Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data
2.3. Spatial and Temporal Variability in Turbidity
2.4. Metocean Drivers of Turbidity
2.4.1. Individual Locations in the Gulf
2.4.2. Regional Analysis of Turbidity Drivers in the Gulf Using Every Pixel of the Map (Each Turbidity Data Point)
2.4.3. Environmental Variables
Wave Power
Wind Forcing
Tides and Sea Surface Height
Rainfall
Southern Oscillation Index (SOI) and Indian Dipole Mode (IDM)
3. Results
3.1. Spatial and Temporal Variability in Turbidity
3.2. Time Series Analysis of Spot Locations
3.3. Metocean Drivers of Turbidity
3.3.1. Location Analyses
El Niño–Southern Oscillation and Indian Ocean Dipole
3.3.2. Regional Analyses
4. Discussion
4.1. Drivers of Spatial Variability in Turbidity
4.1.1. Northeast Coast
4.1.2. East Coast
4.1.3. Body of Gulf
4.1.4. Central and East Gulf
4.1.5. West Gulf and Coast
4.1.6. Southern Gulf
4.2. Climate Change and Turbidity
- Turbidity in the Exmouth Gulf has a strong relationship to ENSO and the synoptic influences that are driven by extreme La Niña phases.
- Turbidity in some Gulf habitats increases under pIOD events, meaning that more extreme pIOD (as predicted) could lead to more periods of higher turbidity.
- Wind, wave energy and sea level maxima are highly correlated to turbidity in many regions of the Gulf. Under climate change these processes are likely to increase, with more extreme La Niña and an increase in the frequency of the most intense cyclones.
- Extreme El Niño and extreme pIOD events are associated with drought conditions across Australia. The Pilbara Rangelands are a terrestrial source of aeolian sediment deposition in the Gulf, and with increased drought, there will be increased availability of loose sediments atop the soil crust, potentially leading to an increase in intensity of dust storms and turbidity during extreme wind events.
- Future work could attempt to quantify the climate change impacts to regional water quality by applying statistical methods that incorporate climate circulation models and emission scenarios [104] and machine learning approaches [105,106] to long-term hydrological data such as that presented in this study.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location | Corrected Zc | Tau | New p-Value | Sens Slope | Trend |
---|---|---|---|---|---|
Ashburton D. | −2.674 | −0.059 | 0.008 | −0.0002 | Decreasing |
Locker Pt. | 1.723 | 0.042 | 0.084 | 0.00019 | No sig. trend |
Gales | 0.730 | 0.032 | 0.465 | 0.00005 | No sig. trend |
Giralia | 0.636 | 0.034 | 0.524 | 0.00004 | No sig. trend |
Hope | 0.251 | 0.011 | 0.801 | 0.00001 | No sig. trend |
Eva Is. | 1.716 | 0.017 | 0.003 | 0.000004 | Increasing |
Central Gulf | 1.652 | 0.016 | 0.102 | 0.000007 | No sig. trend |
South Gulf | 1.256 | 0.045 | 0.208 | 0.00002 | No sig. trend |
West Gulf | 4.599 | 0.056 | <0.0001 | 0.00002 | Increasing |
Whalebone | 2.646 | 0.065 | 0.008 | 0.00003 | Increasing |
Rest | 1.732 | 0.052 | 0.083 | 0.00004 | No sig. trend |
Ashburton Is. | −0.706 | −0.031 | 0.480 | −0.00002 | Ni sig. trend |
Exmouth Reef | 1.716 | 0.086 | 0.086 | 0.00002 | No sig. trend |
Location | SOI + 0 | SOI + 1 | SOI + 2 | SOI + 3 | SOI + 4 | SOI + 5 | SOI + 6 | SOI + 7 | SOI + 8 | SOI + 9 | SOI + 10 | SOI + 11 | SOI + 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ashburton Delta | −0.123 | −0.134 | −0.035 | −0.084 | 0.044 | 0.097 | 0.104 | 0.099 | 0.171 | 0.085 | 0.034 | 0.009 | −0.059 |
Gales Bay | 0.101 | 0.161 | 0.201 | 0.197 | 0.228 | 0.302 | 0.353 | 0.348 | 0.397 | 0.406 | 0.373 | 0.425 | 0.286 |
Giralia | 0.077 | 0.142 | 0.119 | 0.137 | 0.167 | 0.266 | 0.331 | 0.324 | 0.38 | 0.386 | 0.374 | 0.361 | 0.267 |
Hope Is | 0.175 | 0.199 | 0.237 | 0.216 | 0.293 | 0.367 | 0.417 | 0.425 | 0.451 | 0.436 | 0.45 | 0.372 | 0.324 |
