# Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

_{IF}and L

_{IF}) from GPS, GLONASS, Galileo, BDS or QZSS satellites can be modeled as:

^{4}m

^{2}). Regarding the ISB and ZWD, they are estimated as random-walk processes. The spectral density value is set to 10

^{–6}and 10

^{–8}m

^{2}/s for the ISB and ZWD, respectively.

## 3. Results

#### 3.1. Precise Products for BDS, GPS, GLONASS, Galileo and QZSS

#### 3.2. Availability of Five-System Combination

#### 3.3. Consistency of Precise Products from Different Analysis Centers

#### 3.3.1. GPS

#### 3.3.2. GLONASS

#### 3.3.3. Galileo

#### 3.3.4. BDS

#### 3.3.5. QZSS

#### 3.3.6. Effects of Sun Elevations on Consistency Results

#### 3.4. Performance of Multi-System PPP with Precise Products from Different Analysis Centers

#### 3.4.1. Datasets, Statistics and Processing Strategies

#### 3.4.2. Static Position Solutions

#### 3.4.3. Kinematic Position Solutions

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

Constellations | Eclipsing Satellites |
---|---|

GPS | G01 (18:22:00 of DOY 138 to 24:00:00 of DOY 152), G02 (05:01:00 of DOY 134 to 24:00:00 of DOY 152), G06 (05:47:00 of DOY 138 to 24:00:00 of DOY 152), G07 (00:00:00 of DOY 122 to 09:26:00 of DOY 144), G11 (00:00:00 of DOY 122 to 24:00:00 of DOY 152), G18 (05:07:00 of DOY 140 to 24:00:00 of DOY 152), G21 (11:23:00 of DOY 134 to 24:00:00 of DOY 152), G24 (00:00:00 of DOY 122 to 15:12:00 of DOY 140), G30 (00:00:00 of DOY 122 to 05:53:00 of DOY 145), G31 (00:00:00 of DOY 122 to 05:25:00 of DOY 145) |

GLONASS | R09 (00:46:00 of DOY 143 to 24:00:00 of DOY 152), R11 (05:11:00 of DOY 143 to 24:00:00 of DOY 152), R12 (14:17:00 of DOY 143 to 24:00:00 of DOY 152), R13 (01:59:00 of DOY 143 to 24:00:00 of DOY 152), R14 (11:51:00 of DOY 143 to 24:00:00 of DOY 152), R15 (17:08:00 of DOY 143 to 24:00:00 of DOY 152), R16 (09:23:00 of DOY 142 to 24:00:00 of DOY 152), R17 (00:00:00 of DOY 122 to 22:49:00 of DOY 138), R18 (00:00:00 of DOY 122 to 00:00:00 of DOY 139), R19 (00:00:00 of DOY 122 to 07:37:00 of DOY 140), R20 (00:00:00 of DOY 122 to 09:49:00 of DOY 140), R21 (00:00:00 of DOY 122 to 22:43:00 of DOY 138), R22 (00:00:00 of DOY 122 to 05:31:00 of DOY 139), R23 (00:00:00 of DOY 122 to 03:51:00 of DOY 139), R24 (00:00:00 of DOY 122 to 20:13:00 of DOY 140) |

Galileo | E01 (20:32:00 of DOY 152 to 24:00:00 of DOY 152), E02 (20:31:00 of DOY 152 to 24:00:00 of DOY 152), E11 (00:00:00 of DOY 122 to 24:00:00 of DOY 152), E12 (00:00:00 of DOY 122 to 24:00:00 of DOY 152), E21 (16:55:00 of DOY 152 to 24:00:00 of DOY 152), E24 (20:51:00 of DOY 152 to 24:00:00 of DOY 152), E25 (16:55:00 of DOY 152 to 24:00:00 of DOY 152), E26 (00:00:00 of DOY 122 to 24:00:00 of DOY 152), E27 (16:54:00 of DOY 152 to 24:00:00 of DOY 152), E30 (20:48:00 of DOY 152 to 24:00:00 of DOY 152), E31 (16:48:00 of DOY 152 to 24:00:00 of DOY 152), E33 (00:00:00 of DOY 122 to 24:00:00 of DOY 152), E36 (00:00:00 of DOY 122 to 24:00:00 of DOY 152) |

QZSS IGSO | J02 (05:35:00 of DOY 140 to 24:00:00 of DOY 152), J03 (00:00:00 of DOY 122 to 02:23:00 of DOY 135) |

