Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Stacking-InSAR
2.3.2. SBAS-InSAR
2.3.3. Automatic Extraction of Effective Deformation Data via Hot Spot Analysis
3. Results and Analyses
3.1. Deformation Rate Map Acquired via InSAR
3.2. Landslide Deformation Rate Map Obtained via Hot Spot Analysis
3.3. Active Landslide Inventory
3.4. Time-Series Monitoring for Typical Landslides
4. Discussion
4.1. Effectiveness of the Hot Spot Analysis Method
4.2. Controlling Factors of Spatial Landslide Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Name | Longitude (°) | Latitude (°) | Length (km) | Width (km) | Distance from Railway (km) | Level of Impact | |
---|---|---|---|---|---|---|---|---|
A | Famudui | 94.95368 | 30.15536 | 2.56 | 1.36 | −68 | 9.2 | High |
B | Bengyibaqu | 95.03041 | 29.99601 | 3.08 | 1.30 | −112 | 8.7 | High |
C-1 | Ruodelong-1 | 95.06279 | 29.94954 | 2.85 | 2.57 | −116 | 13.2 | Medium |
C-2 | Ruodelong-2 | 96.06550 | 29.96675 | 3.32 | 1.66 | −129 | 13.9 | Medium |
D | Xiongba | 98.91216 | 30.60672 | 2.86 | 3.95 | −102 | 8.5 | High |
E | Sela | 98.92901 | 30.58451 | 1.73 | 2.32 | −78 | 10.9 | High |
F | Gongba | 98.91872 | 30.55925 | 3.04 | 1.35 | −105 | 13.6 | High |
G | Guoba | 98.92528 | 30.54212 | 2.33 | 1.04 | −137 | 15.4 | High |
H | Baojiang | 97.66345 | 30.76913 | 1.67 | 1.79 | −90 | 6.5 | Medium |
I | Kaqu | 97.80549 | 30.78462 | 0.93 | 0.62 | −67 | 1.1 | High |
J-1 | Yongqu-1 | 97.74240 | 30.62914 | 2.83 | 1.57 | −72 | 16.2 | Medium |
J-2 | Yongqu-2 | 97.73941 | 30.64867 | 2.52 | 1.49 | −73 | 15.6 | Medium |
K | Laxipu | 97.88711 | 30.70119 | 1.09 | 0.90 | −65 | 8.4 | Medium |
L | Xinjinggou | 102.34174 | 30.05203 | 2.43 | 1.15 | −112 | 13.1 | Medium |
M | Haiziping | 102.29715 | 29.80276 | 1.58 | 1.05 | 69 | 12.9 | Medium |
N | Kuona | 96.44392 | 30.52347 | 0.88 | 1.28 | −85 | 12.2 | Medium |
O | Keji | 96.65205 | 30.42871 | 3.85 | 1.44 | −88 | 0.8 | High |
References
- Peng, J.B.; Cui, P.; Zhuang, J.Q. Challenges to engineering geology of Sichuan—Tibet railway. Chin. J. Rock Mech. Eng. 2020, 39, 2377–2389. (In Chinese) [Google Scholar]
- Zhang, G.Z.; Jiang, L.W.; Song, Z.; Wu, G. Research on the Mountain Disaster and Geological Alignment Fundamental of Sichuan-Tibet Railway Running Through N-S Mountain Area. J. Railw. Eng. Soc. 2016, 33, 21–24. (In Chinese) [Google Scholar]
- Xue, Y.G.; Kong, F.M.; Yang, W.M.; Qiu, D.H.; Su, M.S.; Fu, K.; Ma, X.M. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway. Chin. J. Rock Mech. Eng. 2020, 39, 445–468. (In Chinese) [Google Scholar]
- Guo, C.B.; Zhang, Y.S.; Jiang, L.W.; Shi, J.S.; Meng, W.; Du, Y.B.; Ma, C.T. Discussion on the Environmental and Engineering Geological Problems along the Sichuan-Tibet Railway and Its Adjacent Area. J. Geosci. 2017, 31, 887. (In Chinese) [Google Scholar]
- Li, X.Z.; Cui, Y.; Zhang, X.G.; Zhong, W.; Bian, J.H.; Huang, S.W.; Xu, R.C. Types, Characteristics and Spatial Distribution and Development of Collapse and Sliding Disaster in Sichuan-Tibet Railway. C. Natl. Annu. Meet. Eng. Geol. 2019, 27, 110–120. (In Chinese) [Google Scholar]
- Zhao, C.Y.; Zhang, Q.; Yin, Y.P.; Lu, Z.; Yang, C.S.; Zhu, W.; Li, B. Pre-, co-, and post-rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China. Nat. Hazards Earth Syst. Sci. 2013, 13, 2851–2861. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Ciampalini, A.; Conte, S.D.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: The case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; Fuente, J.D.L. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Darwish, N.; Kaiser, M.; Koch, M.; Gaber, A. Assessing the Accuracy of ALOS/PALSAR-2 and Sentinel-1 Radar Images in Estimating the Land Subsidence of Coastal Areas: A Case Study in Alexandria City, Egypt. Remote Sens. 2021, 13, 1838. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, M.S.; Dong, J.; Xu, Q.; Gong, J.Y. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan. J. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2039–2049. (In Chinese) [Google Scholar]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Liu, C. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. J. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gao, B.; Liu, J.K.; Chen, L.; Huang, H.; Li, J. Early Landslide Detection in the Lancangjiang Region along the Sichuan-Tibet Railway Based on SBAS-InSAR Technology. Geoscience 2020, 35, 64–73. (In Chinese) [Google Scholar]