Central Gulf | −0.05 | −0.026 | 0.004 | −0.087 | −0.073 | 0.042 | −0.002 | 0.003 | 0.008 | 0.038 | 0.096 | −0.001 | 0.025 |
Eva | 0.021 | 0.071 | 0.139 | 0.06 | 0.144 | 0.243 | 0.179 | 0.203 | 0.147 | 0.136 | 0.147 | 0.015 | 0.023 |
Rest Bay | 0.046 | −0.049 | −0.052 | −0.157 | −0.119 | −0.048 | −0.036 | −0.046 | 0.004 | 0.036 | 0.105 | 0.052 | 0.09 |
Exmouth Reef | −0.001 | 0.089 | 0.124 | 0.095 | 0.182 | 0.24 | 0.21 | 0.222 | 0.166 | 0.166 | 0.194 | 0.057 | 0.028 |
Open Water | −0.15 | −0.103 | −0.083 | −0.141 | −0.057 | 0.061 | 0.015 | 0.087 | 0.092 | 0.087 | 0.128 | 0.119 | 0.161 |
Ashburton Is | 0.079 | 0.026 | 0.042 | −0.069 | −0.068 | −0.08 | −0.13 | −0.125 | −0.117 | −0.17 | −0.071 | −0.154 | −0.068 |
IDM | −0.124 | −0.142 | −0.201 | −0.1 | 0.004 | 0.081 | 0.167 | 0.255 | 0.291 | 0.266 | 0.255 | 0.277 | 0.208 |
Location | IDM + 0 | IDM + 1 | IDM + 2 | IDM + 3 | IDM + 4 | IDM + 5 | IDM + 6 | IDM + 7 | IDM + 8 | IDM + 9 | IDM + 10 | IDM + 11 | IDM + 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ashburton Delta | 0.042 | −0.021 | −0.145 | −0.279 | −0.283 | −0.175 | −0.132 | −0.04 | 0.012 | 0.143 | 0.209 | 0.195 | 0.107 |
Gales Bay | 0.319 | 0.27 | 0.189 | 0.073 | 0.021 | 0.054 | −0.022 | −0.05 | −0.032 | −0.003 | 0.079 | 0.139 | 0.187 |
Giralia | 0.297 | 0.252 | 0.159 | 0.031 | −0.053 | −0.048 | −0.09 | −0.117 | −0.101 | −0.057 | 0.023 | 0.101 | 0.176 |
Hope Is | 0.249 | 0.22 | 0.141 | 0.052 | −0.009 | 0.017 | −0.035 | −0.068 | −0.071 | −0.047 | 0.015 | 0.071 | 0.131 |
Central Gulf | 0.15 | 0.131 | 0.036 | −0.018 | −0.001 | 0.092 | 0.1 | 0.092 | −0.01 | 0.006 | 0.062 | 0.068 | 0.042 |
Eva | 0.078 | 0.024 | −0.056 | −0.094 | −0.057 | 0.037 | 0.084 | 0.067 | 0.09 | 0.192 | 0.219 | 0.138 | 0.027 |
Rest Bay | 0.119 | 0.175 | 0.183 | 0.102 | 0.127 | 0.265 | 0.25 | 0.192 | 0.017 | −0.053 | −0.063 | −0.092 | −0.089 |
Exmouth Reef | 0.17 | 0.065 | −0.058 | −0.155 | −0.16 | −0.062 | 0 | 0.027 | 0.017 | 0.108 | 0.214 | 0.211 | 0.162 |
Open Water | 0.308 | 0.249 | 0.191 | 0.05 | −0.02 | −0.015 | −0.021 | −0.03 | −0.57 | −0.047 | 0.02 | 0.104 | 0.143 |
Ashburton Is | 0 | −0.017 | −0.053 | −0.007 | −0.047 | 0.118 | 0.122 | −0.021 | −0.115 | −0.095 | −0.074 | −0.036 | −0.063 |
References
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Crain, C.M.; Halpern, B.S.; Beck, M.W.; Kappel, C.V. Understanding and managing human threats to the coastal marine environment. Ann. N. Y. Acad. Sci. 2009, 1162, 39–62. [Google Scholar] [CrossRef]
- Duarte, C.M.; Dennison, W.C.; Orth, R.J.W.; Carruthers, T.J.B. The Charisma of Coastal Ecosystems: Addressing the Imbalance. Estuar. Coasts 2008, 31, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, S.; Bindoff, N.L.; Phillips, H.E.; Feng, M. Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nat. Commun. 2020, 11, 2008. [Google Scholar] [CrossRef] [Green Version]
- Dove, S.G.; Kline, D.I.; Pantos, O.; Angly, F.E.; Tyson, G.W.; Hoegh-Guldberg, O. Future reef decalcification under a business-as-usual CO(2) emission scenario. Proc. Natl. Acad. Sci. USA 2013, 110, 15342–15347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Dobrynin, M.; Murawski, J.; Baehr, J.; Ilyina, T. Detection and Attribution of Climate Change Signal in Ocean Wind Waves. J. Clim. 2015, 28, 1578–1591. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Ham, Y.-G. El Niño events will intensify under global warming. Nature 2018, 564, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-Q.; Xie, S.-P.; Zheng, X.-T.; Liu, Q. Indian Ocean Dipole response to global warming: A multi-member study with CCSM4. J. Ocean Univ. China 2013, 12, 209–215. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201. [Google Scholar] [CrossRef]
