Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison
Abstract
:1. Introduction
2. Methods
2.1. Satellite Data
2.2. Ground-Based Sky Brightness Measurements
2.3. Pollution Data
2.4. Ground Inspections
3. Results
3.1. Satellite Data
3.2. Ground-Based Data
3.2.1. Measurements Comparing Two Time Intervals on Different Nights
3.2.2. Evolution of Measurements during the Night. Average Nights before and during Lockdown
3.2.3. Evolution of Air Pollution and Sky Brightness
SQM (no filter) | |
SQM (filter V) | |
SQM (filter B) | |
(: sky brightness in mag/arcsec; x: PM10 particle concentration in μg/m3) |
SQM (no filter), prior to lockdown: | |
SQM (no filter), during lockdown: | |
SQM (filter B), prior to lockdown: | |
SQM (filter B), during lockdown: | |
(: sky brightness in mag/arcsec; x: PM10 particle concentration in μg/m; t: time as a fraction of a Julian day. See Table A6, Table A7, Table A8 and Table A9 (Appendix C) for errors, residuals and F-statistic) |
4. Comparison with Other Studies
5. Discussion
5.1. Correlation of Sky Brightness and PM10 Particle Abundance
5.2. Disentangling the Effect of the Net Reduction in Light Emission from the Effect of the Decreased Aerosol Content
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Measurements of the Observatory of La Sagra
Appendix B. Spearman’S Correlation Coefficients
Time | PM10 | NO | SQM | SQMB | SQMV | B.V | |
---|---|---|---|---|---|---|---|
Time | 1 | −0.65 | −0.62 | 0.83 | 0.85 | 0.8 | 0.65 |
PM10 | −0.65 | 1 | 0.69 | −0.84 | −0.77 | −0.84 | −0.44 |
NO | −0.62 | 0.69 | 1 | −0.69 | −0.81 | −0.68 | −0.77 |
SQM | 0.83 | −0.84 | −0.69 | 1 | 0.92 | 1 | 0.53 |
SQMB | 0.85 | −0.77 | −0.81 | 0.92 | 1 | 0.91 | 0.78 |
SQMV | 0.8 | −0.84 | −0.68 | 1 | 0.91 | 1 | 0.51 |
B.V | 0.65 | −0.44 | −0.77 | 0.53 | 0.78 | 0.51 | 1 |
Time | PM10 | NO | astmon.v | astmon.b | astmon.r | |
---|---|---|---|---|---|---|
Time | 1 | −0.61 | −0.54 | 0.76 | 0.83 | 0.73 |
PM10 | −0.61 | 1 | 0.62 | −0.6 | −0.64 | −0.57 |
NO | −0.54 | 0.62 | 1 | −0.54 | −0.66 | −0.51 |
astmon.v | 0.76 | −0.6 | −0.54 | 1 | 0.8 | 0.95 |
astmon.b | 0.83 | −0.64 | −0.66 | 0.8 | 1 | 0.76 |
astmon.r | 0.73 | −0.57 | −0.51 | 0.95 | 0.76 | 1 |
Appendix C. Fits of Lineal Models
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 18.908003 | 0.024691 | 765.78 | <2 |
PM10 | −0.017914 | 0.000801 | −22.36 | <2 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.37304 | −0.09476 | 0.02507 | 0.08279 | 0.46707 |
Residual standard error: 0.1401 on 135 degrees of freedom. Multiple R-squared: 0.7873, Adjusted R-squared: 0.7857, F-statistic: 499.8 on 1 and 135 DF, p-value: |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 18.615162 | 0.023941 | 777.54 | <2 |
PM10 | −0.017554 | 0.000777 | −22.59 | <2 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.34851 | −0.09898 | 0.01589 | 0.09059 | 0.46167 |
Residual standard error: 0.1359 on 135 degrees of freedom. Multiple R-squared: 0.7908, Adjusted R-squared: 0.7893, F-statistic: 510.4 on 1 and 135 DF, p-value: |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 20.022582 | 0.036769 | 544.55 | <2 |
PM10 | −0.022660 | 0.001193 | −18.99 | <2 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.54947 | −0.11564 | 0.01529 | 0.14125 | 0.47185 |
Residual standard error: 0.2087 on 135 degrees of freedom. Multiple R-squared: 0.7276, Adjusted R-squared: 0.7256, F-statistic: 360.6 on 1 and 135 DF, p-value: |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 17.792510 | 0.144242 | 123.352 | <2 |
