Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data
2.2.1. Ground Measurements
2.2.2. Satellite Data
2.2.3. Surface Skin Temperature
2.3. WRF Model Experiments
2.4. Modifications to ESTARFM Fusion Algorithm
2.5. ET Estimation Scheme for High Spatiotemporal Surface Temperature
2.6. Evaluation Method
3. Results
3.1. Evaluation of High Spatiotemporal Resolution Surface Temperature
3.2. Spatial Variation of High Spatiotemporal ET
3.3. Dynamic Evolution of High Spatiotemporal ET
4. Discussion
4.1. Comparison with MOD16 in Identifying Fine Features
4.2. The Refined Embodiment of High Spatiotemporal ET
4.2.1. ET Spatial Distribution of Target Geography Objects
4.2.2. ET Dynamic Evolution of Target Geography Objects
4.3. Quantitative Assessment of High Spatiotemporal ET
4.3.1. Quantitative Comparison with ET_MOD16
4.3.2. Quantitative Verification with Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Jia, Y.; Cui, N.; Zhao, L.; Li, C.; Gong, D. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest china. Agric. Water Manag. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Carter, C.; Liang, S. Comprehensive evaluation of empirical algorithms for estimating land surface evapotranspiration. Agric. For. Meteorol. 2018, 256–257, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhan, Y.; Yu, T.; Liu, Y.; Jin, X.; Ren, X.; Chen, X.; Liu, Q. Improving meteorological input for surface energy balance system utilizing mesoscale weather research and forecasting model for estimating daily actual evapotranspiration. Water 2019, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Li, F.; Lyons, T.J. Estimation of regional evapotranspiration through remote sensing. J. Appl. Meteorol. 1999, 38, 1644–1654. [Google Scholar] [CrossRef] [Green Version]
- Sudheer, K.; Gosain, A.; Ramasastri, K. Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. Irrig. Drain. Eng. 2003, 129, 214–218. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor. Appl. Climatol. 2010, 101, 83–91. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, P.; Zhao, X.; Cao, X.; Gao, Y. Gann models for reference evapotranspiration estimation developed with weather data from different climatic regions. Theor. Appl. Clim. 2013, 116, 481–489. [Google Scholar] [CrossRef]
- Elnmer, A.; Khadr, M.; Kanae, S.; Tawfik, A. Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agric. Water Manag. 2019, 213, 682–692. [Google Scholar] [CrossRef]
- Ma, Y.; Song, M.; Ishikawa, H.; Yang, K.; Koike, T.; Jia, L.; Meneti, M.; Su, B. Estimation of the regional evaporative fraction over the Tibetan Plateau area by using landsat-7 ETM data and the field observations. J. Meteorol. Soc. Jpn. 2007, 85A, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Islam, S.; Bisht, G.; Venturini, V.; Carlson, T.; Guo, W.; Tarpley, D. Potential of satellite-based models for land surface evapotranspiration estimation. AGU Spring Meet. Abstr. 2005, 2005, H32B-03. [Google Scholar]
- Samuel, A.; Girma, A.; Abraha, A.; Asfaha, T. Spatio-temporal variability of evapotranspiration and crop water requirement from space. J. Hydrol. 2018, 567, 732–742. [Google Scholar] [CrossRef]
- Akhtar, F.; Awan, U.; Tischbein, B.; Liaqat, U. Assessment of irrigation performance in large river basins under data scarce environment—A case of Kabul river basin, Afghanistan. Remote Sens. 2018, 10, 972. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kilic, A.; Irmak, S. Impact of scale/resolution on evapotranspiration from Landsat and Modis images. Water Resour. Res. 2016, 52, 1800–1819. [Google Scholar] [CrossRef] [Green Version]
- Odongo, V.O.; van Oel, P.R.; van der Tol, C.; Su, Z. Impact of land use and land cover transitions and climate on evapotranspiration in the lake Naivasha Basin, Kenya. Sci. Total Environ. 2019, 682, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, J.; Wang, H.; Li, D.; Jin, R.; Zhou, Y.; Zhou, Q. Integrating soil moisture retrieved from l-band microwave radiation into an energy balance model to improve evapotranspiration estimation on the irrigated oases of arid regions in northwest china. Agric. For. Meteorol. 2015, 214–215, 306–318. [Google Scholar] [CrossRef]
- Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Li, L.; Yu, Q.; Su, Z.; van der Tol, C. A simple method using climatic variables to estimate canopy temperature, sensible and latent heat fluxes in a winter wheat field on the north china plain. Hydrol. Process. 2009, 23, 665–674. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Wang, H.; Li, Y.; Zhong, B. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid northwestern china. Hydrol. Process. 2015, 29, 2243–2257. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (m-sebal) based on a trapezoidal framework. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Wal, T.V.D. A remote sensing surface energy balance algorithm for land (SEBAL). Part 2: Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.-C.; Cristóbal Rosselló, J.; Sobrino, J.; Sòria Barres, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; He, G.; Wang, G.; Long, T.; Peng, Y. An enhanced single-channel algorithm for retrieving land surface temperature from Landsat series data. J. Geophys. Res. Atmos. 2016, 121, 11712–11722. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.-L.; Nerry, F.; Zhang, X. A new thermal infrared channel configuration for accurate land surface temperature retrieval from satellite data. Remote Sens. Environ. 2019, 231, 111216. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Hu, B.K.H.; Myint, S.W.; Feng, C.-C.; Chow, W.T.L.; Passy, P.F. Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci. Total Environ. 2018, 643, 738–750. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, X.; Yang, X.; Xin, Q.; Deng, C.; Li, X. Quantifying the spatial and temporal relationship between air and land surface temperatures of different land-cover types in southeastern china. Int. J. Remote Sens. 2017, 38, 1114–1136. [Google Scholar] [CrossRef]
- Ogunbadewa, Y. Investigating availability of cloud free images with cloud masks in relation to satellite revisit frequency in the northwest of England. Contrib. Geophys. Geod. 2012, 42, 63–100. [Google Scholar]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Mckee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2015, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, H.; Jiang, Y.; Yan, H.; Yin, C.; Huang, Y.; Zhen, H. Daily evapotranspiration estimation at the field scale: Using the modified sebs model and hj-1 data in a desert-oasis area, northwestern china. Water 2018, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tang, R.; Li, Z.-L.; Jiang, Y.; Liu, M.; Niu, L. An improved spatio-temporal adaptive data fusion algorithm for evapotranspiration mapping. Remote Sens. 2019, 11, 761. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on Modis and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Jia, L.; Xi, G.; Liu, S.; Huang, C.; Yan, Y.; Liu, G. Regional estimation of daily to annual regional evapotranspiration with Modis data in the yellow river delta wetland. Hydrol. Earth Syst. Sci. 2009, 13, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.d.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing sebal input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco river basin, brazil: Part b: Application to the regional scale. Agric. For. Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Qiaozhen, M.U.; Zhao, M.; Steven, W. Improvements to a modis global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar]
- Wu, B.; Yan, N.; Xiong, J.; Bastiaanssen, W.G.M.; Zhu, W.; Stein, A. Validation of Etwatch using field measurements at diverse landscapes: A case study in Hai basin of China. J. Hydrol. 2012, 436–437, 67–80. [Google Scholar] [CrossRef]
- Xu, T.; Shaomin, L.; Xu, L.; Chen, Y.; Jia, Z.; Xu, Z.; Nielson, J. Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration. Remote Sens. 2015, 7, 3400–3425. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Jia, L. A modified gash model for estimating rainfall interception loss of forest using remote sensing observations at regional scale. Water 2014, 6, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Schaepman, M.; Clevers, J.G.P.W.; Su, B. Impact and consequences of evapotranspiration changes on water resources availability in the arid Zhangye basin, China. Int. J. Remote. Sens. 2009, 30, 3223–3238. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Henebry, G.M. Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology—Part 2: The event driven phenology model. Biogeosciences 2012, 9, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liu, Y.; Yu, T.; Zhang, Y.; Liu, Q.; Chen, X.; Zhan, Y. A method of using WRF-simulated surface temperature to estimate daily evapotranspiration. J. Appl. Meteorol. Climatol. 2020, 59, 901–914. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Guo, Z.; Liu, S.; He, X.; Meng, Y.; Xu, Z.; Xia, Y.; Xiao, J.; Zhang, Y.; Ma, Y.; et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [Google Scholar] [CrossRef]