- Evans, R.D.; Wilson, S.K.; Fisher, R.; Ryan, N.M.; Babcock, R.; Blakeway, D.; Bond, T.; Dorji, P.; Dufois, F.; Fearns, P.; et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 2020, 268, 110666. [Google Scholar] [CrossRef]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Erftemeijer, P.L.; Riegl, B.; Hoeksema, B.W.; Todd, P.A. Environmental impacts of dredging and other sediment disturbances on corals: A review. Mar. Pollut. Bull. 2012, 64, 1737–1765. [Google Scholar] [CrossRef] [PubMed]
- Post, A.L.; Wassenberg, T.J.; Passlow, V. Physical surrogates for macrofaunal distributions and abundance in a tropical gulf. Mar. Fresh. Res. 2006, 57, 469–483. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Lott, C.; Fabricius, K.E. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J. Exp. Mar. Biol. Ecol. 2006, 336, 18–32. [Google Scholar] [CrossRef]
- Fisher, R.; Bessell-Browne, P.; Jones, R. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat. Comm. 2019, 10, 2346. [Google Scholar] [CrossRef] [Green Version]
- Bendix, J.; Wiley, J.J.; Commons, M.G. Intermediate disturbance and patterns of species richness. Phys. Geogr. 2017, 38, 393–403. [Google Scholar] [CrossRef]
- Morgan, K.M.; Perry, C.T.; Johnson, J.A.; Smithers, S.G. Nearshore Turbid-Zone Corals Exhibit High Bleaching Tolerance on the Great Barrier Reef Following the 2016 Ocean Warming Event. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Jordán-Garza, A.G.; González-Gándara, C.; Salas-Pérez, J.J.; Morales-Barragan, A.M. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz. Cont. Shelf Res. 2017, 138, 32–40. [Google Scholar] [CrossRef]
- Zweifler, A.; O’Leary, M.; Morgan, K.; Browne, N.K. Turbid Coral Reefs: Past, Present and Future—A Review. Diversity 2021, 13, 251. [Google Scholar] [CrossRef]
- Larcombe, P.; Carter, R. Cyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: A review. Quat. Sci. Rev. 2004, 23, 107–135. [Google Scholar] [CrossRef]
- Anthony, K.R.N.; Ridd, P.V.; Orpin, A.R.; Larcombe, P.; Lough, J. Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides. Limnol. Oceanogr. 2004, 49, 2201–2211. [Google Scholar] [CrossRef] [Green Version]
- Van Senden, D.; Taylor, D.; Branson, P. Realtime turbidity monitoring and modelling for dredge impact assessment in Darwin Harbour. In Proceedings of the 14th Australasian Port and Harbour Conference, Sydney, Australia, 11–13 September 2013. [Google Scholar]
- Browne, N.; Smithers, S.; Perry, C. Spatial and temporal variations in turbidity on two inshore turbid reefs on the Great Barrier Reef, Australia. Coral Reefs 2013, 32, 195–210. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel, L. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nature Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearns, P.; Greenwood, J.; Chedzey, H.; Dorji, P.; Broomhall, M.; King, E.; Cherukuru, N.; Hardman-Mountford, N.; Antoine, D. Remote Sensing for Environmental Monitoring and Management in the Kimberley. Final. Rep. Project 2017, 1. Available online: http://hdl.handle.net/102.100.100/87570?index=1 (accessed on 11 February 2019).
- Hedley, J.; Roelfsema, C.; Chollett, I.; Harborne, A.; Heron, S.; Weeks, S.; Skirving, W.; Strong, A.; Eakin, C.; Christensen, T. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Dorji, P.; Fearns, P. A Quantitative Comparison of Total Suspended Sediment Algorithms: A Case Study of the Last Decade for MODIS and Landsat-Based Sensors. Remote Sens. 2016, 8, 810. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- NASA. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. In Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Data; AOB.DAAC: Greenbelt, MD, USA. Available online: https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am (accessed on 11 February 2019).
- Oceanica. Marine and Coastal Environment of the Eastern Exmouth Gulf. Available online: https://www.epa.wa.gov.au/sites/default/files/PER_documentation/1295-ERMP-Appendix%207-Marine%20and%20coastal%20environment%20V1-2.pdf2006; (accessed on 11 February 2019).
