PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM
Abstract
:1. Introduction
2. Polarimetric Rotation Domain Investigation
2.1. Polarimetric Matrix
2.2. Polarimetric Coherence Pattern
2.3. Polarimetric Correlation Pattern
2.4. Demonstration and Investigation
3. Methods
3.1. Polarimetric Rotation Domain Feature Selection
3.2. Ship Detection Scheme
4. Experimental Results
4.1. Data Description
4.2. Results Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Ji, J.; Li, X.; Yu, W.; Xiong, H. Ship Detection From PolSAR Imagery Using the Complete Polarimetric Covariance Difference Matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2824–2839. [Google Scholar] [CrossRef]
- Xi, Y.; Lang, H.; Tao, Y.; Huang, L.; Pei, Z. Four-Component Model-Based Decomposition for Ship Targets Using PolSAR Data. Remote Sens. 2017, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yang, Z.; Xiong, H. PolSAR Ship Detection Based on the Polarimetric Covariance Difference Matrix. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3348–3359. [Google Scholar] [CrossRef]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P. Manifold Adaptation for Constant False Alarm Rate Ship Detection in South African Oceans. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3329–3337. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An Adaptive and Fast CFAR Algorithm Based on Automatic Censoring for Target Detection in High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1685–1697. [Google Scholar] [CrossRef]
- Trunk, G.V. Range Resolution of Targets Using Automatic Detectors. IEEE Trans. Aerosp. Electron. Syst. 1978, AES-14, 750–755. [Google Scholar] [CrossRef]
- Nicolas, J.-M.; Anfinsen, S. Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to Analysis of Radar Images. Traitement du Signal 2002, 3. [Google Scholar]
- Novak, L.M.; Burl, M.C.; Irving, W.W. Optimal polarimetric processing for enhanced target detection. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 234–244. [Google Scholar] [CrossRef]
- Velotto, D.; Nunziata, F.; Migliaccio, M.; Lehner, S. Dual-Polarimetric TerraSAR-X SAR Data for Target at Sea Observation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1114–1118. [Google Scholar] [CrossRef]
- Marino, A. A Notch Filter for Ship Detection With Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1219–1232. [Google Scholar] [CrossRef] [Green Version]
- Ringrose, R.; Harris, N. Ship Detection Using Polarimetric SAR Data. European Space Agency Esa Sp 2000, 450, 687. [Google Scholar]
- Touzi, R.; Charbonneau, F.; Hawkins, R.K.; Murnaghan, K.; Kavoun, X. Ship-sea contrast optimization when using polarimetric SARs. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; pp. 426–428. [Google Scholar]
- Sugimoto, M.; Ouchi, K.; Nakamura, Y. On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea. Remote Sens. Lett. 2013, 4, 843–852. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xiao, S.; Sato, M. Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar: Interpretation and Application; Springer: Singapore, 2018. [Google Scholar]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Nunziata, F.; Migliaccio, M.; Brown, C.E. Reflection Symmetry for Polarimetric Observation of Man-Made Metallic Targets at Sea. IEEE J. Ocean. Eng. 2012, 37, 384–394. [Google Scholar] [CrossRef]
- Cui, X.; Su, Y.; Chen, S. A Saliency Detector for Polarimetric SAR Ship Detection Using Similarity Test. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3423–3433. [Google Scholar] [CrossRef]
- Zhai, L.; Li, Y.; Su, Y. Inshore Ship Detection via Saliency and Context Information in High-Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1870–1874. [Google Scholar] [CrossRef]
- Li, T.; Liu, Z.; Xie, R.; Ran, L. An Improved Superpixel-Level CFAR Detection Method for Ship Targets in High-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 184–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389. [Google Scholar] [CrossRef]
- Qu, Y.; Guo, R.; Wang, W.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Anomaly detection in hyperspectral images through spectral unmixing and low rank decomposition. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1855–1858. [Google Scholar]
- He, J.; Wang, Y.; Liu, H.; Wang, N.; Wang, J. A Novel Automatic PolSAR Ship Detection Method Based on Superpixel-Level Local Information Measurement. IEEE Geosci. Remote Sens. Lett. 2018, 15, 384–388. [Google Scholar] [CrossRef]
- Xing, X.; Ji, K.; Zou, H.; Sun, J. Feature selection and weighted SVM classifier-based ship detection in PolSAR imagery. Int. J. Remote Sens. 2013, 34, 7925–7944. [Google Scholar] [CrossRef]
- Zou, B.; Qiu, Y.; Zhang, L. Ship Detection Using PolSAR Images Based on Simulated Annealing by Fuzzy Matching. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 751–755. [Google Scholar] [CrossRef]
