest structure and species composition [13].

Since past decades, satellite optical remote sensing was widely adopted for the analysis of post-fire
forest recovery [14]. Imagery collected by the United States (US) Landsat program is currently considered
as the most valuable source of time-series data at a landscape scale [8,15]. This is primarily due to the
long-term availability of systematically acquired images, spanning over 40 years. The unique combination
of 30-m spatial resolution and 16 days of revisiting time enables assembling conspicuous Landsat time
series (LTS) [16]. Monitoring forest regeneration development through gradual changes in the optical
spectral domain is challenging, given the confounding effects from a variety of factors such as phenology
and sun angles [15,17]. To reduce these types of noise, selecting near-anniversary acquisition dates [17]
or using unburned neighboring pixels as control areas [18,19] were proposed. However, limitations
such as data gaps in the time series [15] can negatively affect outcomes. Recent development in dense
Landsat time-series collection by including all the clear yearly observations [20] proved to be useful in
characterizing both intra-annual variations and long-term temporal trajectories [15].

Spectral vegetation indices (SVIs) [21–24] and spectral mixture analysis (SMA) [25–27] are common
remote-sensing techniques to track post-fire vegetation recovery using LTS, and were adopted in
different vegetation communities and ecosystems [14,28]. SVIs from LTS are widely used since they
can maximize the sensitivity to plant biophysical factors and reduce the noise from atmosphere,
landforms, and soil variability [29,30]. Specifically, Normalized Difference Vegetation Index (NDVI)
was widely employed to assess post-fire vegetation recovery using a multi-temporal approach in
several burned sites of the Mediterranean Basin, primarily because of the high correlation achieved with
field measurements such as fractional vegetation cover [27,31]. Other studies in North American boreal
forests focused on indices contrasting the near-infrared (NIR) and shortwave-infrared (SWIR) bands of
Landsat TM/ETM+/OLI sensors to track post-fire recovery [23,24,32]. Since the shortwave-infrared
region of the spectral domain is sensitive to variations in the forest structure [17,33,34], Normalized
Difference Moisture Index (NDMI) [35] and Normalized Burn Ratio (NBR) [36] or the SWIR1 band
alone [24,37] are of great interest to monitor post-disturbance forest recovery. Additionally, Normalized
Burn Ratio 2 (NBR2) takes advantage of the contrast between the two Landsat sensor SWIR bands, with
promising results in the assessment of post-fire vegetation recovery in the shrublands of California [38]
and sclerophyll forests of Australia [39].

The Integrated Forest z-score (IFZ) [40,41] is a threshold-based index that was initially developed
as a part of the Vegetation Change Tracker algorithm [40] in order to target abrupt forest cover changes
at the pixel level. Specifically, IFZ is an inverse measure of the likelihood of a pixel to be forested, which
is obtained by computing its spectral distance from defined forest pixels. Some authors proposed
using the reciprocal of IFZ, termed Forest Recovery Index (FRI), to allow for the comparison with
other spectral indices growing in direct proportion with the amount of vegetation cover such as
NDVI [41]. To date, few studies employed either IFZ or FRI in post-fire forest recovery tracking [41–43],
but its potential toward the detection of long-term forest recovery dynamics was highlighted within
ponderosa pine forests [42], boreal larch forests [41], and a mosaic of mixed conifer forests in the
Greater Yellowstone Ecosystem [43].

Post-fire recovery rates were assessed through trend analysis on LTS which involved fitting linear,
non-linear [25], and segmented [44] pixel-wise models to near-anniversary date images to characterize
the spatial variability of this gradual process. This approach proved to be effective, but trend analysis
based on single curve fitting can be biased by outliers [16], making the adoption of robust regression
models preferable.

Another challenging factor to be considered is the land-cover heterogeneity due to the
anthropogenic disturbances. This is particularly evident in human-shaped landscapes featuring
a complex patch mosaic of crops, forests, pastures, and human infrastructures.
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The present study aimed to compare the efficiency of different spectral vegetation indices to assess
the early forest recolonization patterns in four burned landscape mosaics of the central Apennines
(Italy). Wildfires in this mountain ecoregion are one of the most common natural disturbances [45,46],
but forest recovery dynamics is scarcely studied with a remote-sensing approach. Our general
hypotheses to be tested were as follows: (a) Landsat-derived spectral vegetation indices employing
the SWIR bands have enhanced sensitivity toward post-fire forest recovery dynamics; (b) forest
regeneration processes under different burn severity degrees and forest types can be inferred from
recovery patterns of spectral vegetation indices; (c) the ability of Landsat-derived spectral vegetation
indices to track diachronic post-fire forest recovery dynamics can be assessed through spatially explicit
robust regression models.