- Preen, A.R.; Marsh, H.; Lawler, I.R.; Prince, R.I.T.; Shepherd, R. Distribution and Abundance of Dugongs, Turtles, Dolphins and other Megafauna in Shark Bay, Ningaloo Reef and Exmouth Gulf, Western Australia. Wildl. Res. 1997, 24, 185–208. [Google Scholar] [CrossRef]
- Williamson, D.; Hamilton-Smith, E. Cape range and ningaloo reef: A semi-arid karst and coastal area unlike any other. Australasian Cave Karst Manag. 2009, 18, 78–93. [Google Scholar]
- Martín, J.; Puig, P.; Palanques, A.; Giamportone, A. Commercial bottom trawling as a driver of sediment dynamics and deep seascape evolution in the Anthropocene. Anthropocene 2014, 7, 1–15. [Google Scholar] [CrossRef]
- Haslam Mckenzie, F. Delivering enduring benefits from a gas development: Governance and planning challenges in remote Western Australia. Aust. Geogr. 2013, 44, 341–358. [Google Scholar] [CrossRef]
- Chapman, R.; Tonts, M.; Plummer, P. Resource development, local adjustment, and regional policy: Resolving the problem of rapid growth in the Pilbara, Western Australia. J. Rural Dev. 2014, 9, 72–86. [Google Scholar]
- EPA. Potential Cumulative Impacts of the Activities and Developments Proposed for Exmouth Gulf. 2021. Available online: https://www.epa.wa.gov.au/potential-cumulative-impacts-activities-and-developments-proposed-exmouth-gulf (accessed on 20 August 2021).
- Massel, S.; Brickman, R.; Mason, L.; Bode, L. Water circulation and waves in Exmouth Gulf. In Proceedings of the Australian Physical Oceanography Conference, Sydney, Australia; 1997; p. 48. [Google Scholar]
- Semeniuk, V. Development of mangrove habitats along ria shorelines in north and northwestern tropical Australia. Vegetatio 1985, 60, 3–23. [Google Scholar] [CrossRef]
- Cuttler, M.V.; Vos, K.; Branson, P.; Hansen, J.E.; O’Leary, M.; Browne, N.K.; Lowe, R.J. Interannual Response of Reef Islands to Climate-Driven Variations in Water Level and Wave Climate. Remote Sens. 2020, 12, 4089. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Grinham, A.; Adame, M.F.; Penrose, H.M. Elemental composition and productivity of cyanobacterial mats in an arid zone estuary in north Western Australia. Wetl. Ecol. Manag. 2010, 18, 37–47. [Google Scholar] [CrossRef]
- Dufois, F.; Lowe, R.J.; Branson, P.; Fearns, P. Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf. J. Geophys. Res. Oceans 2017, 122, 10225–10244. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.S.; Chan, J.C. Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. Int. J. Climatol. 2012, 32, 190–202. [Google Scholar] [CrossRef]
- Loneragan, N.; Kangas, M.; Haywood, M.; Kenyon, R.; Caputi, N.; Sporer, E. Impact of cyclones and aquatic macrophytes on recruitment and landings of tiger prawns Penaeus esculentus in Exmouth Gulf, Western Australia. Estaur. Coast. Shelf 2013, 127, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Dorji, P.; Fearns, P.; Broomhall, M. A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data. Remote Sens. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- RStudio. Integrated Development for R; PBC: Boston, MA, USA, 2020. [Google Scholar]
- Ruf, T. The Lomb-Scargle periodogram in biological rhythm research: Analysis of incomplete and unequally spaced time-series. Biol. Rhyth. Res. 1999, 30, 178–201. [Google Scholar] [CrossRef]
- VanderPlas, J.T. Understanding the lomb–scargle periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Akaike, H. Factor analysis and AIC. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1987; pp. 371–386. [Google Scholar]
- Branson, P.M.; Sun, C. Wamsi dredging science node: Plume modelling uncertainty-hydrodynamics. In Proceedings of the Coasts & Ports 2017 Conference, Cairns, Australia, 21–23 June 2017; p. 159. [Google Scholar]