BDS-2 IGSO | C08 (02:57:00 of DOY 148 to 24:00:00 of DOY 152), C13 (00:14:00 of DOY 148 to 24:00:00 of DOY 152) |

BDS-2 MEO | C11 (00:00:00 of DOY 122 to 12:56:00 of DOY 132), C12 (00:00:00 of DOY 122 to 19:11:00 of DOY 131) |

BDS-3 MEO | C23 (20:58:00 of DOY 130 to 24:00:00 of DOY 152), C24 (20:49:00 of DOY 130 to 24:00:00 of DOY 152), C25 (17:55:00 of DOY 129 to 24:00:00 of DOY 152), C26 (18:36:00 of DOY 129 to 24:00:00 of DOY 152), C27 (00:00:00 of DOY 122 to 21:06:00 of DOY 133), C28 (00:00:00 of DOY 122 to 21:05:00 of DOY 133), C29 (00:00:00 of DOY 122 to 01:25:00 of DOY 131), C30 (00:00:00 of DOY 122 to 02:36:00 of DOY 131), C34 (00:00:00 of DOY 122 to 11:38:00 of DOY 131), C35 (00:00:00 of DOY 122 to 11:22:00 of DOY 131), C36 (18:57:00 of DOY 130 to 24:00:00 of DOY 152), C37 (18:51:00 of DOY 130 to 24:00:00 of DOY 152) |