2. Materials and Methods

2.1. Study Areas

The study was held in the central Apennines and it included areas of the Marche and Abruzzo
administrative regions. Four large stand-replacing wildfires were located using MODIS Collection 6
Level 3 monthly burned area products (MCD64A1) [47,48]. The correspondent study areas were named
with the nearest municipality: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM)
(Figure 1). This dataset also provided the starting date of each wildfire and the overall burned surface
area (Table 1). The extent of forest areas affected by wildfires was initially estimated by intersecting
the Corine Land Cover 2006 (CLC) forest cover map (codes 311, 312, 313) [49] with the MODIS burned
area products in a GIS environment (Table 1).
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Figure 1. Location and wildfire surface (orange polygons) from MODIS burned area (MCD64A1) of
the four study areas: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM).

The large wildfires which occurred in central and southern Italy during the summer of 2007 were
driven by severe climate conditions, similar to those arising in Greece during the same year [50,51].
The occurrence of previous prolonged drought periods, the high summer temperatures, and strong
winds enhanced the spread of large wildfires [50]. Other environmental and social factors contributed
to raising the fire risk in the study areas, such as the abandonment of agricultural lands and the
lack of regular fire prevention forest management [50]. Moreover, the suppression of these wildfires
was made difficult due to their almost synchronic occurrence (same days of July and August) [50].
The impacted stands were mainly conifer plantations pure or mixed with indigenous broadleaved
woodlands classified into three different forest types of the regional forest inventories. Hardwood
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stands were dominated by pubescent oak (Quercus pubescens) (Po) or by mixed manna ash (Fraxinus
ornus) and European hop-hornbeam (Ostrya carpinifolia) (Ma). European black pine (Pinus nigra) (Pp)
dominated conifer plantations. Climate and landform similarities between the study areas (Table 1)
were highlighted to support the comparison of post-fire recovery dynamics between these sites.
Climatic data were extracted from WorldClim Version 2 grids with a spatial resolution of ~1 km2 [52],
whereas geomorphological features were derived from the 10-m resolution TINITALY DEM [53].

Table 1. Wildfire information, and climate and landform properties of the four study areas:
Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM).

RF LA NA RM

Fire start date 21 July 2007 9 August 2007 14 July 2007 23 July 2007
Overall burned area (hectares) 2753 530 6939 1823
Forest burned area (hectares) 1860 391 1896 427

Annual mean temperature (◦C) 12.4 11 11.8 10.9
Annual mean precipitation (mm) 820.9 856.7 827.1 743.9

Mean altitude (m) ± SD 628 ± 146 977 ± 104 787 ± 206 933 ± 206
Mean slope (◦) ± SD 28 ± 9 21 ± 8 17 ± 9 17 ± 9

Mean roughness index 23 12 9 10
Heat Load Index ± SD 0.76 ± 0.09 0.79 ± 0.05 0.74 ± 0.06 0.76 ± 0.07

2.2. Dataset and Preprocessing

Forest regeneration dynamics were explored using a series of Landsat annual image composites at
one-year intervals between 2001 and 2018, resulting in a total period of 18 years (seven pre-fire and
11 post-fire) for each study area. Annual composites were produced with priority to images acquired
closest to the day of peak (DOP) of the same growing season and with the highest percentage of valid
pixels (i.e., not contaminated by clouds/cloud shadows or with missing values). The selected DOP
corresponds to 12 July in non-leap years (day-of-year 197) and was derived from the EVI2 Long-Term
Average Phenology (from 1980 to 2010) available at the Vegetation Index and Phenology Lab Data
Explorer [54], which contains historical annual phenology parameters obtained from AVHRR and
MODIS sensors for homogeneous vegetation clusters [55]. The least cloud-contaminated acquisitions
available for the study areas in the growing season (1 June–31 August) were selected to produce annual
composites. The dataset includes Landsat TM, ETM+, and OLI images acquired in the WRS-2 Path/Row
190/30, 190/31, and 191/30 (details are provided in Table S1, Supplementary Materials). The majority
of Landsat data was provided by the USGS Earth Resources Observation and Science (EROS) Center
Science Processing Architecture (ESPA) On-Demand Interface [56] processed in surface reflectance
(Level-2 Science Products). Surface reflectance products of Landsat 5 TM and Landsat 7 ETM+ were
generated using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [57].
Instead, Landsat 8 OLI processing was based on the Landsat Surface Reflectance Code (LaSRC) [58].
Two Landsat 5 TM scenes acquired in 2008 (WRS-2 Path/Row 190/31) were available only in the ESA
Landsat archive [59] at Level-1T (radiometrically calibrated and orthorectified using ground control
points and DEM). They were co-registered with USGS scenes using the tool AROSICS [60] and further
converted to surface reflectance using the 6S radiative transfer model [61] employed by LEDAPS and
implemented in GRASS GIS 7.2 [62,63]. Clouds and cloud shadows were masked with the function of
mask method [64,65]. As Landsat 8 OLI images were about one-third of all images used in this study,
they were calibrated to those acquired by Landsat 7 ETM+ through gain and offset coefficients [66].