- Golshani, P.; Maghsoudi, Y.; Sohrabi, H. Relating ALOS-2 PALSAR-2 Parameters to Biomass and Structure of Temperate Broadleaf Hyrcanian Forests. Indian Soc. Remote Sens. J. 2019, 47, 749–761. [Google Scholar] [CrossRef]
- Dun, J.; Feng, W.; Yi, X.; Zhang, G.; Wu, M. Detection and Mapping of Active Landslides before Impoundment in the Baihetan Reservoir Area (China) Based on the Time-Series InSAR Method. Remote Sens. 2021, 13, 3213. [Google Scholar] [CrossRef]
- Guo, C.B.; Tang, J.; Wu, R.A.; Ren, S.Z. Landslide Susceptibility Assessment Based on WOE Model along Jiacha-Langxian County Section of Sichuan—Tibet Railway, China. J. Mt. Res. 2019, 37, 240–251. (In Chinese) [Google Scholar]
- Chen, C.; Tian, L.; Zhu, L.; Zhou, Y. The Impact of Climate Change on the Surface Albedo over the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 2336. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Zhan, S.; Pan, B.; Cai, Y. Environmental geochemical characteristics and the provenance of sediments in the catchment of lower reach of Yarlung Tsangpo River, southeast Tibetan Plateau. J. Catena 2021, 200, 105150. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Zhou, F.; Meng, X.; Lin, Z.; Liu, M. Spatial Analyses and Susceptibility Modeling of Thermokarst Lakes in Permafrost Landscapes along the Qinghai–Tibet Engineering Corridor. Remote Sens. 2021, 13, 1974. [Google Scholar] [CrossRef]
- Wu, J.; Song, X.; Wu, W.; Meng, G.; Ren, Y. Analysis of Crustal Movement and Deformation in Mainland China Based on CMONOC Baseline Time Series. Remote Sens. 2021, 13, 2481. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Yuan, G.X.; Mcsaveney, M.; Ma, F.; Wei, R.Q.; Liao, L.; Du, H. Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault. Eng. Geol. 2020, 268, 105522. [Google Scholar] [CrossRef]
- Wu, C.; Hu, K.; Liu, W.; Wang, H.; Zhang, X. Morpho-sedimentary and stratigraphic characteristics of the 2000 Yigong River landslide dam outburst flood deposits, eastern Tibetan Plateau. J. Geomorphol. 2020, 367, 107293. [Google Scholar] [CrossRef]
- Li, J.; Chen, N.; Zhao, Y.; Liu, M.; Wang, W. A catastrophic landslide triggered debris flow in China’s Yigong: Factors, dynamic processes, and tendency. J. Earth Sci. Res. J. 2020, 24, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiao, Q.; Hu, X.; Li, Z.; Ba, R. Detecting the slope movement after the 2018 Baige Landslides based on ground-based and space-borne radar observations. J. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101949. [Google Scholar] [CrossRef]
- Lyons, S. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. J. Geophys. Res. Solid Earth 2003, 108, B1. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. J. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. J. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Doin, M.P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. J. Geogr. Anal. 2010, 24, 127–145. [Google Scholar]
- Getis, A.; Ord, J.K. Local spatial statistics: An overview. In Spatial Analysis: Modelling in a GIS Environment; GeoInformation International: Cambridge, UK, 1996; pp. 261–277. [Google Scholar]
