Study on the Creep-Sliding Mechanism of the Giant Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China
Abstract
:1. Introduction
2. Geology Background
3. Engineering Geological Characteristics of the Xiongba Ancient Landslide
3.1. Development Characteristics of the Landslide
3.1.1. Characteristics of the Source Area (I)
3.1.2. Characteristics of the Platform Area (II)
3.1.3. Characteristics of the Strongly Deformed Frontal Edge Area (III)
3.2. Landslide Volume
4. Methods
4.1. Principles of Surface Deformation Analysis Based on SBAS-InSAR
4.1.1. InSAR Deformation Calculation Principle
4.1.2. SBAS-InSAR Small Baseline Set Deformation Analysis Method
4.2. InSAR Data
4.3. Data Processing Procedures
5. Results
5.1. Overall Landslide Deformation
5.1.1. Analysis of Deformation as a Whole of the Xiongba Ancient Landslide
5.1.2. Deformation Analysis of Typical Sections of the Xiongba Ancient Landslide
5.2. Field Investigation and Verification of the Xiongba Ancient Landslide Deformation
5.2.1. Field Survey of Deformation Characteristics in the H1 Deformation Area
5.2.2. Field Survey of Deformation Characteristics in the H2 Deformation Area
5.3. Analysis of the Deformational Trend of the Xiongba Ancient Landslide
5.3.1. Analysis of the Deformational Trend of the H1 Sliding Body
5.3.2. Analysis of the Deformation Trend of the H2 Deformation Body
6. Discussion
6.1. Discussion on the Overall Deformation Characteristics and Trends
6.2. Discussion on the Influence of the LDLDB Hazard Chain on Downstream Landslide Deformation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.J. Coupling of earth’s endogenic and exogenic geological processes and origins on serious geological disasters. J. Eng. Geol. 2002, 2, 115–117, (In Chinese with English abstract). [Google Scholar]
- Huang, R.Q. Mechanism of large scale landslides in western China. Adv. Earth Sci. 2004, 19, 443–450, (In Chinese with English abstract). [Google Scholar]
- Guo, C.B.; Zhang, Y.S.; Jiang, L.W.; Shi, J.S.; Meng, W.; Du, Y.B.; Ma, C.T. Discussion on the environmental and engineering geological problems along the Sichuan Tibet Railway and its adjacent area. Geoscience 2017, 31, 877–899, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.S.; Wu, R.A.; Guo, C.B.; Wang, L.C.; Yao, X.; Yang, Z.H. Research progress and prospect on reactivation of ancient landslides. Adv. Earth Sci. 2018, 33, 728–740, (In Chinese with English abstract). [Google Scholar]
- Ma, S.; Xu, C.; Shao, X.; Xu, X.; Liu, A. A Large Old Landslide in Sichuan Province, China: Surface Displacement Monitoring and Potential Instability Assessment. Remote Sens. 2021, 13, 2552. [Google Scholar] [CrossRef]
- Long, W.; Chen, J.; Wang, P.F.; Xu, C.; Liu, H.; Sun, J.Z. Formation mechanism and back analysis of paleoseismic parameters of the Temi large-scale ancient landslide in the upper Jinsha River. Earthq. Res. 2015, 38, 568–575, (In Chinese with English abstract). [Google Scholar]
- Li, Y.C.; Chen, J.P.; Zhou, F.J.; Song, S.Y.; Zhang, Y.W.; Gu, F.F.; Cao, C. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 2020, 368, 107351. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, G.; Li, W.L.; He, C.Y.; Dong, X.J.; Guo, C.; Feng, W.K. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3, 2018. J. Eng. Geol. 2018, 26, 129–146, (In Chinese with English abstract). [Google Scholar]
- Deng, J.H.; Gao, Y.J.; Yu, Z.Q.; Xie, H.P. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China. Eng. Sci. Technol. 2019, 51, 9–16, (In Chinese with English abstract). [Google Scholar]
- Wang, L.C.; Wen, M.S.; Feng, Z.; Sun, W.F.; Wei, Y.J.; Li, J.F.; Wang, W.P. Researches on the Baige landslide at Jinshajiang River, Tibet, China. The Chinese, J. Geol. Hazard Control 2019, 30, 5–13, (In Chinese with English abstract). [Google Scholar]