- Wei, S.; Su, H.; Ming, J.; Wang, C.; Yan, M.; Kumar, D.; Shi, J.; Zhang, X. Precise and Robust Ship Detection for High-Resolution SAR Imagery Based on HR-SDNet. Remote Sens. 2020, 12, 167. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, X.; Sato, M. Uniform polarimetric matrix rotation theory and its applications. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4756–4770. [Google Scholar] [CrossRef]
- Chen, S. Polarimetric Coherence Pattern: A Visualization and Characterization Tool for PolSAR Data Investigation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 286–297. [Google Scholar] [CrossRef]
- Cui, X.C.; Tao, C.S.; Su, Y.; Chen, S.W. PolSAR Ship Detection Based on Polarimetric Correlation Pattern. IEEE Geosci. Remote Sens. Lett. 2021, 18, 471–475. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xiao, S. Urban Damage Level Mapping Based on Co-Polarization Coherence Pattern Using Multitemporal Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2657–2667. [Google Scholar] [CrossRef]
- Chen, S.; Tao, C. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In Proceedings of the European Conference on Machine Learning, Catania, Italy, 6–8 April 2021; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2007, 2, 1–27. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Sato, M. PolInSAR Complex Coherence Estimation Based on Covariance Matrix Similarity Test. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4699–4710. [Google Scholar] [CrossRef]
Sensor | Imaging Area | Acquisition Date | Size (range × azimth) | Resolution (range × azimth) | Ship Number |
---|---|---|---|---|---|
Radarsat-2 | Hong Kong | 16 December 2008 | 500 pixels × 300 pixels | 12 m × 8 m | 135 |
Radarsat-2 | Strait of Gibraltar | 1 January 2016 | 700 pixels × 1300 pixels | 12 m × 8 m | 36 |
GF-3 | Hong Kong | 30 March 2017 | 1000 pixels × 1000 pixels | 8 m × 8 m | 44 |
GF-3 | Hong Kong | 15 March 2017 | 3450 pixels × 2150 pixels | 8 m × 8 m | 242 |
Data | Method | FoM | Data | Method | FoM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radarsat-2 area I | SO-CAFAR | 120 | 15 | 0 | 88.89% | Radarsat-2 area II | SO-CAFAR | 34 | 2 | 0 | 94.44% |
SP | 123 | 12 | 0 | 91.11% | SP | 33 | 3 | 0 | 91.67% | ||
T3 + SVM | 133 | 2 | 7 | 93.66% | T3 + SVM | 36 | 0 | 16 | 69.23% | ||
PCP + SVM | 134 | 1 | 1 | 97.53% | PCP + SVM | 36 | 0 | 1 | 97.30% | ||
Proposed | 135 | 0 | 1 | 99.26% | Proposed | 36 | 0 | 0 | 100% | ||
GF-3 area I | SO-CAFAR | 37 | 6 | 1 | 84.09% | GF-3 area II | SO-CAFAR | 182 | 60 | 0 | 75.21% |
SP | 31 | 13 | 0 | 70.45% | SP | 220 | 22 | 0 | 90.91% | ||
T3 + SVM | 39 | 5 | 1 | 86.67% | T3 + SVM | 233 | 9 | 2 | 95.49% | ||
PCP + SVM | 40 | 4 | 1 | 88.89% | PCP + SVM | 237 | 5 | 1 | 97.53% | ||
Proposed | 42 | 2 | 0 | 95.45% | Proposed | 240 | 2 | 3 | 97.96% |
Data | Method | FoM | Data | Method | FoM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radarsat-2 area I | T3 + SVM | 65 | 70 | 39 | 37.36% | Radarsat-2 area II | T3 + SVM | 36 | 0 | 16 | 69.23% |
PCP + SVM | 134 | 1 | 4 | 96.40% | PCP + SVM | 36 | 0 | 14 | 72.00% | ||
Proposed | 135 | 0 | 2 | 98.56% | Proposed | 36 | 0 | 2 | 94.74% | ||
GF-3 area I | T3 + SVM | 44 | 0 | 2 | 95.65% | GF-3 area II | SO-CAFAR | 242 | 0 | 12 | 95.28% |
PCP + SVM | 43 | 1 | 1 | 95.56% | SP | 242 | 0 | 40 | 85.82% | ||
Proposed | 43 | 1 | 0 | 97.73% | Proposed | 242 | 0 | 3 | 98.78% |
Data | Method | FoM | Data | Method | FoM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radarsat-2 area I | T3 + SVM | 130 | 5 | 7 | 91.55% | Radarsat-2 area II | T3 + SVM | 36 | 0 | 5 | 87.80% |
PCP + SVM | 132 | 3 | 0 | 97.78% | PCP + SVM | 36 | 0 | 1 | 97.30% | ||
Proposed | 134 | 1 | 0 | 99.26% | Proposed | 36 | 0 | 0 | 100% | ||
GF-3 area I | T3 + SVM | 30 | 14 | 1 | 66.67% | GF-3 area II | T3 + SVM | 202 | 40 | 1 | 81.13% |
PCP + SVM | 30 | 14 | 0 | 68.18% | PCP + SVM | 207 | 35 | 0 | 85.54% | ||
Proposed | 42 | 2 | 0 | 95.45% | Proposed | 229 | 13 | 1 | 94.24% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Cui, X.; Chen, S. PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM. Remote Sens. 2021, 13, 3932. https://doi.org/10.3390/rs13193932
Li H, Cui X, Chen S. PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM. Remote Sensing. 2021; 13(19):3932. https://doi.org/10.3390/rs13193932
Chicago/Turabian StyleLi, Haoliang, Xingchao Cui, and Siwei Chen. 2021. "PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM" Remote Sensing 13, no. 19: 3932. https://doi.org/10.3390/rs13193932
APA StyleLi, H., Cui, X., & Chen, S. (2021). PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM. Remote Sensing, 13(19), 3932. https://doi.org/10.3390/rs13193932