## References

- Erol, S. A Comparative Study for Performance Analysis of Kinematic Multi-Constellation GNSS PPP in Dynamic Environment. J. Mar. Sci. Eng.
**2020**, 8, 514. [Google Scholar] [CrossRef] - Gao, Z.; Li, Y.; Zhuang, Y.; Yang, H.; Pan, Y.; Zhang, H. Robust Kalman Filter Aided GEO/IGSO/GPS Raw-PPP/INS Tight Integration. Sensors
**2019**, 19, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Elsheikh, M.; Abdelfatah, W.; Noureldin, A.; Iqbal, U.; Korenberg, M. Low-Cost Real-Time PPP/INS Integration for Automated Land Vehicles. Sensors
**2019**, 19, 4896. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Liu, Y.; Liu, F.; Gao, Y.; Zhao, L. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation. Sensors
**2018**, 18, 4305. [Google Scholar] [CrossRef] [Green Version] - Rabbou, M.A.; El-Rabbany, A. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter. Sensors
**2015**, 15, 7228–7245. [Google Scholar] [CrossRef] [Green Version] - Xu, P.; Shi, C.; Fang, R.; Liu, J.; Niu, X.; Zhang, Q.; Yanagidani, T. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units. J. Geod.
**2013**, 87, 361–372. [Google Scholar] [CrossRef] - Xu, P.; Shu, Y.; Niu, X.; Liu, J.; Yao, W.; Chen, Q. High-rate multi-GNSS attitude determination: Experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9.0 earthquake. Meas. Sci. Technol.
**2019**, 30, 024003. [Google Scholar] [CrossRef] - Xu, P.; Du, F.; Shu, Y.; Zhang, H.; Shi, Y. Regularized reconstruction of peak ground velocity and acceleration from very high-rate GNSS precise point positioning with applications to the 2013 Lushan Mw6.6 earthquake. J. Geod.
**2021**, 95, 17. [Google Scholar] [CrossRef] - Cai, C.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut.
**2013**, 17, 223–236. [Google Scholar] [CrossRef] - Yigit, C.O.; Gikas, V.; Alcay, S.; Ceylan, A. Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Surv. Rev.
**2014**, 46, 155–166. [Google Scholar] [CrossRef] - Li, P.; Zhang, X. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solut.
**2014**, 18, 461–471. [Google Scholar] - Jiang, N.; Xu, Y.; Xu, T.; Sun, Z.; Schuh, H. GPS/BDS short-term ISB modelling and prediction. GPS Solut.
**2017**, 21, 163–175. [Google Scholar] [CrossRef] [Green Version] - Wang, M.; Chai, H.; Li, Y. Performance analysis of BDS/GPS precise point positioning with undifferenced ambiguity resolution. Adv. Space Res.
**2017**, 60, 2581–2595. [Google Scholar] [CrossRef] - Jiao, G.; Song, S.; Ge, Y.; Su, K.; Liu, Y. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance. Sensors
**2019**, 19, 2496. [Google Scholar] - Afifi, A.; Elrabbany, A. An improved model for single-frequency GPS/GALILEO precise point positioning. Positioning
**2015**, 6, 7–21. [Google Scholar] - Lou, Y.; Zheng, F.; Gu, S.; Wang, C.; Guo, H.; Feng, Y. Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut.
**2016**, 20, 849–862. [Google Scholar] [CrossRef] - Wu, W.; Guo, F.; Zheng, J. Analysis of Galileo signal-in-space range error and positioning performance during 2015–2018. Satell. Navig.
**2020**, 1, 6. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Kubo, N.; Chen, J.; Wang, H.; Wang, J. Assessment of the contribution of QZSS combined GPS/BeiDou positioning in Asia-Pacific Areas. In Proceedings of the China Satellite Navigation Conference (CSNC) 2018, Harbin, China, 23–25 May 2018; pp. 467–478. [Google Scholar]
- Hong, J.; Tu, R.; Zhang, R.; Fan, L.; Zhang, P.; Han, J. Contribution analysis of QZSS to single-frequency PPP of GPS/BDS/GLONASS/Galileo. Adv. Space Res.
**2020**, 65, 1803–1817. [Google Scholar] - Chen, J.; Zhao, X.; Liu, C.; Zhu, S.; Liu, Z.; Yue, D. Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS. J. Navig.
**2021**, 74, 247–267. [Google Scholar] - Zhao, X.; Ge, Y.; Ke, F.; Liu, C.; Li, F. Investigation of real-time kinematic multi-GNSS precise point positioning with the CNES products. Measurement
**2020**, 166, 108231. [Google Scholar] - Alcay, S.; Turgut, M. Evaluation of the positioning performance of multi-GNSS RT-PPP method. Arab. J. Geosci.
**2021**, 14, 155. [Google Scholar] [CrossRef] - Li, X.; Zhu, Y.; Zheng, K.; Yuan, Y.; Liu, G.; Xiong, Y. Precise orbit and clock products of Galileo, BDS and QZSS from MGEX since 2018: Comparison and PPP validation. Remote Sens.
**2020**, 12, 1415. [Google Scholar] [CrossRef] - Steigenberger, P.; Montenbruck, O. Consistency of MGEX orbit and clock products. Engineering
**2020**, 6, 898–903. [Google Scholar] [CrossRef] - Bahadur, B.; Nohutcu, M. Comparative analysis of MGEX products for post-processing multi-GNSS PPP. Measurement
**2019**, 145, 361–369. [Google Scholar] [CrossRef] - Zhou, F.; Dong, D.; Li, P.; Li, X.; Schuh, H. Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut.
**2019**, 23, 59. [Google Scholar] [CrossRef] - El-Mowafy, A. Estimation of multi-constellation GNSS observation stochastic properties using single receiver single satellite data validation method. Surv. Rev.
**2015**, 47, 99–108. [Google Scholar] [CrossRef] [Green Version] - Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–Achievements, Prospects and Challenges. Adv. Space Res.
**2017**, 59, 1671–1697. [Google Scholar] [CrossRef] - Katsigianni, G.; Loyer, S.; Perosanz, F.; Mercier, F.; Zajdel, R.; Sośnica, K. Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing. Adv. Space Res.
**2019**, 63, 2952–2963. [Google Scholar] [CrossRef] - Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX solution with the focus on Galileo. Adv. Space Res.
**2020**, 66, 2786–2798. [Google Scholar] [CrossRef] - Deng, Z.; Fritsche, M.; Nischan, T.; Bradke, M. Multi-GNSS Ultra Rapid Orbit-, Clock- & EOP-Product Series. GFZ Data Services. Available online: https://doi.org/10.5880/GFZ.1.1.2016.003 (accessed on 4 September 2021).
- Oleynik, E.G.; Mitrikas, V.V.; Revnivykh, S.G.; Serdukov, A.I.; Dutov, E.N.; Shiriaev, V.F. High-accurate GLONASS Orbit and Clock Determination for the Assessment of System Performance. In Proceedings of the ION GNSS 2006, Fort Worth, TX, USA, 26–29 September 2006; pp. 2065–2079. [Google Scholar]
- Kasho, S. Accuracy evaluation of QZS-1 precise ephemerides with satellite laser ranging. In Proceedings of the 19th International Workshop on Laser Ranging, Annapolis, MD, USA, 27–30 October 2014. [Google Scholar]
- Chen, Q.; Song, S.; Zhou, W. Accuracy Analysis of GNSS Hourly Ultra-Rapid Orbit and Clock Products from SHAO AC of iGMAS. Remote Sens.
**2021**, 13, 1022. [Google Scholar] - Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod.
**2016**, 90, 143–159. [Google Scholar] [CrossRef] - Enderle, W.; Dilssner, F.; Schoenemann, E.; Mayer, V.; Zandbergen, R.; Springer, T.; Otten, M.; Gini, F.; Laeufer, G. ESOC–State-of-the-Art Precise Orbit Determination. Available online: http://navigation-office.esa.int/attachments_54919606_1_2019-09-04_ESOC_POD_GNSSColloq2019_Final.pdf (accessed on 4 September 2021).
- Johnston, G.; Riddell, A.; Hausler, G. The International GNSS Service. In Springer Handbook of Global Navigation Satellite Systems, 1st ed.; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 967–982. [Google Scholar]
- Yang, Y.; Li, J.; Xu, J.; Tang, J.; Guo, H.; He, H. Contribution of the Compass satellite navigation system to global PNT users. Chin. Sci. Bull.
**2011**, 56, 2813–2819. [Google Scholar] [CrossRef] [Green Version] - Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment–Methodology and results. Adv. Space Res.
**2018**, 61, 3020–3038. [Google Scholar] [CrossRef] - Kazmierski, K.; Zajdel, R.; Sośnica, K. Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS Solut.
**2020**, 24, 111. [Google Scholar] [CrossRef] - Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS 2009, Jeju, Korea, 4–6 November 2009; pp. 1–6. [Google Scholar]