- Xu, X.X.; Ji, L.Y.; Jiang, F.Y.; Zhang, W.T. Study on Current Activity Feature of Jinshajiang Fault Zone Based on GPS and Small Earthquakes. J. Geod. Geodyn. 2020, 40, 1062–1067, (In Chinese with English abstract). [Google Scholar]
- Li, X.; GUO, C.B.; Yang, Z.H.; Liao, W.; Wu, R.A.; Jin, J.J.; He, Y.X. Development characteristics and formation mechanism of the Xiongba giant ancient landsilde in the Jinshajiang tectonic zone. Geoscience 2021, 35, 47–55, (In Chinese with English abstract). [Google Scholar]
- Wu, R.A.; Zhang, Y.S.; Guo, C.B.; Yang, Z.H.; Liu, X.Y. Characteristics and formation mechanisms of the Lagangcun giant ancient landslide in Jiacha, Tibet. Acta Geol. Sin. 2018, 92, 1324–1334, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.S.; Du, G.L.; Guo, C.B.; Li, X.Q.; Ren, S.S.; Wu, R.A. Research on typical geomechanical model of high-position landslides on the Sichuan-Tibet traffic corridor. Acta Geol. Sin. 2021, 95, 605–617, (In Chinese with English abstract). [Google Scholar]
- Fruneau, B.; Achace, J.; Delacourt, C. Observation and modeling of the Saint-Etienne-de-Tinee landslide using SAR interferometry-ScienceDirect. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Usai, S. A least squares database approach for SAR interferometric data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Pearsall, S.H.; McCrodden, B.J.; Townsend, P.A. Adaptive management of flows in the lower Roanoke River, North Carolina, USA. Environ. Manag. 2005, 35, 353–367. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya. Sensors 2008, 8, 3355–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordan, D.; Allasia, P.; Dematteis, N.; Dell’Anese, F.; Vagliasindi, M.; Motta, E. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment. Sensors 2016, 16, 1750. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.Q.; Wang, Y.; Fan, J.H.; Liu, S.W.; Guo, X.F.; Wang, Y. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems. Remote Sens. Land Resour. 2007, 4, 14–22, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.S.; Liu, X.Y.; Yao, X. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River, China. J. Hydraul. Eng. 2020, 51, 545–555, (In Chinese with English abstract). [Google Scholar]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; Michele, M.D.; Bernardie, S.; Cakir, Z. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sens. 2021, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Zhang, L.; Li, M.; Liu, B.; Yan, W. Beijing subway tunnelings and high-speed railway subsidence monitoring with PSInSAR and TerraSAR-X data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Yao, X.; Zhang, Y.S.; Li, L.J.; Ling, S.; Wang, Z.S.; Zhou, Z.K. InSAR-based recognition of slow-moving slop disasters along the Xianshuihe active fault in the Qinghai-Tibetan Plateau. Acta Geol. Sin. 2017, 91, 1694–1705, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Zhang, J.; Luo, Y. Monitoring of surface deformation in Dangxiong using PSInSAR technique. J. Appl. Geod. 2012, 6, 215–220. [Google Scholar] [CrossRef]
- Ge, D.Q.; Yin, Y.P.; Wang, Y.; Zhang, L.; Guo, X.F.; Wang, Y. Seasonal subsidence—Rebound and ground water level changes monitoring by using coherent target InSAR technique: A case study of Dezhou, Shandong. Remote Sens. Land Resour. 2014, 26, 103–109, (In Chinese with English abstract). [Google Scholar]
- Zhao, C.Y.; Zhang, Q.; Zhang, J. Deformation monitoring of ground fissure with SAR interferometry in Qingxu, Shanxi Province. J. Eng. Geol. 2011, 19, 70–75, (In Chinese with English abstract). [Google Scholar]
- Zhou, Z.K.; Yao, X. Tectonic deformation study of Nov.25, 2016 Mw6.6 earthquake in west Kunlun mountain based on InSAR technology. Acta Geol. Sin. 2018, 92, 232–243, (In Chinese with English abstract). [Google Scholar]