2.3. Fire Perimeter and Burn Severity Assessment

Fire perimeter and the spatial distribution of burn severity patterns within each study area were
assessed using the Relative difference Normalized Burn Ratio (RdNBR) [67]. Single Landsat TM
summer images of 2006 and 2008 were employed to compute RdNBR as described by Equations (1)–(3).
Table S2 (Supplementary Materials) provides detailed information on these images.
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NBR =
(NIR− SWIR2)
(NIR + SWIR2)

(1)

dNBR =
((

NBRpre f ire − NBRpost f ire

)
∗ 1000

)
− dNBRo f f set (2)

RdNBR =
dNBR√∣∣∣NBRpre f ire

∣∣∣ (3)

The evaluation of spectral changes caused by the fire on forest ecosystems during the following
vegetative season is defined as an extended assessment of remotely sensed burn severity and included
first- and second-order effects caused by fire [68–70]. Because burn severity assessment was not
performed through field surveys, the thresholds defined by Miller and Thode [67] were used to define
burn severity classes (low, moderate, and high) of the RdNBR. The dNBR offset was computed by
averaging dNBR values within undisturbed forest pixels which were delineated for each study area
(Section 2.5) to minimize changes in reflectance not caused by fire [67,68,71]. Fire perimeters of each
study area were corrected through on-screen digitization of burned pixels in post-fire Landsat TM
images (2008) using false-color composites (RGB = SWIR2, NIR, Red), as misclassification between
unchanged and low-severity pixels occurred frequently.

2.4. Area of Interest within Fire Perimeters

Regeneration dynamics were investigated in those groups of burned pixels containing at least
10% of tree canopy fractional cover before fires and that were larger than 0.5 ha. These parameters
were drawn from the definition of forest provided by the Food and Agriculture Organization (FAO) of
the United Nations [72]. Pre-fire tree canopy fractional cover within each fire perimeter was computed
using pre-fire forest/non-forest land-cover maps obtained from the classification of high-resolution
(0.5 m) RGB aerial orthophotos provided by the Italian Agency for payments in agriculture (AGEA)
(Table 2) through an object-oriented classification approach using Trimble eCognition Developer
software. Firstly, a multi-resolution bottom-up segmentation [73,74] was applied in order to aggregate
groups of tree canopies by repeatedly increasing the scale factor toward the stand scale. Secondly,
the support vector machine (SVM) classifier [75,76] was applied to the coarser-scale objects using
the radial basis function (RBF) kernel with tuning parameters “cost” (C) and gamma proposed by
Qian et al. [77]. On-screen validation of 200 randomly distributed points per forest/non-forest class
(400 points for each study area) was performed using orthophotos as ground truth reference (Table 2).

Table 2. Italian Agency for payments in agriculture (AGEA) orthophoto acquisition dates, accuracy
assessment metrics of forest/non-forest cover maps, and percentage of forest cover within fire perimeters.
Accuracy metrics: producer’s accuracy (PA), user’s accuracy (UA), overall accuracy, and K statistic
values for each study area (Roccafluvione—RF, L’Aquila—LA, Navelli—NA, Roccamorice—RM).

RF LA NA RM

Acquisition dates 18 June 2007
14 May 2007
9 September

2007

14 May 2007
18 June 2007

21 June 2007
9 July 2007

PA forest cover (%) 95.68 99.45 97.08 94.44
PA non-forest cover (%) 89.3 91.71 93.46 93.56

UA forest cover (%) 88.5 91 93.2 93.5
UA non-forest cover (%) 96 99.5 97.2 94.5

Overall accuracy (%) 92.25 95.25% 95.2% 94%
Kappa coefficient 0.845 0.905 0.904 0.88

Classified forest cover (%) 85.75 73.38 39.11 32.68
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2.5. Spectral Vegetation Indices

Post-fire temporal trajectories of burned forests were assessed using five spectral vegetation
indices (SVI): NDVI (Normalized Difference Vegetation Index) [78], NDMI (Normalized Difference
Moisture Index) [35], NBR (Normalized Burn Ratio) [36], NBR2 (Normalized Burn Ratio 2) [38,39,79],
and FRI2 (Forest Recovery Index 2), which is a revised version of FRI (Forest Recovery Index) [41].
They were used with Landsat imagery both for the detection of forest disturbances including fires and
to monitor post-disturbance forest dynamics. NDVI and NDMI, and NBR and NBR2 were computed
as shown in Equations (4) and (5), and Equation (1) and (6), respectively.

