Monitoring Large-Scale Restoration Interventions from Land Preparation to Biomass Growth in the Sahel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Verification of Mechanised Ploughing Using SAR Data
2.3. Medium to Long-Term Monitoring of Vegetation Growth
3. Results
3.1. Analyses and Interpretation of Radar Images
3.2. Analyses of the Great Green Wall Restoration Plots
3.3. Monitoring of Biomass Growth in the Restoration Plots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harmonised Regional Strategy for Implementation of the “Great Green Wall Initiative of the Sahara and the Sahel”. 2012. Available online: http://www.fao.org/fileadmin/templates/europeanunion/pdf/harmonized_strategy_GGWSSI-EN_.pdf (accessed on 15 June 2021).
- Cassar, G.; Emsley, D.; Fox, J.; Glastone, J.; Hingorani, S.; Rowe, C.; Stolle, F. How Monitoring Can Spur Investment in Land Restoration. 2021. Available online: https://www.forbes.com/sites/worldeconomicforum/2021/06/03/how-monitoring-can-spur-investment-in-land-restoration/ (accessed on 15 July 2021).
- Berrahmouni, N.; Laestadius, L.; Martucci, A.; Mollicone, D.; Patriarca, C.; Sacande, M. Building Africa’s Great Green Wall. Restoring Degraded Drylands for Stronger and More Resilient Communities. 2016. Available online: http://www.fao.org/3/i6476en/i6476en.pdf (accessed on 12 June 2021).
- Bey, A.; Díaz, A.S.-P.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect earth: Land use and land cover assessment through augmented visual interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- Ceci, P.; Cicatiello, C.; Monforte, L.; Blasi, E.; Franco, S.; Branca, G.; Scarascia-Mugnozza, G. Household livelihoods and the uptake of improved forest management practices: A case study in Guinea. Int. For. Rev. 2018, 20, 436–451. [Google Scholar] [CrossRef]
- Chokkalingam, U.; Sabogal, C.; Almeida, E.; Carandang, A.P.; Gumartini, T.; De Jong, W.; Brienza, S.; Lopez, A.M.; Nawir, A.A.; Wibowo, L.R.; et al. Local participation, livelihood needs, and institutional arrangements: Three keys to sustainable rehabilitation of degraded tropical forest lands. In Forest Restoration in Landscapes: Byond Planting Trees; Springer: New York, NY, USA, 2005; pp. 405–414. [Google Scholar] [CrossRef]
- DFID. Sustainable Livelihoods Guidance Sheets. Department for International Development. 2000. Available online: http://www.livelihoods.org/info/info_guidancesheets.html (accessed on 8 March 2021).
- Ballard, T.J.; Kepple, A.W.; Cafiero, C. The Food Insecurity Experience Scale: Development of a Global Standard for Monitoring Hunger Worldwide; FAO: Rome, Italy, 2013. [Google Scholar]
- Trees, Forests and Land Use in Drylands: The First Global Assessment—Full Report; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca7148en/CA7148EN.pdf (accessed on 1 March 2021).
- Gerlein-Safdi, C.; Keppel-Aleks, G.; Wang, F.; Frolking, S.; Mauzerall, D.L. Satellite monitoring of natural reforestation efforts in China’s drylands. One Earth 2020, 2, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Envir. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lindenmayer, D. Improving restoration programs through greater connection with ecological theory and better monitoring. Front. Ecol. Evol. 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Meli, P.; Martínez-Ramos, M.; Rey-Benayas, J.M.; Carabias, J. Combining ecological, social, and technical criteria to select species for forest restoration. Appl. Veg. Sci. 2014, 17, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Schucknecht, A.; Fasbender, D.; Rembold, F.; Fava, F.; Mauclaire, M.; Goffner, D.; Di Lucchio, L.M.; Leonardi, U. Remote sensing monitoring of land restoration interventions in semi-arid environments with a before–after control-impact statistical design. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Peake, W.H.; Oliver, T.L. The Response of Terrestrial Surfaces at Microwave Frequencies; Ohio State University, Electroscience Laboratory: Columbus, OH, USA, 1971; pp. 2440–2447. Available online: https://apps.dtic.mil/sti/pdfs/AD0884106.pdf (accessed on 5 May 2021).
- Richards, J.A. Remote Sensing with Imaging Radar; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Sacande, M.; Berrahmouni, N. Community participation and ecological criteria for selecting species and restoring natural capital with native species in the Sahel. Restor. Ecol. 2016, 24, 479–488. [Google Scholar] [CrossRef]
- Sacande, M.; Parfondry, M.; Cicatiello, C. Restoration in Action Against Desertification. A Manual for Large-Scale Restoration to Support Rural Communities’ Resilience in Africa’s Great Green Wall; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Sacande, M.; Parfondry, M.; Martucci, A. Diversity of restoration plants for Africa’s Great Green Wall implementation. Nat. Faune 2020, 33, 89–100. Available online: http://www.fao.org/3/ca8253en/ca8253en.pdf (accessed on 5 March 2021).