- Gostelow, P.; Wasowski, J. Ground surface changes detectable by earth observation and their impact on the stability of slopes. Pol. Geol. Inst. Spec. Pap. 2004, 15, 43–52. [Google Scholar]
- Hilley, G.E.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Li, W.L.; Xu, Q.; Dong, X.J.; Dai, C.; Wang, D. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies. J. Wuhan Univ. 2019, 44, 1342–1354, (In Chinese with English abstract). [Google Scholar]
- Achache, J.; Fruneau, B.; Delacourt, C. Applicability of SAR interferometry for operational monitoring of landslides. Proc. Second. ERS Appl. Workshop. 1996, 383, 165–168. [Google Scholar]
- Xie, M.W.; Wang, Z.F.; Hu, M.; Huang, J.H. The characteristic analysis of D-InSAR data for landslides monitoring in alpine and canyon region. Surv. Mapp. Bull. 2012, 4, 18–21, (In Chinese with English abstract). [Google Scholar]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena valley case study (Central S panish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Calvello, M.; Peduto, D.; Arena, L. Combined use of statistical and D-InSAR data analyses to define the state of activity of slow-moving landslides. Landslides 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Ge, D.; Wang, Y.; Zhang, L.; Zhang, X.; Yan, D.; Man, L. Integrating corner reflectors and PSInSAR technique to monitor regional land subsidence. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Lu, W.D.; Han, C.M.; Yue, X.J.; Zhao, Y.H.; Zhou, G.Y. Land subsidence monitoring in Tianjin with PS-InSAR technique based on Sentinel -1 data. Remote Sens. Technol. Appl. 2020, 35, 416–423, (In Chinese with English abstract). [Google Scholar]
- Usai, S. A New Approach for Long Term Monitoring of Deformations by Differential SAR Interferometry; Delft University of Tech: Delft, The Netherlands, 2001. [Google Scholar]
- Li, Y.S.; Zhang, J.F.; Luo, Y.; Jiang, W.L. Monitoring land deformation using PSInSAR with TerraSAR-X high resolution spotlight SAR images. J. Wuhan Univ. 2012, 37, 1452–1455, (In Chinese with English abstract). [Google Scholar]
- Dai, C.; Li, W.L.; Lu, H.Y.; Yang, F.; Xu, Q.; Jian, J. Landslides detection using InSAR technology, a cast study in Zhouqu County, Gansu Province, China. Geomat. Inf. Sci. Wuhan Univ. 2020, 46, 994–1002, (In Chinese with English abstract). [Google Scholar]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Li, S.S.; Li, Z.W.; Hu, J.; Sun, Q.; Yu, X.Y. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm. J. Geophys. 2013, 56, 1476–1486, (In Chinese with English abstract). [Google Scholar]
- Hu, L.Y.; Zhang, J.F.; Shang, X.Q. SBAS-InSAR Technology and its application in monitoring the crustal deformation. Bull. Inst. Crustal Dyn. 2010, 0, 82–89, (In Chinese with English abstract). [Google Scholar]
- Li, Y.S.; Zhang, J.F.; Li, Z.H.; Luo, Y. Land subsidence in Beijing city from InSAR time series analysis with small baseline subset. J. Wuhan Univ. 2013, 38, 1374–1377, (In Chinese with English abstract). [Google Scholar]
- Dai, K.; Li, Z.H.; Tomás, R.; Liu, G.X.; Yu, B.; Wang, X.W.; Cheng, H.Q.; Chen, J.J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Jin-Woo, K.; Lu, Z.; Kimberly, D. Ongoing deformation of Sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry (Preliminary Results). Remote Sens. 2016, 8, 313. [Google Scholar]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Wen, H. Study on Landslide Recognition in Minjiang Basin Based on MTI Technology; Nanjing Normal University: Nanjing, China, 2015; (In Chinese with English abstract). [Google Scholar]