**Figure 1.**Global maps of maximum, minimum and average number of visible satellites for five-system combination on DOY 122 of 2020.

**Figure 2.**Global maps of maximum, minimum and average PDOP values for five-system combination on DOY 122 of 2020.

**Figure 3.**Epoch-wise orbit and clock differences for GPS satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 4.**Epoch-wise orbit and clock differences for GLONASS satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 5.**Epoch-wise orbit and clock differences for Galileo satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 6.**Epoch-wise orbit and clock differences for BDS-2 GEO and IGSO satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 7.**Epoch-wise orbit and clock differences for BDS-2 and BDS-3 MEO satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 8.**Epoch-wise orbit and clock differences for QZSS GEO and IGSO satellites between GFZ and WHU precise products on DOY 122 of 2020.

**Figure 9.**Geographical distribution of 29 selected MGEX stations. The stations marked in both red and blue can track the GPS, GLONASS, Galileo, BDS-2 and BDS-3 satellites, and only the stations marked in blue can track the QZSS satellites.

**Figure 10.**Epoch-wise position errors of static PPP using ESA final precise products at station KIR0 on 17 May 2020.

**Figure 11.**Epoch-wise position errors of static PPP using CNES real-time precise products at station KIR0 on 17 May 2020.

**Figure 12.**Epoch-wise position errors of kinematic PPP using ESA final precise products at station KIR0 on 17 May 2020.

**Figure 13.**Epoch-wise position errors of kinematic PPP using CNES real-time precise products at station KIR0 on 17 May 2020.

**Table 1.**Overview of the precise satellite orbit and clock products from multi-system analysis centers as of January 2021.