NDVI =
(NIR− Red)
(NIR + Red)

(4)

NDMI =
(NIR− SWIR1)
(NIR + WIR1)

(5)

NBR =
(SWIR1− SWIR2)
(SWIR1 + SWIR2)

(6)

Like FRI, FRI2 (Equation (7)) is the reciprocal of IFZ [80] (Equation (8)). Adding 1 to IFZ at the
denominator avoided obtaining wild values when IFZ was close to 0 and constrained FRI2 to the range
between 0 and 1.

FRI2 =
1

(IFZ + 1)
(7)

IFZ =

√√√√ 1
NB

N

∑
i=1

(
bi − bi

SDi

)2

(8)

In Equation (8), bi is the spectral value of the pixel in band i, bi and SDi are the mean and standard
deviation obtained from forest samples in band i, and NB is the number of spectral bands. The Red,
SWIR1, and SWIR2 Landsat bands were employed due to their sensitivity to forest cover changes [40].
Yearly means and standard deviations of forest cover were extracted from a forest mask with
boundaries outlined by increasing fire perimeter extents of 4 km (Euclidean distance). Specifically,
this mask was built selecting those Landsat pixels with a tree canopy fractional cover higher than 90%
exhibiting a stable behavior over time. Because pre-fire tree canopy fractional cover was available only
within the fire perimeters (Section 2.4), it was estimated outside them using a Random Forest model at
the Landsat pixel scale. Pre-fire tree canopy cover maps within the fire perimeters were employed to
train the model and the Landsat data (six spectral bands acquired during pre-fire dates in 2007 and its
derived SVIs) were used as predictor variables. At last, stable forest pixels were outlined by selecting
those with an NBR maximum range lower than 0.15 for the entire analysis interval (2001–2018).

2.6. Field Data and SVI Correlation

Tree canopy fractional cover including both dominant and overtopped trees was visually assessed
in the field (study area RF) during the summer of 2017 (June and July) using 38 circular plots with 30-m
diameter. Centroids of the plots were located close to the center of each Landsat image pixel using
a Trimble Juno 3B handheld GPS and a Trimble Pro 6T GNSS receiver having sub-metric horizontal
accuracy. SVIs values were extracted using a bilinear interpolation method to limit mismatches
between Landsat pixels centroids location and field plots as suggested by Parks et al. [71]. Tree canopy
fractional cover was correlated with the SVIs obtained from the image composite of 2017 using
Pearson’s correlation test.



Remote Sens. 2019, 11, 308 7 of 18

2.7. Post-Fire Recovery Metrics and Temporal Trajectories

A Relative Difference SVI (RDSVI) index was computed for each post-fire SVI as shown in
Equation (9), using an algorithm similar to the ones proposed for the burn severity detection [67,71].
Forest spectral recovery causes a decrease in RDSVI values through time since the difference between
pre-fire and post-fire decreases as well. The relativization of SVIs allowed for the comparison between
recovery dynamics occurring under different ecological conditions such as pre-fire canopy cover
density and different forest types. The median pixel value from 2001 to 2007 for each SVI was taken
as reference for the pre-fire condition. The averaged difference between pre-fire median and annual
post-fire SVIs was extracted from undisturbed forest cover (Section 2.4) to account for inter-annual
changes of SVIs. These changes can be attributed to external factors such as phenology and sun angle,
similarly to the offset employed for burn severity assessment (Section 2.3). This offset was applied to
normalized SVIs (NDVI, NDMI, NBR, and NBR2) as FRI2 is already obtained using yearly spectral
values of undisturbed forest cover.

RDSVI =

((
SVIpre f ire median − SVInth post f ire year

)
− SVIo f f set

)
SVIpre f ire median

(9)

Post-fire forest spectral trajectories were assessed by averaging RDSVI values extracted from a set of
sampling points located in different burn severity classes and forest types within the area of interest.
These points were randomly distributed at a minimum distance of 200 meters in order to reduce the
influence of spatial autocorrelation. Global Moran’s I test was performed using incremental distances
to determine this lowest one. The number of sampling points varied among study areas from 491 to 77,
according to the extent of each wildfire.