- Tan, M.; Zheng, L. Different irrigation water requirements of seed corn and field corn in the Heihe river basin. Water 2017, 9, 606. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, W.; Hu, X.; Xu, Z.; Wen, J. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4, 170083. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Miao, J.; Zhou, X.; Huang, T.; Zhang, T.; Zhou, Z. A novel inpainting algorithm for recovering Landsat-7 ETM+ SLC-off images based on the low-rank approximate regularization method of dictionary learning with nonlocal and nonconvex models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6741–6754. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat tm 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, X.; Chen, J.; Wang, J. An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal Modis NDVI data and Landsat TM/ETM+ images. Remote Sens. 2015, 7, 7865–7891. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and Modis surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; Cadima, J.; Pires, C. Accuracy of daily estimation of grass reference evapotranspiration using era-interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Sohrabinia, M.; Rack, W.; Zawar-Reza, P. Analysis of modis lst compared with wrf model and in situ data over the Waimakariri river basin, Canterbury, New Zealand. Remote Sens. 2012, 4, 3501–3527. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L.; Ek, M. The influence of atmospheric stability on potential evaporation. J. Appl. Meteorol. 1984, 23, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Mahmood, R.; McAlpine, C. Land’s complex role in climate change. Phys. Today 2016, 69, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-L. Modeling land surface processes in short-term weather and climate studies. In Observation, Theory and Modeling of Atmospheric Variability; WORLD SCIENTIFIC: Hackensack, NJ, USA, 2004; Volume 3, pp. 288–313. [Google Scholar]
Station | Land Cover | Longitude (E) | Latitude (N) | Elevation (m) | Instrument |
---|---|---|---|---|---|
Daman | Cropland | 100.3722 | 38.8555 | 1556 | AWS, EC |
Heihe remote sensing station | Grassland | 100.4756 | 38.827 | 1560 | AWS |
Huazhaizi desert steppe | Barren land | 100.3186 | 38.7652 | 1731 | AWS, EC |
Zhangye wetland | Wetland | 100.4464 | 38.9751 | 1460 | AWS |
Satellite Images | Temporal Resolution | Spatial Resolution | Day of Year (DOY) |
---|---|---|---|
Landsat7 ETM+ | - | 30 m | 104,136,184,200,216,232,248,280 |
Landsat8 OLI | - | 30 m | 112,144,176,208,240,256,272,288 |
MOD09A1 | 8 days | 500 m | 105–289 |
DEM | - | 30 m | - |
Configuration | D01 (25 km) | D02 (5 km) | D03 (1 km) |
---|---|---|---|
Horizontal grids | 46 × 58 | 141 × 151 | 46 × 46 |
Integration time (s) | 150 | 30 | 6 |
Microphysics | Kessler | Kessler | Kessler |
Cunulus | Kain-Fritsch | Kain-Fritsch | Kain-Fritsch |
Planetary boundary layer | MYJ | MYJ | MYJ |
Short-wave radiation | Dudhia | Dudhia | Dudhia |
Long-wave radiation | RRTM | RRTM | RRTM |
Land surface | Noah LSM | Noah LSM | Noah LSM |
Surface layer | Monin-Obukhov | Monin-Obukhov | Monin-Obukhov |
Initial boundary condition | NCEP/FNL | D01 | D02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yu, T.; Liu, Y.; Gu, X.; Mi, X.; Shi, S.; Ma, M.; Chen, X.; Zhang, Y.; Liu, Q.; et al. Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature. Remote Sens. 2021, 13, 225. https://doi.org/10.3390/rs13020225
Wang D, Yu T, Liu Y, Gu X, Mi X, Shi S, Ma M, Chen X, Zhang Y, Liu Q, et al. Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature. Remote Sensing. 2021; 13(2):225. https://doi.org/10.3390/rs13020225
Chicago/Turabian StyleWang, Dakang, Tao Yu, Yan Liu, Xingfa Gu, Xiaofei Mi, Shuaiyi Shi, Meihong Ma, Xinran Chen, Yin Zhang, Qixin Liu, and et al. 2021. "Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature" Remote Sensing 13, no. 2: 225. https://doi.org/10.3390/rs13020225
APA StyleWang, D., Yu, T., Liu, Y., Gu, X., Mi, X., Shi, S., Ma, M., Chen, X., Zhang, Y., Liu, Q., Mumtaz, F., & Zhan, Y. (2021). Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature. Remote Sensing, 13(2), 225. https://doi.org/10.3390/rs13020225