- Bekaert, D.P.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Ma, S.; Xu, C.; Shao, X.; Xu, X.; Liu, A. A Large Old Landslide in Sichuan Province, China: Surface Displacement Monitoring and Potential Instability Assessment. Remote Sens. 2021, 13, 2552. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, W.; Tian, X.; Zhang, Q.; Zhao, C.; Niu, Y.; Wang, C. Improved DEM Reconstruction Method Based on Multibaseline InSAR. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis–Ord’s hot-and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. J. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Zou, Y.; Wu, F.; Yan, C.; Fan, J.; Zang, M.; Zhang, S.; Wang, R. A Recognition and Geological Model of a Deep-Seated Ancient Landslide at a Reservoir under Construction. Remote Sens. 2017, 9, 383. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Wu, T.; Wu, X.; Hu, G.; Zou, D.; Zhu, X.; Zhao, L.; Li, R.; Xie, C.; Ni, J.; et al. Investigation of a Small Landslide in the Qinghai-Tibet Plateau by InSAR and Absolute Deformation Model. Remote Sens. 2019, 11, 2126. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N. Landslides Information Extraction Using Object-Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning. Remote Sens. 2020, 12, 752. [Google Scholar] [CrossRef] [Green Version]
- Napoli, D.M.; Marsiglia, P.; Martire, D.; Ramondini, M.; Calcaterra, D. Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sens. 2020, 12, 2505. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. J. Landslides 2014, 11, 425–439. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Wang, Q.; Liu, Q.; Yang, D.; Xing, M.; Pei, Y.; Yan, S. Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. J. Arab. J. Geosci. 2016, 9, 1–16. [Google Scholar] [CrossRef]
- Wu, C.H.; Cui, P.; Li, Y.S.; Ayala, I.; Huang, C.; Yi, S.J. Seismogenic fault and topography control on the spatial patterns of landslides triggered by the 2017 Jiuzhaigou earthquake. J. Mt. Sci. 2018, 15, 793–807. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Niu, Q.; Li, H.; Xu, Z. Multiple Data Products Reveal Long-Term Variation Characteristics of Terrestrial Water Storage and Its Dominant Factors in Data-Scarce Alpine Regions. Remote Sens. 2021, 13, 2356. [Google Scholar] [CrossRef]
- Global Precipitation Measurement. Available online: https://gpm.nasa.gov/data/directory (accessed on 31 July 2021).
- Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018, 15, 2357–2372. [Google Scholar] [CrossRef]
Order | Path | Frame | Operation Mode | Number | Time Span |
---|---|---|---|---|---|
1 | 151 | 580 | SM3 | 10 | 18 August 2016–26 September2019 |
2 | 151 | 590 | SM3 | 18 | 8 September 2014–26 September 2019 |
3 | 151 | 590 | SM3 | 14 | 10 February 2014–23 May 2019 |
4 | 151 | 590 | SM3 | 10 | 11 March 2014–11 October 2018 |
5 | 150 | 600 | SM3 | 10 | 18 June 2016–16 May 2020 |
6 | 150 | 600 | SM3 | 9 | 30 July 2016–30 May 2020 |
7 | 150 | 600 | SM3 | 8 | 2 July 2016–2 May 2020 |
8 | 149 | 610 | SM3 | 12 | 11 July 2016–11 May 2020 |
9 | 149 | 600 | SM3 | 12 | 22 February 2016–25 May 2020 |
10 | 149 | 590 | SM3 | 9 | 13 June 2016–27 April 2020 |
11 | 148 | 590 | SM3 | 13 | 17 September 2014–8 May 2019 |
12 | 148 | 590 | SM3 | 8 | 19 July 2017–20 May 2020 |
13 | 148 | 590 | SM3 | 11 | 8 June 2016–22 April 2020 |
14 | 147 | 590 | SM3 | 9 | 12 February 2016–15 May 2020 |
15 | 147 | 590 | SM3 | 9 | 26 February 2016–29 May 2020 |
16 | 147 | 590 | SM1 | 2 | 30 October 2018–28 June 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, W.; Cheng, Y.; Li, Z. Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sens. 2021, 13, 3566. https://doi.org/10.3390/rs13183566
Zhang J, Zhu W, Cheng Y, Li Z. Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sensing. 2021; 13(18):3566. https://doi.org/10.3390/rs13183566
Chicago/Turabian StyleZhang, Jinmin, Wu Zhu, Yiqing Cheng, and Zhenhong Li. 2021. "Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods" Remote Sensing 13, no. 18: 3566. https://doi.org/10.3390/rs13183566
APA StyleZhang, J., Zhu, W., Cheng, Y., & Li, Z. (2021). Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sensing, 13(18), 3566. https://doi.org/10.3390/rs13183566