2.8. Statistical Analysis of Recovery Trends

The non-parametric Theil–Sen (TS) slope estimator of linear regression [81,82] was employed to
assess pixel-wise changes of RDSVI occurring within the area of interest from 2010 to 2018. The time
frame for the analyses started on the third year since fire occurrence. The early post-fire succession
in Mediterranean ecosystems usually features a prompt colonization of annual herbs and perennial
woody shrubs [83]. This could yield large increases of SVIs [18,21,25], biasing the trend of forest
spectral recovery. The TS slope estimator was chosen as it is insensitive to up to 29% of outliers [84,85]
and it proved to be effective in detecting SVI trends of forest ecosystems [85–87]. This method involves
computing the median of all the slopes between observation values at all pairwise time steps for a
total of n(n − 1)/2 slopes. Equation (10) displays how it is computed for observations Yj and Yi taken
at time tj and ti.

TS slope = median

(
Yj −Yi

tj − ti

)
; i < j, ti 6= tj (10)

The intercept of the linear trend was computed with the Conover Equation (11) [88],

intercept = median(Y)− TS slope×median(t) (11)

where median(Y) and median(t) are the medians of observations (Y) and of the time-series length
(t). The significance of the TS slope is commonly tested using the rank-based Mann–Kendall (MK)
test [84,89–91] through which the existence of a monotonic trend is evaluated, without any assumption
regarding its shape. The direction and the power of a monotonic trend is expressed by Kendall’s rank
correlation coefficient (tau) (Equation (12)) [89,91],

τ =
2S

n(n− 1)
(12)
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where −1 ≤ τ ≤ 1. The test statistic S proposed by Mann [89] depends on a series of n repeated
observations taken over equal time intervals (Equation (13)).

S =
n−1

∑
i=1

n

∑
j=i+1


−1, i f Yj −Yi < 0
0, i f Yj −Yi = 0
1, i f Yj −Yi > 0

(13)

The MK test assumes the observations to be a set of statistically independent variables [84,92] and the
presence of serial correlation in SVI time series can lead to overestimating the portion of significant
trends [84,93]. Because it appeared to be likely that changes in SVIs observed in Landsat time series
are influenced by the underlying post-fire forest recovery process, it is worth considering the existence
of a lag-one positive serial correlation (e.g., high observations may tend to follow high observations).
Lag-one serial correlation was, thus, removed prior to applying the MK test using the trend-free
pre-whitening procedure described in Yue et al. [91] and implemented in the R (R Core Team 2018)
package “zyp” [94]. Regression coefficients were used to predict the time required by each SVI to
return to its pre-fire spectral values by setting the value of RDSVI equal to zero. Only those pixels
displaying jointly a significant negative monotonic trend (α-level < 0.01) in all of the SVIs in the MK
test were considered reliable to assess recovery times.

3. Results

3.1. Relationship between Field Data and Landsat-Derived SVIs

The Pearson’s correlation test, employed to explore the linear relationship between tree canopy
fractional cover available from field surveys and Landsat SVIs, produced slightly different values
depending on the SVI (Figure 2). NDVI and FRI2 attained the lowest (0.66) and the highest (0.72)
values of Pearson’s r, respectively, whereas NDMI, NBR, and NBR2 showed identical results.
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3.2. Temporal Trajectories of Post-Fire RDSVIs

Post-fire temporal trajectories of RDSVIs displayed that forest spectral recovery occurred as the
difference of each SVI with its pre-fire value was reduced through the years (Figure 3). Different
recovery patterns occurred between SVIs (rows in Figure 3) and between study areas, burn severity
classes, and forest types (columns in Figure 3). SVIs exhibited noticeable differences concerning the
variation range, the short-term post-fire behavior (three years), and inter-annual fluctuations. A wider
range of values was observed in NDMI, NBR, and FRI2 compared to NBR2 and NDVI. The short-term
post-fire behavior of normalized SVIs (NDVI, NDMI, NBR, and NBR2) displayed a sharp recovery,
whereas FRI2 highlighted a more constant recovery rate through time. Inter-annual fluctuations of
NDVI, NBR2, and FRI2 were less pronounced compared to those of NDMI and NBR. Recovery patterns
of study areas RF and RM were similar through the entire time series as observed between study areas
NA and LA (Figure 3a). Patterns of temporal trajectories at different burn severity classes highlighted
that forest spectral recovery in the low and moderate class was generally at an advanced stage at
the end of the time series (Figure 3b). Temporal trajectories at different forest types highlighted that
broadleaved-dominated stands achieved slightly higher spectral recovery than those dominated by
conifers (Figure 3c).
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Figure 3. Post-fire temporal trajectories of Relative Difference SVIs (RDSVIs) (y-axis) at one-year
intervals (x-axis) divided by study area (a), burn severity (b), and forest type (c). Years are expressed
relative to fire occurrence. Study areas: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and
Roccamorice (RM). Forest types: Po (pubescent oak), Pp (pine plantations), and Ma (manna ash
and European hop-hornbeam).