Institutions | ID | Constellations | Orbit | Clock |
---|---|---|---|---|

CODE | COD0MGXFIN | GPS+GLO+GAL+BDS-2+QZS | 5 min | 30 s |

GFZ | GBM0MGXRAP | GPS+GLO+GAL+BDS-2+BDS-3+QZS | 5 min | 30 s |

CNES/CLS/GRGS | GRG0MGXFIN | GPS+GLO+GAL | 5 min | 30 s |

IAC | IAC0MGXFIN | GPS+GLO+GAL+BDS-2+BDS-3+QZS | 5 min | 30 s |

JAXA | JAX0MGXFIN | GPS+GLO+QZS | 5 min | 30 s |

SHAO | SHA0MGXRAP | GPS+GLO+GAL+BDS-2+BDS-3 | 5 min | 5 min/30 s |

WHU | WUM0MGXFIN | GPS+GLO+GAL+BDS-2+BDS-3+QZS | 15 min | 30 s |

ESA | ESA0MGNFIN | GPS+GLO+GAL+BDS-2+BDS-3+QZS | 5 min | 30 s |

CNES | CNT | GPS+GLO+GAL+BDS-2+BDS-3 | 5 min | 5 s |

**Table 2.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for GPS satellites.

Items | ACs | ACs | ||
---|---|---|---|---|

GFZ | WHU | CNES | ||

Radial (cm) | ESA | 2.2 | 1.9 | 2.0 |

GFZ | – | 1.9 | 2.9 | |

WHU | – | – | 2.5 | |

Along-Track (cm) | ESA | 2.5 | 1.6 | 3.2 |

GFZ | – | 2.5 | 4.1 | |

WHU | – | – | 3.4 | |

Cross-Track (cm) | ESA | 2.5 | 1.6 | 2.4 |

GFZ | – | 2.4 | 3.5 | |

WHU | – | – | 2.7 | |

Clock (ns) | ESA | 0.08 | 0.06 | 0.08 |

GFZ | – | 0.13 | 0.11 | |

WHU | – | – | 0.10 | |

SISRE (cm) | ESA | 1.2 | 1.2 | 2.4 |

GFZ | – | 3.5 | 2.7 | |

WHU | – | – | 2.6 |

**Table 3.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for GLONASS satellites.

Items | ACs | ACs | ||
---|---|---|---|---|

GFZ | WHU | CNES | ||

Radial (cm) | ESA | 2.9 | 2.6 | 2.3 |

GFZ | – | 2.9 | 3.5 | |

WHU | – | – | 3.3 | |

Along-Track (cm) | ESA | 3.4 | 4.1 | 8.9 |

GFZ | – | 4.3 | 9.4 | |

WHU | – | – | 9.5 | |

Cross-Track (cm) | ESA | 3.6 | 4.0 | 5.7 |

GFZ | – | 4.2 | 6.6 | |

WHU | – | – | 6.5 | |

Clock (ns) | ESA | 0.10 | 0.10 | 0.18 |

GFZ | – | 0.18 | 0.20 | |

WHU | – | – | 0.20 | |

SISRE (cm) | ESA | 2.8 | 2.7 | 5.2 |

GFZ | – | 4.9 | 5.7 | |

WHU | – | – | 5.6 |

**Table 4.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for Galileo satellites.

Items | ACs | ACs | ||
---|---|---|---|---|

GFZ | WHU | CNES | ||

Radial (cm) | ESA | 1.9 | 2.3 | 3.0 |

GFZ | – | 2.2 | 2.7 | |

WHU | – | – | 3.2 | |

Along-Track (cm) | ESA | 2.4 | 3.1 | 4.7 |

GFZ | – | 3.9 | 5.3 | |

WHU | – | – | 5.8 | |

Cross-Track (cm) | ESA | 2.5 | 3.7 | 3.7 |

GFZ | – | 4.6 | 4.2 | |

WHU | – | – | 5.6 | |

Clock (ns) | ESA | 0.06 | 0.06 | 0.19 |

GFZ | – | 0.08 | 0.19 | |

WHU | – | – | 0.19 | |

SISRE (cm) | ESA | 1.7 | 1.9 | 5.4 |

GFZ | – | 2.3 | 5.3 | |

WHU | – | – | 5.5 |

**Table 5.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for BDS-2 GEO and IGSO satellites.

Items | ACs | ACs (for BDS-2 GEO) | ACs (for BDS-2 IGSO) | ||||
---|---|---|---|---|---|---|---|

GFZ | WHU | CNES | GFZ | WHU | CNES | ||

Radial (cm) | ESA | – | – | – | 9.9 | 13.4 | 11.0 |

GFZ | – | 15.2 | 49.6 | – | 10.0 | 9.3 | |

WHU | – | – | 48.3 | – | – | 13.3 | |

Along-Track (cm) | ESA | – | – | – | 9.0 | 10.2 | 14.5 |

GFZ | – | 193.8 | 324.1 | – | 7.1 | 14.5 | |

WHU | – | – | 355.3 | – | – | 15.5 | |

Cross-Track (cm) | ESA | – | – | – | 9.2 | 11.2 | 14.3 |

GFZ | – | 109.0 | 132.1 | – | 7.3 | 13.4 | |

WHU | – | – | 125.7 | – | – | 14.6 | |

Clock (ns) | ESA | – | – | – | 0.18 | 0.34 | 0.28 |

GFZ | – | 0.39 | 0.72 | – | 0.31 | 0.28 | |

WHU | – | – | 0.70 | – | – | 0.40 | |

SISRE (cm) | ESA | – | – | – | 8.7 | 10.1 | 9.2 |

GFZ | – | 22.1 | 54.4 | – | 7.3 | 6.8 | |

WHU | – | – | 55.2 | – | – | 8.7 |

**Table 6.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for BDS-2 MEO and BDS-3 MEO satellites.

Items | ACs | ACs (for BDS-2 MEO) | ACs (for BDS-3 MEO) | ||||
---|---|---|---|---|---|---|---|