- Feng, W.K.; Dun, J.W.; Yi, X.Y.; Zhang, G.Q. Deformation analysis of Woda village old landslide in Jinsha river basin using SBAS-InSAR technology. J. Eng. Geol. 2020, 28, 384–393, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.H.; Yang, R.H. The activity characteristics and movement style of Qianjiangping Landslide in the Three Gorges Reservoir region. Chin. J. Geol. Hazard Control 2005, 16, 8–14, (In Chinese with English abstract). [Google Scholar]
- Wang, J.P. Resaerch on formation mechanism and motion characteristics of Lamuajue landslide in Meigu county. Sichuan: Chengdu Univ. Technol. 2016. (In Chinese with English abstract). [Google Scholar]
- Chen, Z.S.; Zhang, X.Q. A hazard-chain of landslide-collapse-debris flow-river stoppage in Wulong county, Sichuan province on April 30, 1994. Mt. Res. 1994, 4, 225–229, (In Chinese with English abstract). [Google Scholar]
- Zhu, S.N.; Yin, Y.P.; Wang, M.; Zhu, M.; Wang, C.H.; Wang, W.P.; Li, J.F.; Zhao, H. Instability mechanism and mitigation countermeasures of long run-out landslide at high location in Jinshajiang suture: A case study of the Sela Landslide in Jinsha River, Tibet. Chin. J. Geotech. Eng. 2021, 43, 688–697, (In Chinese with English abstract). [Google Scholar]
- Yin, Y.P. Study on characteristics and disaster reduction of giant landslides on Bomi-Yigong Expressway in Tibet. Hydrogeol. Eng. Geol. 2000, 4, 8–11, (In Chinese with English abstract). [Google Scholar]
- Liu, W. Study on the characteristics of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet. Chin. J. Geol. Hazard Control 2002, 13, 11–20, (In Chinese with English abstract). [Google Scholar]
- Wang, L.K.; Tao, Z.Y.; Yang, Y.; Ma, Y.; Wang, X. Analysis of satellite image characters of severe storm rainfall during the flood of Yangtze River in 1998. Acta Sci. Nat. Univ. Pekin. 2000, 36, 87–94, (In Chinese with English abstract). [Google Scholar]
- Wan, H.B. Extraordinary mountain slide in Yigong of Xizang and its measures for disaster mitigation. Adv. Water Sci. 2000, 10, 321–324. [Google Scholar]
- Lv, J.T.; Wang, Z.H.; Zhou, C.H. Discussion on the occurrence of Yigong landslide in Tibet. Ear. Sci. J. Chin. Uni. Geosci. 2003, 28, 107–110, (In Chinese with English abstract). [Google Scholar]
- Yu, Z.Q.; Deng, J.H.; Gao, Y.J.; Yang, Z.K.; Ge, H. Analysis on Baige landslide and barrier lake flood disasters in Jinsha River. J. Disaster Prev. Mitig. Eng. 2020, 40, 286–292, (In Chinese with English abstract). [Google Scholar]
SAR Sensor | Sentinel-1A |
---|---|
Orbital direction | Ascending |
Path | 99 |
Frame | 1280 |
Wave band | C |
Radar wavelength/cm | 5.6 |
Incident angle/(°) | 33.85 |
Complementary angle of Incidence/(°) | 56.15 |
Time interval for image acquisition(day) | 12 |
Image acquisition time | 8 October 2017 to 6 June 2020 |
Quantity of captured images | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Yan, Y.; Zhang, Y.; Zhang, X.; Zheng, Y.; Li, X.; Yang, Z.; Wu, R. Study on the Creep-Sliding Mechanism of the Giant Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China. Remote Sens. 2021, 13, 3365. https://doi.org/10.3390/rs13173365
Guo C, Yan Y, Zhang Y, Zhang X, Zheng Y, Li X, Yang Z, Wu R. Study on the Creep-Sliding Mechanism of the Giant Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China. Remote Sensing. 2021; 13(17):3365. https://doi.org/10.3390/rs13173365
Chicago/Turabian StyleGuo, Changbao, Yiqiu Yan, Yongshuang Zhang, Xujiao Zhang, Yueze Zheng, Xue Li, Zhihua Yang, and Ruian Wu. 2021. "Study on the Creep-Sliding Mechanism of the Giant Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China" Remote Sensing 13, no. 17: 3365. https://doi.org/10.3390/rs13173365
APA StyleGuo, C., Yan, Y., Zhang, Y., Zhang, X., Zheng, Y., Li, X., Yang, Z., & Wu, R. (2021). Study on the Creep-Sliding Mechanism of the Giant Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China. Remote Sensing, 13(17), 3365. https://doi.org/10.3390/rs13173365