3.3. Percentage of SVI Recovered Pixels

The percentage of recovered pixels for each SVI was computed considering pixels that completely
recovered their pre-fire values by the 11th year after fire occurrence. They were aggregated by study
area, burn severity class (Figure 4a), and forest type (Figure 4b). On average, NDVI displayed the
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highest percentage (38.26%) compared to NDMI (28.83%), NBR (27.54%), NBR2 (26.23%), and FRI2
(24.92%). Differences between NDVI and the other SVIs increased for burn severity classes. In the
high-burn-severity class, NDVI recovered 12.34% of pixels, whereas the average over NDMI, NBR,
NBR2, and FRI2 was 5.5% (Figure 4a). Moreover, FRI2 displayed a larger separation between the
recovered pixel percentage in the low class compared to the moderate and the high classes. Notably,
the percentage of NDVI recovered pixels in Pp forests was higher (35.35%) compared to the mean
value of the other SVIs (19.96%). The comparison between burn severity classes highlighted relevant
differences of recovered pixel percentages, since the SVI averages were 50.36%, 29.42%, and 6.87% in
the low, moderate, and high class, respectively. Within forest types, averaged recovery percentage of
Po (32.03%) was higher than the averages of Pp (23.04%) and Ma (18.67%) (Figure 4b).
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3.4. Long-Term Trends of RDSVIs

Long-term forest spectral recovery was evaluated through the median value of time required
to attain pre-fire spectral conditions (Table 3) and by assessing the proportion of negative (τ < 0) or
positive (τ > 0) significant trends (p < 0.01) to the total amount of detected trends at the pixel level
(Table 4). The number of pixels displaying a significant negative simultaneous trend of all the SVIs was
2385 (214.65 ha). Among normalized SVIs, differences of the predicted recovery time length within
each burn severity class and each forest type were very limited considering that the largest one was in
pine plantations, and spanned over 1.27 years. The recovery time instead varied among different fire
severity classes and ranged from 8.56 years of NDMI in the low-burn-severity class to 12.20 years of
NBR2 in the high-severity class. As for forest types, years ranged between 9.74 for NDVI and 12.36
for NBR2 in Po and Ma, respectively. FRI2 instead required a longer time to attain spectral recovery
compared to normalized SVIs. The difference in recovery time between FRI2 and the average of the
normalized SVIs, expressed as the absolute value of years and as the relative difference, ranged from
1.3 years (14.7%) in the low-burn-severity class to 6.2 years (51.8%) in the high-burn-severity class.
Among forest types, these differences varied from two years (19.5%) in Po to 4.9 years (45.9%) in
Pp. The spatial distribution of Kendall’s tau provided for each study area (Figure 5) depicts where
recovering (green) or declining trends (red) were strictly monotonic and, thus, statistically significant
for the MK test, depending upon each RDSVI. Considering those pixels exhibiting a recovery trend
(negative tau), the percentage of significant ones was noticeably different both for SVIs and study
areas (Table 4). Over the four study areas, FRI2 attained the lowest mean percentage of significant
recovery trends (9.04%) compared to normalized SVIs (22.31%). In particular, study areas RM and LA
exhibited the lowest percentage of significant recovering trends with FRI2, while this difference was
less evident considering normalized SVIs. Moreover, FRI2 displayed a noticeable amount of pixels
with a significant declining trend in the study area LA (5.6%) which was higher than those with a
recovery trend (3.67%) (Figure 5).
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Table 3. Median values and interquartile ranges (IQRs) of years required to complete forest spectral
recovery within burn severity classes and forest types by pixels with a significant recovery trend of
each Relative Difference spectral vegetation index (RDSVI) (p < 0.01). Po: pubescent oak; Pp: pine
plantations; Ma: mixed manna ash and European hop-hornbeam.