GFZ | WHU | CNES | GFZ | WHU | CNES | ||

Radial (cm) | ESA | 3.8 | 4.1 | 3.9 | 4.5 | 4.7 | 6.5 |

GFZ | – | 2.2 | 3.4 | – | 2.6 | 5.0 | |

WHU | – | – | 3.6 | – | – | 5.3 | |

Along-Track (cm) | ESA | 3.5 | 5.6 | 9.8 | 4.2 | 6.5 | 15.3 |

GFZ | – | 5.3 | 10.2 | – | 5.8 | 15.4 | |

WHU | – | – | 10.9 | – | – | 16.4 | |

Cross-Track (cm) | ESA | 4.1 | 5.5 | 7.1 | 3.9 | 5.9 | 10.4 |

GFZ | – | 4.8 | 7.6 | – | 5.3 | 10.5 | |

WHU | – | – | 8.2 | – | – | 11.2 | |

Clock (ns) | ESA | 0.05 | 0.07 | 0.16 | 0.11 | 0.14 | 0.27 |

GFZ | – | 0.08 | 0.15 | – | 0.12 | 0.26 | |

WHU | – | – | 0.16 | – | – | 0.26 | |

SISRE (cm) | ESA | 3.6 | 4.1 | 5.4 | 3.2 | 3.7 | 7.4 |

GFZ | – | 2.6 | 4.8 | – | 3.2 | 6.8 | |

WHU | – | – | 5.0 | – | – | 7.1 |

**Table 7.**RMSs of epoch-wise differences of precise satellite orbit and clock corrections among different ACs as well as SISRE statistics for QZSS IGSO and GEO satellites.

Items | ACs | ACs (for QZSS IGSO) | ACs (for QZSS GEO) | ||||
---|---|---|---|---|---|---|---|

GFZ | WHU | CNES | GFZ | WHU | CNES | ||

Radial (cm) | ESA | 15.4 | 18.6 | – | – | – | – |

GFZ | – | 16.8 | – | – | 5.6 | – | |

WHU | – | – | – | – | – | – | |

Along-Track (cm) | ESA | 6.0 | 13.5 | – | – | – | – |

GFZ | – | 12.8 | – | – | 328.0 | – | |

WHU | – | – | – | – | – | – | |

Cross-Track (cm) | ESA | 6.8 | 14.2 | – | – | – | – |

GFZ | – | 13.2 | – | – | 116.8 | – | |

WHU | – | – | – | – | – | – | |

Clock (ns) | ESA | 0.14 | 0.33 | – | – | – | – |

GFZ | – | 0.29 | – | – | 0.24 | – | |

WHU | – | – | – | – | – | – | |

SISRE (cm) | ESA | 14.8 | 15.5 | – | – | – | – |

GFZ | – | 14.4 | – | – | 32.4 | – | |

WHU | – | – | – | – | – | – |

Items | Strategies |
---|---|

Observations | Code and carrier phase observations |

Signal selection | GPS: L1/L2, QZSS: L1/L2, GLONASS: G1/G2, Galileo: E1/E5a, BDS: B1/B3 |

Cut-off elevations | 10° |

Sampling rate | 30 s |

Estimator | Kalman filter |

Weighting scheme | Elevation-dependent weight |

Phase wind-up effect | IERS conventions 2010 |

Earth rotation parameters | Fixed to a priori values (with the products from multi-system analysis centers) |

Relativistic effect | IERS conventions 2010 |

Station displacement | Solid Earth tide, Ocean tide, Pole tide, IERS conventions 2010 |

Satellite orbits and clocks | Fixed with precise products from multi-system analysis centers |

Phase center offsets and variations | Satellite: corrected with IGS14 atx file (using suggested values by ESA for BDS for PPP processing with ESA products)Receiver: corrected with IGS14 atx file (using GPS values for other systems if not available) |

Tropospheric dry delay | Corrected using Saastamoinen model |

Tropospheric wet delay | Estimated as random walk process (epoch-by-epoch) |

Ionospheric delay | First-order effect eliminated by IF linear combination |

Phase ambiguity | Estimated as float constants |

Receiver position | Estimated as constants in static mode, and as white noise process in kinematic mode |

Receiver clock | Estimated as white noise process |

Inter-system bias | Estimated as random walk process |

**Table 9.**Static positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with WHU products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 15.1 | 6.0 | 15.3 | 0.4 | 0.2 | 1.1 |