- Arfi, R.; Guiral, D.; Bouvy, M. Wind induced resuspension in a shallow tropical lagoon. Estuar. Coast. Shelf 1993, 36, 587–604. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.; Miller, R.; McKee, B.; Leathers, R. Wind-induced bottom sediment resuspension in a microtidal coastal environment. Cont. Shelf Res. 2000, 20, 785–806. [Google Scholar] [CrossRef]
- Philander, S.; Yamagata, T.; Pacanowski, R. Unstable air-sea interactions in the tropics. J. Atmosph. Sci. 1984, 41, 604–613. [Google Scholar] [CrossRef]
- Kug, J.-S.; Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 2006, 19, 1784–1801. [Google Scholar] [CrossRef]
- Wang, H.; Kumar, A.; Murtugudde, R.; Narapusetty, B.; Seip, K.L. Covariations between the Indian Ocean dipole and ENSO: A modeling study. Clim. Dyn. 2019, 53, 5743–5761. [Google Scholar] [CrossRef]
- Condie, S.A.; Andrewartha, J.R. Circulation and connectivity on the Australian North West Shelf. Cont. Shelf Res. 2008, 28, 1724–1739. [Google Scholar] [CrossRef]
- Bailey, M.C.; Hamilton, D.P. Wind induced sediment resuspension: A lake-wide model. Ecol. Model. 1997, 99, 217–228. [Google Scholar] [CrossRef]
- Larsen, L.H.; Sternberg, R.W.; Shi, N.C.; Marsden, M.A.H.; Thomas, L. Field investigations of the threshold of grain motion by ocean waves and currents. Mar. Geol. 1981, 42, 105–132. [Google Scholar] [CrossRef]
- Ward, L.G.; Michael Kemp, W.; Boynton, W.R. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar. Geol. 1984, 59, 85–103. [Google Scholar] [CrossRef]
- Brunskill, G.; Orpin, A.; Zagorskis, I.; Woolfe, K.; Ellison, J. Geochemistry and particle size of surface sediments of Exmouth Gulf, Northwest Shelf, Australia. Cont. Shelf Res. 2001, 21, 157–201. [Google Scholar] [CrossRef]
- McCook, L.; Klumpp, D.; McKinnon, A. Seagrass communities in Exmouth Gulf, Western Australia: A preliminary survey. J. R. Soc. West. Aust. 1995, 78, 81–87. [Google Scholar]
- Gingele, F.X.; De Deckker, P.; Hillenbrand, C.-D. Clay mineral distribution in surface sediments between Indonesia and NW Australia—Source and transport by ocean currents. Mar. Geol. 2001, 179, 135–146. [Google Scholar] [CrossRef] [Green Version]
- McTainsh, G.; Strong, C. The role of aeolian dust in ecosystems. Geomorphology 2007, 89, 39–54. [Google Scholar] [CrossRef]
- Smith, J.; Sullivan, L. Construction and maintenance of embankments using highly erodible soils in the Pilbara, North-Western Australia. Int. J. Geomate 2014, 6, 897–902. [Google Scholar] [CrossRef]
- Bowler, J.M. Aridity in Australia: Age, origins and expression in aeolian landforms and sediments. Earth Sci. Rev. 1976, 12, 279–310. [Google Scholar] [CrossRef]
- McTainsh, G.; O’Loingsigh, T.; Strong, C. Update of Dust Storm Index (DSI) Maps for 2005 to 2010; Atmospheric Environment Research Centre, Griffith University: Brisbane, Queensland, 2011. [Google Scholar]
- Fadlan, A.; Sugianto, D.N.; Zainuri, M. Influence of ENSO and IOD to Variability of Sea Surface Height in the North and South of Java Island. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Shanghai, China, 19–22 October 2017; p. 012021. [Google Scholar]
- Amin, M. Changing mean sea level and tidal constants on the west coast of Australia. Mar. Fresh. Res. 1993, 44, 911–925. [Google Scholar] [CrossRef]
- Dufois, F.; Lowe, R.J.; Rayson, M.D.; Branson, P.M. A numerical study of tropical cyclone-induced sediment dynamics on the Australian North West Shelf. J. Geophys. Res. Oceans 2018, 123, 5113–5133. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R.J.; Cuttler, M.V.; Hansen, J.E. Climatic drivers of extreme sea level events along the coastline of Western Australia. Earth’s Future 2021. [Google Scholar]