PM10 | −0.009709 | 0.001400 | −6.936 | |
Time | 1.792745 | 0.224364 | 7.990 | |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.27534 | −0.06539 | 0.00570 | 0.07555 | 0.33540 |
Residual standard error: 0.1161 on 66 degrees of freedom. Multiple R-squared: 0.8851, Adjusted R-squared: 0.8816, F-statistic: 254.2 on 2 and 66 DF, p-value: |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 18.286660 | 0.088734 | 206.083 | <2 |
PM10 | −0.009353 | 0.001365 | −6.853 | |
Time | 0.936452 | 0.144649 | 6.474 | |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.244612 | −0.037644 | 0.003376 | 0.069018 | 0.140332 |
Residual standard error: 0.08546 on 65 degrees of freedom. Multiple R-squared: 0.7253, Adjusted R-squared: 0.7168, F-statistic: 85.79 on 2 and 65 DF, p-value: <2.2 |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 18.194792 | 0.158405 | 114.86 | <2 |
PM10 | −0.008363 | 0.001537 | −5.44 | |
Time | 2.762678 | 0.246395 | 11.21 | <2 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.28917 | −0.08599 | 0.00845 | 0.07619 | 0.37138 |
Residual standard error: 0.1275 on 66 degrees of freedom. Multiple R-squared: 0.9067, Adjusted R-squared: 0.9039, F-statistic: 320.9 on 2 and 66 DF, p-value: <2.2 |
Coefficients: | Estimate | Std. Error | t Value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 18.865195 | 0.076974 | 245.084 | <2 |
PM10 | −0.003348 | 0.001184 | −2.828 | 0.00623 |
Time | 1.711520 | 0.125479 | 13.640 | <2 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−0.15142 | −0.06566 | 0.02261 | 0.05481 | 0.11129 |
Residual standard error: 0.07413 on 65 degrees of freedom. Multiple R-squared: 0.8226, Adjusted R-squared: 0.8171, F-statistic: 150.7 on 2 and 65 DF, p-value: <2.2 |
References
- NASA. Airborne Particle Levels Plummet in Northern India. 2020. Available online: https://earthobservatory.nasa.gov/images/146596/airborne-particle-levels-plummet-in-northern-india?src=nha (accessed on 16 July 2020).
- NASA. NASA Satellite Data Show 30 Percent Drop In Air Pollution Over Northeast U.S. 2020. Available online: https://www.nasa.gov/feature/goddard/2020/drop-in-air-pollution-over-northeast (accessed on 16 July 2020).
- Bui, Q.; Badger, E. The Coronavirus Quieted City Noise. Listen to What’s Left. 2020. Available online: https://www.nytimes.com/interactive/2020/05/22/upshot/coronavirus-quiet-city-noise.html (accessed on 16 July 2020).
- Xiao, H.; Eilon, Z.; Ji, C.; Tanimoto, T. COVID-19 societal response captured by seismic noise in China and Italy. arXiv 2020, arXiv:2005.00131. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D. Night on Earth: Mapping decadal changes of anthropogenic night light in Asia. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Rich, C.; Longcore, T. Ecological Consequences of Artificial Night Lighting; Island Press: Washington, WA, USA, 2013. [Google Scholar]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.S.; Song, J.Y.; Joo, E.Y.; Lee, H.J.; Lee, E.; Lee, S.k.; Jung, K.Y. Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study. Chronobiol. Int. 2016, 33, 301–314. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef] [PubMed]
- Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- NASA. Gateway to Astronaut Photography of Earth. 2020. Available online: https://eol.jsc.nasa.gov/SearchPhotos/ (accessed on 20 May 2020).