R-PPP | 17.5 | 9.4 | 18.2 | 0.6 | 0.4 | 1.5 |

E-PPP | 12.6 | 8.6 | 22.9 | 0.6 | 0.4 | 1.2 |

C-PPP | 14.9 | 9.7 | 16.7 | 0.7 | 0.4 | 1.2 |

GR-PPP | 8.3 | 4.0 | 8.6 | 0.3 | 0.2 | 1.2 |

GE-PPP | 9.8 | 4.6 | 12.2 | 0.3 | 0.2 | 1.1 |

GC-PPP | 8.8 | 4.1 | 10.3 | 0.4 | 0.2 | 1.0 |

GJ-PPP | 14.8 | 6.0 | 15.1 | 0.4 | 0.2 | 1.1 |

GRECJ-PPP | 6.2 | 3.1 | 6.8 | 0.3 | 0.2 | 1.1 |

**Table 10.**Static positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with GFZ products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 11.8 | 5.7 | 15.6 | 0.6 | 0.3 | 1.2 |

R-PPP | 18.1 | 9.1 | 19.3 | 0.6 | 0.4 | 1.5 |

E-PPP | 11.4 | 6.7 | 18.0 | 0.6 | 0.5 | 1.3 |

C-PPP | 15.3 | 9.1 | 16.4 | 0.7 | 0.4 | 1.3 |

GR-PPP | 9.4 | 4.6 | 10.3 | 0.4 | 0.3 | 1.2 |

GE-PPP | 8.2 | 4.4 | 10.5 | 0.4 | 0.4 | 1.1 |

GC-PPP | 8.5 | 4.3 | 10.0 | 0.4 | 0.3 | 1.1 |

GJ-PPP | 11.4 | 5.7 | 15.5 | 0.5 | 0.3 | 1.2 |

GRECJ-PPP | 6.9 | 3.1 | 7.1 | 0.3 | 0.3 | 1.1 |

**Table 11.**Static positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with ESA products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 10.3 | 5.4 | 14.5 | 0.4 | 0.2 | 1.1 |

R-PPP | 20.2 | 10.2 | 19.4 | 0.6 | 0.3 | 1.4 |

E-PPP | 11.7 | 6.7 | 17.3 | 0.5 | 0.4 | 1.3 |

C-PPP | 15.8 | 9.9 | 15.4 | 0.4 | 0.4 | 1.0 |

GR-PPP | 8.3 | 3.7 | 9.4 | 0.3 | 0.2 | 1.1 |

GE-PPP | 7.1 | 4.2 | 9.4 | 0.3 | 0.2 | 1.1 |

GC-PPP | 7.1 | 3.8 | 8.6 | 0.3 | 0.3 | 0.9 |

GJ-PPP | 10.2 | 5.3 | 13.9 | 0.4 | 0.2 | 1.1 |

GRECJ-PPP | 5.9 | 2.6 | 6.3 | 0.2 | 0.2 | 1.0 |

**Table 12.**Static positioning accuracy and convergence time of real-time PPP (long-term performance of PPP based on daily observations) with CNES products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 12.1 | 6.7 | 16.3 | 0.7 | 0.9 | 1.3 |

R-PPP | 45.6 | 24.3 | 33.8 | 1.5 | 0.9 | 2.1 |

E-PPP | 14.9 | 11.2 | 23.3 | 0.9 | 1.0 | 1.6 |

C-PPP | 26.8 | 19.4 | 28.1 | 1.5 | 1.0 | 2.3 |

GR-PPP | 11.9 | 6.3 | 13.4 | 0.7 | 0.9 | 1.3 |

GE-PPP | 8.0 | 5.9 | 12.4 | 0.6 | 0.9 | 1.3 |

GC-PPP | 10.4 | 6.3 | 13.6 | 0.7 | 0.8 | 1.2 |

GREC-PPP | 8.7 | 5.2 | 11.2 | 0.6 | 0.8 | 1.3 |

**Table 13.**Kinematic positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with WHU products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 30.8 | 14.3 | 25.7 | 3.4 | 1.7 | 4.3 |