- Park, J.-Y.; Kug, J.-S. Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model. Clim. Dyn. 2014, 42, 329–343. [Google Scholar] [CrossRef]
- Pandey, S.; Bhagawati, C.; Dandapat, S.; Chakraborty, A. Surface chlorophyll anomalies associated with Indian Ocean Dipole and El Niño Southern Oscillation in North Indian Ocean: A case study of 2006–2007 event. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef]
- Thushara, V.; Vinayachandran, P. Unprecedented surface chlorophyll blooms in the southeastern Arabian Sea during an extreme negative Indian Ocean Dipole. Geophys. Res. Lett. 2020, 47, e2019GL085026. [Google Scholar] [CrossRef]
- Wiggert, J.D.; Vialard, J.; Behrenfeld, M.J. Basinwide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. Geophys. Monogr. Ser. 2009, 185, 350. [Google Scholar]
- Lal, A.; Hashizume, M.; Hales, S. Indian Ocean Dipole and Cryptosporidiosis in Australia: Short-Term and Nonlinear Associations. Environ. Sci. Technol. 2017, 51, 8119–8127. [Google Scholar] [CrossRef]
- Kleypas, J. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 1996, 15, 153–167. [Google Scholar] [CrossRef]
- Burchard, H.; Baumert, H. The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study. J. Phys. Oceanogr. 1998, 28, 309–321. [Google Scholar] [CrossRef]
- Geyer, W.R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries 1993, 16, 113–125. [Google Scholar] [CrossRef]
- Yellen, B.; Woodruff, J.D.; Ralston, D.K.; MacDonald, D.G.; Jones, D.S. Salt wedge dynamics lead to enhanced sediment trapping within side embayments in high-energy estuaries. J. Geophys. Res. Oceans 2017, 122, 2226–2242. [Google Scholar] [CrossRef]
- Ren, J.; Wu, J. Sediment trapping by haloclines of a river plume in the Pearl River Estuary. Cont. Shelf Res. 2014, 82, 1–8. [Google Scholar] [CrossRef]
- McKinnon, A.; Ayukai, T. Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar. Fresh. Res. 1996, 47, 595–603. [Google Scholar] [CrossRef]
- De Silva Samarasinghe, J.R.; Lennon, G.W. Hypersalinity, flushing and transient salt-wedges in a tidal gulf—An inverse estuary. Estuar. Coast. Shelf 1987, 24, 483–498. [Google Scholar] [CrossRef]
- Orpin, A.R.; Ridd, P.V.; Thomas, S.; Anthony, K.R.; Marshall, P.; Oliver, J. Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments. Mar. Pollut. Bull. 2004, 49, 602–612. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Otis, D.B.; Méndez-Lázaro, P.; Muller-Karger, F.E. Water Quality Drivers in 11 Gulf of Mexico Estuaries. Remote Sens. 2018, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Seers, B.M.; Shears, N.T. Spatio-temporal patterns in coastal turbidity–long-term trends and drivers of variation across an estuarine-open coast gradient. Estuar. Coast. Shelf 2015, 154, 137–151. [Google Scholar] [CrossRef]
- Pattiaratchi, C.; Buchan, S.J. Implications of long-term climate change for the Leeuwin Current. J. R. Soc. West. Aust 1991, 74, 133–140. [Google Scholar]
- Goebbert, K.H.; Leslie, L.M. Interannual variability of northwest Australian tropical cyclones. J. Clim. 2010, 23, 4538–4555. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, C.; Schoellhamer, D.; Stumpf, R.; Lindsay, C. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California. Estuar. Coast. Shelf 2001, 53, 801–812. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; Mcgregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wang, G.; Gan, B.; Wu, L.; Santoso, A.; Lin, X.; Chen, Z.; Jia, F.; Yamagata, T. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 C warming. Nat. Comm. 2018, 9, 1419. [Google Scholar] [CrossRef]