NDVI (IQR) NDMI (IQR) NBR (IQR) NBR2 (IQR) FRI2 (IQR)

Burn
severity

Low 8.99 (3.82) 8.56 (3.68) 8.85 (3.67) 8.93 (4.19) 10.13 (6.85)
Moderate 9.88 (3.27) 9.70 (3.23) 10.03 (3.02) 9.93 (3.75) 13.38 (10)

High 12.02 (2.53) 11.68 (3.19) 11.93 (2.39) 12.20 (2.84) 18.15 (14.13)

Forest
type

Po 9.74 (3.49) 11.01 (4.42) 10.59 (3.49) 9.98 (3.99) 12.35 (11.54)
Pp 11.1 (3.25) 10.08 (2.89) 10.73 (2.80) 11.12 (3.33) 15.69 (11.39)
Ma 12.18 (3) 11.53 (3.56) 11.85 (2.73) 12.36 (3.44) 15.58 (13.32)

Table 4. Percentage of pixels with a significant negative trend (p < 0.01) of RDSVIs with respect to the
number of pixels within the area of interest of the study areas. Study areas are Roccafluvione (RF),
L’Aquila (LA), Navelli (NA), and Roccamorice (RM).

Study Area NDVI NDMI NBR NBR2 FRI2

Percentage
with a

negative
trend (τ < 0)

RF 26.86 36.48 39.88 38.42 18.24
LA 19.49 16.04 21.97 27.92 3.67
NA 14.87 18.9 26.99 19.06 10.9
RM 7.56 10.65 17.07 14.87 3.35
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Figure 5. Maps of Kendall’s tau rank correlation coefficient relative to RDSVI trends obtained with
the Mann–Kendall test. Kendall’s tau values range from 1 to −1. Positive values of tau are related to
declining trends, whereas negative trends highlight spectral recovery. Study areas are Roccafluvione
(RF), Navelli (NA), Roccamorice (RM), and L’Aquila (LA).
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4. Discussion

4.1. Main Differences between SVIs When Tracking Forest Spectral Recovery Dynamics

Post-fire forest spectral recovery observed in four landscapes of the central Apennines is an
ongoing heterogeneous process described by the decreasing patterns of the recovery metric (RDSVI)
computed with all the SVIs. Nevertheless, substantial differences between the temporal patterns of the
SVIs were observed. The different variation range between normalized SVIs is related to the sensitivity
of each Landsat band to early post-fire changes [69,95] in terms of magnitude and direction. In this
sense, post-fire variations were found to be higher in those SVIs contrasting one of the two SWIR
bands and the NIR band (NDMI, NBR) compared to those using the Red and NIR bands (NDVI) or
both the SWIR bands (NBR2) (Figure 3). The ability of normalized SVIs to track the rapid spectral
recovery occurring soon after the fire seems related to their sensitivity toward non-arboreal vegetation
dynamics rather than to tree canopy cover development, as observed in comparisons with IFZ [42]
and FRI [41]. The inter-annual variability of NDVI, NDMI, and NBR was higher respect to that of
NBR2 and FRI2. Since sun angle effects should be minimized by the compositing algorithm, which
prioritized images acquired closer to a reference Julian day, inter-annual fluctuations seem more
influenced by phenological and precipitation effects. As observed by Song et al. [17], phenology
variations in young stands affect the red, the near-infrared, and the shortwave-infrared bands, which
are the ones employed by NDVI, NDMI, and NBR. On the contrary, NBR2 seems less sensitive to
variations due to precipitation effects [38] and FRI2 also minimized inter-annual fluctuations through
yearly spectral statistics of dense forest cover, displaying a linear behavior through time. The higher
percentage of recovered pixels achieved by NDVI at the 11th post-fire year compared to the other
SVIs (Figure 4) confirmed its broad sensitivity to the amount of photosynthetically active vegetation
(herbs, forbs, shrubs, and tree regeneration) [23,96]. On the contrary, SVIs based on the SWIR bands
were characterized by a low percentage of recovered pixels, indicating their higher sensitivity both
to fire damages on forest cover and to the following forest structure recovery as observed in several
studies on post-fire forest recovery monitoring using optical remote sensing [23,24,34]. Results from
field-based measurements indicated FRI2 as the most correlated with tree canopy fractional cover.

4.2. Forest Spectral Recovery of Different Burn Severity Classes and Forest Types

Although thresholds employed for burn severity classes were not meant to be used in these study
areas, post-fire spectral recovery differences were clearly recognizable at increasing burn severity
degrees. This distinction was observed both in the temporal trajectories of RDSVIs (Figure 3b)
and in the pixel recovery percentages at the 11th post-fire year (Figure 4a). Also, these results
highlighted that there was slightly more similarity between the recovery achieved at the moderate-
and high-burn-severity classes by FRI2 compared to that attained with normalized SVIs. Among the
latter, it was also observed that SWIR-based SVIs (NDMI, NBR, and NBR2) achieved considerably
lower recovery compared to that of NDVI (Figure 4a). Since serious damages likely occurred to the
over-story layers at the moderate- and high-burn-severity classes, this seemed to greatly influence
the recovery of FRI2 and SWIR-based normalized SVIs. This result suggests that primarily FRI2
and secondly SWIR-based normalized SVIs are sensitive to the gradual development of tree canopy
cover. Similar results were already observed through the correlation between field measurements of
burn severity and several differenced (post-fire minus pre-fire) SVIs at multiple time intervals [42].
Differences observed in the recovery of SVIs between forest types 11 years after fire occurrence seemed
to be mainly driven by the magnitude of spectral changes detected soon after the fires (Figure 3c).