R-PPP | 72.8 | 52.7 | 70.8 | 4.6 | 3.3 | 7.1 |

E-PPP | 19.6 | 18.0 | 43.2 | 5.3 | 4.0 | 7.1 |

C-PPP | 31.1 | 20.4 | 31.8 | 3.1 | 2.3 | 6.0 |

GR-PPP | 12.8 | 5.6 | 11.3 | 1.6 | 1.1 | 3.3 |

GE-PPP | 16.0 | 7.1 | 16.2 | 1.5 | 1.0 | 3.3 |

GC-PPP | 14.3 | 6.4 | 12.9 | 1.2 | 0.9 | 2.9 |

GJ-PPP | 27.7 | 14.0 | 24.1 | 2.9 | 1.4 | 3.7 |

GRECJ-PPP | 8.6 | 3.8 | 8.0 | 1.0 | 0.8 | 2.6 |

**Table 14.**Kinematic positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with GFZ products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 24.1 | 15.2 | 26.1 | 2.7 | 2.2 | 4.4 |

R-PPP | 61.3 | 42.6 | 69.9 | 5.1 | 3.4 | 7.1 |

E-PPP | 17.7 | 13.1 | 33.5 | 4.1 | 2.8 | 6.0 |

C-PPP | 32.1 | 17.5 | 33.2 | 2.9 | 2.1 | 5.7 |

GR-PPP | 11.3 | 6.2 | 11.4 | 1.4 | 1.2 | 3.2 |

GE-PPP | 11.3 | 6.1 | 14.3 | 1.4 | 1.2 | 3.1 |

GC-PPP | 10.8 | 6.2 | 12.1 | 1.2 | 1.0 | 2.8 |

GJ-PPP | 22.0 | 14.9 | 25.5 | 2.2 | 1.9 | 3.7 |

GRECJ-PPP | 8.0 | 4.0 | 8.1 | 1.0 | 0.8 | 2.5 |

**Table 15.**Kinematic positioning accuracy and convergence time of post-processed PPP (long-term performance of PPP based on daily observations) with ESA products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 16.6 | 12.2 | 19.7 | 2.5 | 2.1 | 4.3 |

R-PPP | 63.5 | 48.0 | 82.3 | 5.0 | 3.7 | 7.1 |

E-PPP | 15.4 | 14.5 | 32.0 | 4.1 | 2.8 | 6.1 |

C-PPP | 29.9 | 20.2 | 32.8 | 2.8 | 2.2 | 5.3 |

GR-PPP | 9.8 | 5.0 | 9.9 | 1.4 | 1.1 | 3.3 |

GE-PPP | 9.4 | 5.3 | 12.1 | 1.2 | 1.0 | 3.1 |

GC-PPP | 9.6 | 5.8 | 10.8 | 0.9 | 0.9 | 2.7 |

GJ-PPP | 16.1 | 12.9 | 19.2 | 2.0 | 1.8 | 3.8 |

GRECJ-PPP | 6.8 | 3.3 | 7.8 | 1.1 | 0.8 | 2.6 |

**Table 16.**Kinematic positioning accuracy and convergence time of real-time PPP (long-term performance of PPP based on daily observations) with CNES products for different system combinations using the datasets from 29 stations spanning a week.

System Combination | Convergence Time (min) | Positioning Accuracy (cm) | ||||
---|---|---|---|---|---|---|

East | North | Up | East | North | Up | |

G-PPP | 19.8 | 13.5 | 22.7 | 3.3 | 2.6 | 5.2 |

R-PPP | 82.7 | 68.3 | 98.0 | 7.3 | 4.6 | 9.8 |

E-PPP | 19.5 | 20.7 | 39.1 | 5.1 | 4.0 | 7.8 |

C-PPP | 52.7 | 35.1 | 59.4 | 5.8 | 4.4 | 9.0 |

GR-PPP | 18.4 | 9.4 | 17.3 | 2.6 | 2.3 | 4.5 |

GE-PPP | 11.9 | 8.4 | 17.6 | 2.0 | 1.8 | 4.0 |

GC-PPP | 14.3 | 10.0 | 16.1 | 2.3 | 1.8 | 4.3 |

GREC-PPP | 11.5 | 6.9 | 13.0 | 1.7 | 1.6 | 3.6 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, X.; Pan, L.
Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers. *Remote Sens.* **2021**, *13*, 3905.
https://doi.org/10.3390/rs13193905

**AMA Style**

Li X, Pan L.
Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers. *Remote Sensing*. 2021; 13(19):3905.
https://doi.org/10.3390/rs13193905

**Chicago/Turabian Style**

Li, Xuanping, and Lin Pan.
2021. "Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers" *Remote Sensing* 13, no. 19: 3905.
https://doi.org/10.3390/rs13193905