- Shang, J.; Liu, J.; Poncos, V.; Geng, X.; Qian, B.; Chen, Q.; Dong, T.; Macdonald, D.; Martin, T.; Kovacs, J.; et al. Detection of crop seeding and harvest through analysis of time-series Sentinel-1 interferometric SAR data. Remote Sens. 2020, 12, 1551. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Ullmann, T.; Stauch, G. Surface roughness estimation in the orog nuur basin (Southern mongolia) using sentinel-1 SAR time series and ground-based photogrammetry. Remote Sens. 2020, 12, 3200. [Google Scholar] [CrossRef]
- UNCCD (UN Convention to Combat Desertification). The Great Green Wall: Implementation Status and Way Ahead to 2030; UNCCD Publication: Bonn, Germany, 2020. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. Current Status, Future Trends, and Practical Considerations; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar] [CrossRef]
- Zucca, C.; Wu, W.; Dessena, L.; Mulas, M. Assessing the effectiveness of land restoration interventions in dry lands by multitemporal remote sensing—a case study in ouled DLIM (Marrakech, Morocco). Land Degrad. Dev. 2015, 26, 80–91. [Google Scholar] [CrossRef]
Peak Radar | Burkina Faso | Niger | Nigeria | Senegal | Total | ||
---|---|---|---|---|---|---|---|
Detected plots (count) | 49 | 8 | 0 | 1 | 58 | 52% | 111 Plots |
Undetected plots (count) | 35 | 2 | 8 | 8 | 53 | 48% | |
Areas detected (ha) | 3093.6 | 907.1 | 0.0 | 247.4 | 4248.1 | 60% | 7111.3 ha |
Areas undetected (ha) | 782.0 | 165.9 | 436.2 | 1479.2 | 2863.3 | 40% |
Selected Priority Native Species | Life Form | Main Uses by Communities | Average Seed Germination (%) | Planted Form in the Restoration Plots |
---|---|---|---|---|
Acacia nilotica | Shrub | Gum, fodder | 100 | Seeds and seedlings |
Acacia senegal | Shrub | Gum arabic, bees, forage | 100 | seeds and seedlings |
Acacia seyal | Tree | Gum, fodder | 95 | Seeds and seedlings |
Acacia tortilis | Shrub | Gum, fodder | 100 | Seeds and seedlings |
Adansonia digitata | Tree | Food, medicine | 80 | Seeds and seedlings |
Alysicarpus ovalifolius | Grass | Feed, fodder | 60 | Seeds (10 kg/ha) |
Andropogon gayanus | Grass | Roofing, forage | 100 | Seeds (5 kg/ha) |
Anogeissus leiocarpa | Tree | Wood, medicine, dyeing | 90 | seedlings |
Balanites aegyptiaca | Tree | Food, oils, medicine, fodder | 100 | Seeds and seedlings |
Bauhinia rufescens | Shrub | Fodder, fence, rope | 100 | Seeds and seedlings |
Bombax costatum | Tree | Food, fodder, mattress | 58 | Seeds and seedlings |
Ceiba pentandra | Tree | Wood, food, mattress | 98 | seedlings |
Cenchrus biflorus | Grass | Fodder | 35 | Seeds (5 kg/ha) |
Combretum glutinosum | Shrub | Fodder. Wood, medicine | 95 | seedlings |
Combretum micranthum | Shrub | Fodder, food, medicine | 100 | seedlings |
Cymbopogon giganteus | Grass | Medicine, beverage, pesticide | 56 | Seeds (5 kg/ha) |
Detarium microcarpum | Tree | Food, fodder | 70 | Seeds and seedlings |
Digitaria exilis | Grass | Food, feed | − | Seeds (0.5 kg/ha) |
Digitaria horizontalis | Grass | Food, feed | − | Seeds (0.5 kg/ha) |
Eragrostis tremula | Grass | Fodder, forage | 75 | Seeds (0.5 kg/ha) |
Euphorbia balsamifera | Shrub | Living Fence, medicine | 25 | Seedlings |
Faidherbia albida | Tree | Fodder, medicine, wood | 100 | Seeds and seedlings |
Grewia bicolour | Shrub | Food, medicine, feed | 3 | seedlings |
Khaya senegalensis | Tree | Wood, medicine, pesticide, fodder | 100 | seedlings |
Lannea microcarpa | Tree | Food, rope | 80 | seedlings |
Panicum laetum | Grass | Food, feed | 20 | Seeds (5 kg/ha) |
Parkia biglobosa | Tree | Food, medicine, bees | 100 | seedlings |
Pennisetum pedicellatum | Grass | Fodder | 100 | Seeds (0.5 kg/ha) |
Prosopis africana | Tree | Food, medicine, wood | 100 | seedlings |
Ptérocarpus erinaceus | Tree | Wood, medicine, bees | 95 | seedlings |
Sclerocarya birrea | Tree | Food, feed, wood | 80 | seeds and seedlings |
Senna tora | Grass | Fodder | 30 | Seeds (5 kg/ha) |
Strychnos spinosa | Shrub | Medicine, pesticide, fodder, wood | 89 | seedlings |
Stylosanthes hamata | Grass | Fodder | 90 | Seeds |
Ziziphus mauritiana | Shrub | Food, fence, medicine | 87 | Seeds and seedlings |
Zornia glochidiata | Grass | Fodder | 55 | Seeds (5 kg/ha) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacande, M.; Martucci, A.; Vollrath, A. Monitoring Large-Scale Restoration Interventions from Land Preparation to Biomass Growth in the Sahel. Remote Sens. 2021, 13, 3767. https://doi.org/10.3390/rs13183767
Sacande M, Martucci A, Vollrath A. Monitoring Large-Scale Restoration Interventions from Land Preparation to Biomass Growth in the Sahel. Remote Sensing. 2021; 13(18):3767. https://doi.org/10.3390/rs13183767
Chicago/Turabian StyleSacande, Moctar, Antonio Martucci, and Andreas Vollrath. 2021. "Monitoring Large-Scale Restoration Interventions from Land Preparation to Biomass Growth in the Sahel" Remote Sensing 13, no. 18: 3767. https://doi.org/10.3390/rs13183767
APA StyleSacande, M., Martucci, A., & Vollrath, A. (2021). Monitoring Large-Scale Restoration Interventions from Land Preparation to Biomass Growth in the Sahel. Remote Sensing, 13(18), 3767. https://doi.org/10.3390/rs13183767