- Cheung, S.L.; Pun, J.C.S.; So, C.W.; Shibata, Y.; Walker, C.E.; Agata, H. Globe at Night-Sky Brightness Monitoring Network. IAUGA 2015, 29, 2257516. [Google Scholar]
- Zamorano, J.; García, C.; Tapia, C.; de Miguel, A.S.; Pascual, S.; Gallego, J. Stars4all night sky brightness photometer. Int. J. Sustain. Light. 2016, 18, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.E.; Pompea, S.M.; Isbell, D. GLOBE at night 2.0: On the road toward IYA 2009. In EPO and a Changing World: Creating Linkages and Expanding Partnerships; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: Francisco, CA, USA, 2008; Volume 389, p. 423. [Google Scholar]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- AEMET. Informe Mensual Climatológico. 2020. Available online: http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/mensuales/2020/res_mens_clim_2020_04.pdf (accessed on 14 May 2020).
- Mandel, E.; Murray, S.S.; Roll, J. Funtools: FITS Users Need Tools. ASCL 2011, ascl–1112. Available online: http://ascl.net/1112.002 (accessed on 1 February 2020).
- Joye, W.; Mandel, E. New features of SAOImage DS9. In Astronomical Data Analysis Software and Systems XII; ASP Confenrece Series; Astronomical Society of the Pacific: Francisco, CA, USA, 2003; Volume 295, p. 489. [Google Scholar]
- Cinzano, P. Night Sky Photometry with Sky Quality Meter. Intern. Rep. ISTIL 2005, 9, 1–13. Available online: http://www.lightpollution.it/download/sqmreport.pdf (accessed on 1 February 2020).
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.; Tong, K.P.; Bennie, J.; Birriel, I.; Birriel, J.J.; Cool, A.; Danielsen, A.; Davies, T.W.; Outer, P.N.D.; Edwards, W.; et al. Worldwide variations in artificial skyglow. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Miguel, A.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 2017, 467, 2966–2979. [Google Scholar] [CrossRef]
- Unihedron. SQM-LE Operator’s Manual. 2020. Available online: https://www.unihedron.com (accessed on 1 February 2020).
- Bará, S.; Aubé, M.; Barentine, J.; Zamorano, J. Magnitude to luminance conversions and visual brightness of the night sky. Mon. Not. R. Astron. Soc. 2020, 493, 2429–2437. [Google Scholar] [CrossRef]
- Nievas Rosillo, M.; Zamorano, J. PySQM the UCM open source software to read, plot and store data from SQM photometers. Intern. Rep. UCM 2014, 1–8. Available online: https://eprints.ucm.es/25900/1/LICA_PySQM_v2.pdf (accessed on 15 January 2020).
- Aceituno, J.; Sánchez, S.F.; Aceituno, F.J.; Galadí-Enríquez, D.; Negro, J.J.; Soriguer, R.C.; Sanchez Gomez, G. An All-Sky Transmission Monitor: ASTMON. Publ. Astron. Soc. Pac. 2011, 123, 1076–1086. [Google Scholar] [CrossRef] [Green Version]
- Ayto.Granada. Calidad del Aire. 2020. Available online: https://www.granada.org/inet/calidadaire.nsf/icayear (accessed on 16 July 2020).
- Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Lan, H.; Flynn, C.; Lu, M.; Hu, T.; et al. Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sens. 2020, 12, 1576. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ghosh, T.; Hsu, F.C.; Zhizhin, M.; Bazilian, M. The Dimming of Lights in China during the COVID-19 Pandemic. Remote Sens. 2020, 12, 2851. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Hsu, F.C.; Zhizhin, M.; Bazilian, M. The Dimming of Lights in India during the COVID-19 Pandemic. Remote Sens. 2020, 12, 3289. [Google Scholar] [CrossRef]
- Kyba, C.; Ruhtz, T.; Fischer, J.; Hölker, F. Red is the new black: How the colour of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 2012, 425, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Miguel, A. Variacion Espacial, Temporal y Espectral de la Contaminacion Lumınica y Sus Fuentes: Metodologıa y Resultados. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2015. [Google Scholar] [CrossRef]
- Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.C.; Sánchez de Miguel, A.; Zamorano, J. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 2019, 51, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Miguel, A.; Gomez Castano, J.; Zamorano, J.; Pascual, S.; Angeles, M.; Cayuela, L.; Martin Martinez, G.; Challupner, P.; Kyba, C. Atlas of astronaut photos of Earth at night. Astron. Geophys. 2014, 55, 36. [Google Scholar]
- Stark, H.; Brown, S.S.; Wong, K.W.; Stutz, J.; Elvidge, C.D.; Pollack, I.B.; Ryerson, T.B.; Dube, W.P.; Wagner, N.L.; Parrish, D.D. City lights and urban air. Nat. Geosci. 2011, 4, 730–731. [Google Scholar] [CrossRef]
- Garstang, R. Light pollution modeling. Publ. Astron. Soc. Pac. 1991, 17, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Garstang, R. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 1986, 98, 364–375. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kundracik, F. Multi-wavelength radiometry of aerosols designed for more accurate night sky brightness predictions. J. Quant. Spectrosc. Radiat. Transf. 2020, 250, 106998. [Google Scholar] [CrossRef]
- Kyba, C.C.; Kuester, T.; Sánchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Miguel, A.S.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A. Pmisson/COVID-19VIIRS: COVID-19 April Variations. 2020. Available online: https://doi.org/10.5281/zenodo.4343646 (accessed on 10 November 2020). [CrossRef]
- Coque, A.; Lucas, A. Datos asociados a la atenuación de Alumbrados públicos en A Coruña durante confinamiento Covid 2020. Zenodo 2020. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F. Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. [Google Scholar] [CrossRef]
- Kyba, C.; Ruby, A.; Kuechly, H.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 2020. [Google Scholar] [CrossRef]
- Garstang, R. Predictions of seasonal variations in night sky brightness. Observatory 1988, 108, 159–161. [Google Scholar]
- Duriscoe, D.M. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Publ. Astron. Soc. Pac. 2013, 125, 1370–1382. [Google Scholar] [CrossRef] [Green Version]
- LightPollutionMap. Light Pollution Map. 2020. Available online: https://www.lightpollutionmap.info/ (accessed on 16 July 2020).
μg/m3 | SQM IAA (mag/arcsec2) | ASTMON OSN (mag/arcsec2) | |||||
---|---|---|---|---|---|---|---|
PM10 | NO2 | N.F. | B | V | B | V | |
P.L./B.00:00 | 43.32 | 27.59 | 18.06 | 18.89 | 17.78 | 20.71 | 19.56 |
P.L./A.00:00 | 21.50 | 14.11 | 18.60 | 19.58 | 18.30 | 21.07 | 19.79 |
D.L./B.00:00 | 25.37 | 6.13 | 18.40 | 19.42 | 18.14 | 20.83 | 19.54 |
D.L./A.00:00 | 16.98 | 1.87 | 18.64 | 19.75 | 18.35 | 21.08 | 19.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Calabria, M.; Sánchez de Miguel, A.; Martín-Ruiz, S.; Ortiz, J.-L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sens. 2021, 13, 258. https://doi.org/10.3390/rs13020258
Bustamante-Calabria M, Sánchez de Miguel A, Martín-Ruiz S, Ortiz J-L, Vílchez JM, Pelegrina A, García A, Zamorano J, Bennie J, Gaston KJ. Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sensing. 2021; 13(2):258. https://doi.org/10.3390/rs13020258
Chicago/Turabian StyleBustamante-Calabria, Máximo, Alejandro Sánchez de Miguel, Susana Martín-Ruiz, Jose-Luis Ortiz, José M. Vílchez, Alicia Pelegrina, Antonio García, Jaime Zamorano, Jonathan Bennie, and Kevin J. Gaston. 2021. "Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison" Remote Sensing 13, no. 2: 258. https://doi.org/10.3390/rs13020258
APA StyleBustamante-Calabria, M., Sánchez de Miguel, A., Martín-Ruiz, S., Ortiz, J. -L., Vílchez, J. M., Pelegrina, A., García, A., Zamorano, J., Bennie, J., & Gaston, K. J. (2021). Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sensing, 13(2), 258. https://doi.org/10.3390/rs13020258