- Wang, G.; Cai, W.; Yang, K.; Santoso, A.; Yamagata, T. A unique feature of the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett. 2020, 47, e2020GL088615. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Yeh, S.-W.; An, S.-I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.-F.; Kug, J.-S.; et al. ENSO and greenhouse warming. Nat. Clim. Change 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Fraser, M.W.; Kendrick, G.A.; Statton, J.; Hovey, R.K.; Zavala-Perez, A.; Walker, D.I. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 2014, 102, 1528–1536. [Google Scholar] [CrossRef]
- Gilmour, J.P.; Cook, K.L.; Ryan, N.M.; Puotinen, M.L.; Green, R.H.; Shedrawi, G.; Hobbs, J.-P.A.; Thomson, D.P.; Babcock, R.C.; Buckee, J.; et al. The state of Western Australia’s coral reefs. Coral Reefs 2019, 38, 651–667. [Google Scholar] [CrossRef]
- Lafratta, A.; Fromont, J.; Speare, P.; Schönberg, C. Coral bleaching in turbid waters of north-western Australia. Mar. Fresh. Res. 2017, 68, 65–75. [Google Scholar] [CrossRef]
- Dee, S.; Cuttler, M.; Cartwright, P.; McIlwain, J.; Browne, N. Encrusters maintain stable carbonate production despite temperature anomalies among two inshore island reefs of the Pilbara, Western Australia. Mar. Environ. Res. 2021, 169, 105386. [Google Scholar] [CrossRef] [PubMed]
- Sharafati, A.; Pezeshki, E. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar catchment in Iran. Theor. Appl. Climatol. 2020, 139, 389–402. [Google Scholar] [CrossRef]
- Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Yaseen, Z.M. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. J. Environ. Chem. Engin. 2021, 9, 104599. [Google Scholar] [CrossRef]
- Shamshirband, S.; Jafari Nodoushan, E.; Adolf, J.E.; Abdul Manaf, A.; Mosavi, A.; Chau, K.W. Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 2019, 13, 91–101. [Google Scholar] [CrossRef] [Green Version]
(a) Correlation (Pearson’s r) between turbidity and metocean processes at each location | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Waves | EW Wind | NS Wind | Td.R (mn) | Td.R (3 day) | Td. Max | MSL | Rain | IDM | ENSO | ENSO Lag | R2 |
Eva | 0.43 | 0.44 | −0.41 | −0.06 | 0.19 | 0.31 | 0.11 | 0.45 | 0.10 | 0 | 0.14 | 0.40 |
Central Gulf | 0.24 | −0.06 | −0.02 | −0.09 | 0.14 | 0.27 | 0.11 | 0.29 | 0.16 | −0.08 | 0.1 | 0.20 |
Ashburton Is. | 0.43 | 0.16 | 0.06 | 0.04 | 0.03 | 0.22 | 0.22 | 0.28 | 0.04 | 0.07 | −0.06 | 0.25 |
Ashburton D. | −0.04 | −0.59 | −0.23 | −0.39 | 0.03 | −0.08 | −0.41 | 0.04 | 0.10 | −0.15 | 0.03 | 0.51 |
Exmouth Reef | 0.44 | −0.39 | −0.25 | −0.15 | 0.1 | 0.11 | −0.1 | 0.34 | 0.20 | −0.02 | 0.18 | 0.38 |
Gales Bay | 0.19 | −0.06 | −0.06 | 0.05 | −0.47 | 0.02 | −0.05 | 0.10 | 0.36 | 0.06 | 0.39 | 0.27 |
Giralia | 0.20 | 0.12 | 0.16 | 0.06 | −0.45 | −0.13 | −0.14 | 0.01 | 0.34 | 0.06 | 0.39 | 0.27 |
Hope Is. | 0.21 | 0.01 | 0.01 | 0.02 | −0.14 | 0.02 | 0.02 | 0.09 | 0.28 | 0.16 | 0.47 | 0.29 |
Locker Pt | 0.13 | −0.64 | −0.27 | −0.20 | −0.03 | −0.05 | −0.31 | 0.12 | 0.10 | −0.07 | 0.05 | 0.51 |
Rest Bay | 0.12 | 0.14 | 0.08 | −0.08 | 0.47 | 0.34 | 0.32 | 0.16 | 0.12 | 0.03 | 0.11 | 0.20 |
South Gulf | 0.39 | 0.07 | −0.17 | 0.02 | 0.23 | 0.43 | 0.46 | 0.34 | 0.07 | 0.11 | 0.23 | 0.41 |
West Gulf | 0.16 | −0.28 | −0.16 | −0.19 | 0.10 | 0.39 | 0.15 | 0.34 | 0.14 | −0.09 | 0.14 | 0.22 |
Whalebone | 0.33 | 0.09 | −0.26 | −0.01 | 0.17 | 0.38 | 0.37 | 0.36 | 0.10 | 0.10 | 0.19 | 0.32 |
(b) Correlation (Pearson’s r) between waves and other metocean processes at each location | ||||||||||||
Wave Location | EW Wind | NS Wind | Td.R (mn) | Td. Max | MSL | Rain | IDM | ENSO | ENSO Lag | |||
Eva Island | −0.13 | −0.29 | 0.23 | 0.28 | 0.23 | 0.46 | −0.08 | 0.23 | 0.10 | |||