4.3. Forest Spectral Recovery Time Derived from Monotonic Trends

Modeling trends of the SVI recovery metrics in a spatially explicit manner by coupling
Mann–Kendall and Theil–Sen methods allowed for the investigation of the rate of change at those
pixels with a monotonically decreasing trend over time. Spectral trends at those locations can be
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confidently attributed to the development of a post-fire secondary succession [86,87,97]. In this study,
normalized SVIs exhibited spectral recovery periods of 12 years or less. However, the periods required
by FRI2 to recover were up to 50% longer than normalized SVIs, particularly in the high-burn-severity
class. This suggested that FRI2 is more suitable for tracking long-term forest recovery which results in
slow rates of spectral changes due to the re-establishment of pre-fire tree canopy cover (sensu Frolking
2009) [8]. The sensitivity of IFZ and FRI to the advanced stages of the forest succession was observed
in other studies addressing post-fire forest recovery assessment through different SVIs [41,42] and
using IFZ alone [43]. The results obtained from the prediction of spectral recovery time were partly in
disagreement with those of recovery percentages (Figure 4) as, in this latter analysis, few differences
between normalized SVIs were observed. This can be explained because the number of pixels used to
predict spectral recovery time was 2385, equal to 3.4% of the number of pixels involved in the analysis
(69,444). These pixels were selected applying two major constraints to the trends of the recovery metric
of SVIs. It was required that the RDSVI trends were significant in the MK test (p < 0.01) and that this
was concurrently true at the same location. Despite the limited number of pixels, this approach allowed
for the comparison between the recovery time of SVIs integrating spatial information. The resulting
number of pixels was likely influenced by the lower percentage of significant trends of FRI2 compared
to that of normalized SVIs (Table 4). Several factors could have limited the percentage of FRI2 pixels
having a significant recovery trend in the MK test. Among these factors, FRI showed sensitivity to
the delay of post-fire mortality of damaged tree crowns [41]. Thus, a subtle decline in tree canopies
throughout the analyzed period could produce significant declining trends of the FRI2 recovery metrics.
This was particularly relevant in the LA study area (Figure 5), where the percentage of significant
declining trends was 5.6% of all the forest burned pixels, which was slightly higher than the percentage
of recovery trends (3.67%). Also, it is arguable that delayed mortality of tree crowns occurring during
the analysis period produced a shift in the direction of the spectral changes, resulting in statistically
non-significant trends of the FRI2 recovery metrics. These factors highlighted that temporal trajectories
of FRI2 at early stages of post-fire forest succession are generally non-monotonic compared to that of
normalized SVIs. Hence, it is advisable that the assessment of significant trends with the MK test at
the pixel level be performed considering the advanced stages of forest recovery. Moreover, benefits
could come from the use of a contextual approach, exploiting the information of neighboring trends to
assess their monotonicity with the MK test [84].

5. Conclusions

Assessing post-fire forest regeneration dynamics by means of multi-temporal change detection
analysis with Landsat imagery and SVIs allowed exploring different temporal scales of this process.
In order to better estimate the future trajectories of forest recovery, it is crucial to understand which
SVI can serve better to achieve this scope. Modeling changes of SVIs over a sufficient period with
a robust regression approach can effectively address this matter. This study highlighted that the
enhanced FRI2 ability to track long-term forest regeneration dynamics could be associated with
ecologically meaningful results regarding the length of the forest recovery process and referring to the
re-establishment of a continuous canopy cover over the burned areas. Therefore, the choice of the most
suitable SVI for post-fire vegetation recovery assessment should be based upon the existing type of
vegetation cover and the appropriate timescale. Early to medium stages of the post-fire forest secondary
succession can be monitored using a normalized index employing the SWIR bands. However, at a time
scale wider than 10–12 years, FRI2 provided reliable results through linear modeling extrapolation.
Further research is needed to test its suitability at advanced stages of post-fire forest recovery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/3/308/s1:
Table S1: Detailed list of the Landsat data used in this study; Table S2: Landsat images used to map burn severity
in the four study areas: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM).
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