Ashburton Delta | 0.13 | −0.18 | 0.32 | 0.28 | 0.34 | 0.38 | −0.09 | 0.26 | 0.11 | |||
Central Gulf | −0.10 | −0.25 | 0.25 | 0.33 | 0.24 | 0.47 | −0.09 | 0.23 | 0.08 | |||
Exmouth Reef | −0.25 | −0.22 | 0.18 | 0.07 | −0.03 | 0.32 | −0.02 | 0.21 | 0.10 | |||
Gales Bay | 0.23 | −0.06 | 0.38 | 0.20 | 0.25 | 0.36 | −0.07 | 0.26 | 0.08 | |||
Giralia | 0.73 | 0.38 | 0.52 | −0.04 | 0.18 | 0.02 | −0.04 | 0.18 | 0.09 | |||
Hope Island | 0.46 | 0.08 | 0.50 | 0.08 | 0.24 | 0.21 | −0.08 | 0.24 | 0.10 | |||
Locker Point | −0.32 | −0.60 | 0.21 | 0.31 | 0.28 | 0.43 | −0.17 | 0.26 | 0.06 | |||
Rest Bay | −0.13 | −0.29 | 0.23 | 0.28 | 0.23 | 0.46 | −0.08 | 0.23 | 0.10 | |||
South Gulf | 0.35 | 0.07 | 0.41 | 0.15 | 0.23 | 0.30 | −0.06 | 0.25 | 0.08 | |||
West Gulf | −0.34 | −0.23 | 0.15 | 0.26 | 0.08 | 0.41 | −0.07 | 0.26 | 0.06 | |||
Whalebone Is. | 0.34 | 0.06 | 0.40 | 0.16 | 0.25 | 0.31 | −0.05 | 0.24 | 0.11 | |||
Ashburton Is. | 0.13 | −0.18 | 0.32 | 0.28 | 0.34 | 0.38 | −0.09 | 0.26 | 0.11 | |||
(c) Correlation (Pearson’s r) between metocean processes (except waves) | ||||||||||||
EW Wind | NS Wind | Td.R (mn) | Td. Max | MSL | Rain | IDM | ENSO | ENSO Lag | ||||
EW. Wind | 1 | 0.65 | 0.38 | −0.28 | 0.06 | −0.34 | 0.08 | −0.02 | 0.04 | |||
NS. Wind | 0.65 | 1 | 0.12 | −0.39 | −0.27 | −0.4 | 0.18 | −0.01 | 0.06 | |||
Tide.Range | 0.38 | 0.12 | 1 | −0.10 | 0.04 | 0.01 | 0.10 | 0.08 | 0.17 | |||
TideMax | −0.28 | −0.39 | −0.1 | 1 | 0.72 | 0.40 | −0.29 | 0.27 | −0.02 | |||
MSL | 0.06 | −0.27 | 0.04 | 0.72 | 1 | 0.32 | −0.29 | 0.48 | 0.04 | |||
Rain | −0.34 | −0.40 | 0.01 | 0.4 | 0.32 | 1 | −0.17 | 0.17 | −0.03 | |||
IDM | 0.08 | 0.18 | 0.1 | −0.29 | −0.29 | −0.17 | 1 | −0.13 | 0.25 | |||
ENSO | −0.02 | −0.01 | 0.08 | 0.27 | 0.48 | 0.17 | −0.13 | 1 | 0.16 | |||
ENSO_lag | 0.04 | 0.06 | 0.17 | −0.02 | 0.04 | −0.03 | 0.25 | 0.16 | 1 |
Whalebone Is | Mean Rank Diff | p-Value | Gales Bay | Mean Rank Diff | p-Value |
---|---|---|---|---|---|
Phase2/Phase 1 | 2.7 | 0.87 | Phase2/Phase 1 | 13.77 | 0.95 |
Phase3/Phase1 | −25.35 | 0.63 | Phase3/Phase1 | −20.13 | 0.95 |
Phase4/Phase1 | 19.09 | 0.63 | Phase4/Phase1 | 22.90 | 0.67 |
Phase2/Phase2 | −28.05 | 0.27 | Phase2/Phase2 | −33.90 | 0.10 |
Phase4/Phase2 | 16.39 | 0.28 | Phase4/Phase2 | 9.13 | 0.95 |
Phase4/Phase3 | 44.44 | 0.02 * | Phase4/Phase3 | 43.03 | 0.02 * |
Waves | EW WInd | NS Wind | Tide Max | Tide Range | MSL | Rain | IDM | SOI | |
---|---|---|---|---|---|---|---|---|---|
PC1 | −0.27 | 0.49 | 0.50 | −0.37 | 0.05 | −0.26 | −0.41 | 0.18 | −0.15 |
PC2 | −0.24 | −0.61 | −0.20 | −0.30 | −0.31 | −0.53 | −0.17 | 0.03 | −0.18 |
PC3 | −0.85 | −0.03 | −0.07 | 0.34 | −0.11 | 0.36 | −0.08 | 0.00 | −0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartwright, P.J.; Fearns, P.R.C.S.; Branson, P.; Cuttler, M.V.W.; O’Leary, M.; Browne, N.K.; Lowe, R.J. Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change. Remote Sens. 2021, 13, 3616. https://doi.org/10.3390/rs13183616
Cartwright PJ, Fearns PRCS, Branson P, Cuttler MVW, O’Leary M, Browne NK, Lowe RJ. Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change. Remote Sensing. 2021; 13(18):3616. https://doi.org/10.3390/rs13183616
Chicago/Turabian StyleCartwright, Paula J., Peter R. C. S. Fearns, Paul Branson, Michael V. W. Cuttler, Michael O’Leary, Nicola K. Browne, and Ryan J. Lowe. 2021. "Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change" Remote Sensing 13, no. 18: 3616. https://doi.org/10.3390/rs13183616
APA StyleCartwright, P. J., Fearns, P. R. C. S., Branson, P., Cuttler, M. V. W., O’Leary, M., Browne, N. K., & Lowe, R. J. (2021). Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change. Remote Sensing, 13(18), 3616. https://doi.org/10.3390/rs13183616