Field Observations of Breaking of Dominant Surface Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Wave and Wave Breaking Parameters
2.2.1. Waves
2.2.2. Wave Breaking
2.3. Selection of Time Intervals
3. Results
3.1. and Distributions
3.2. Dependencies of
3.3. Dependencies of
3.4. Dominant Wave Breaking Probability
4. Discussion
4.1. Dissipation
4.2. Semi-Empirical Expression for Q
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. One-Dimensional Spectrum Partitioning
Appendix B. Offshore Λ(c)
References
- Monahan, E.; Niocaill, G. Oceanic Whitecaps: And Their Role in Air-Sea Exchange Processes, 1st ed.; Oceanographic Sciences Library 2; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Banner, M.; Peregrine, D. Wave Breaking in Deep Water. Annu. Rev. Fluid Mech. 1993, 25, 373–397. [Google Scholar] [CrossRef]
- Sharkov, E. Breaking Ocean Waves: Geometry, Structure and Remote Sensing; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Babanin, A. Breaking and Dissipation of Ocean Surface Waves; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Bortkovskii, R. Air-Sea Exchange of Heat and Moisture during Storms; Springer: Berlin/Heidelberg, Germany, 1987; p. 194. [Google Scholar] [CrossRef]
- Thorpe, S. Dynamical processes of transfer at the sea surface. Prog. Oceanogr. 1995, 35, 315–352. [Google Scholar] [CrossRef]
- Melville, W. The Role of Surface-Wave Breaking in Air-Sea Interaction. Annu. Rev. Fluid Mech. 1996, 28, 279–321. [Google Scholar] [CrossRef]
- Makin, V.; Kudryavtsev, V. Impact Of Dominant Waves On Sea Drag. Bound.-Layer Meteorol. 2002, 103, 83–99. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Makin, V. Impact of Ocean Spray on the Dynamics of the Marine Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2011, 140, 383–410. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.; Chapron, B.; Makin, V. Impact of wind waves on the air-sea fluxes: A coupled model. J. Geophys. Res. Ocean. 2014, 119, 1217–1236. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.; Hauser, D.; Caudal, G.; Chapron, B. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Zhang, B.; Toporkov, J.V.; Perrie, W. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.N.; Fan, S.; Zhang, B.; Mouche, A.A.; Chapron, B. On Quad-Polarized SAR Measurements of the Ocean Surface. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8362–8370. [Google Scholar] [CrossRef]
- Yurovsky, Y.Y.; Kudryavtsev, V.N.; Grodsky, S.A.; Chapron, B. Ka-Band Radar Cross-Section of Breaking Wind Waves. Remote Sens. 2021, 13, 1929. [Google Scholar] [CrossRef]
- Yurovsky, Y.Y.; Kudryavtsev, V.N.; Grodsky, S.A.; Chapron, B. Sea Surface Ka-Band Doppler Measurements: Analysis and Model Development. Remote Sens. 2019, 11, 839. [Google Scholar] [CrossRef]
- Reale, F.; Dentale, F.; Carratelli, E.P. Numerical Simulation of Whitecaps and Foam Effects on Satellite Altimeter Response. Remote Sens. 2014, 6, 3681–3692. [Google Scholar] [CrossRef] [Green Version]
- Gommenginger, C.; Srokosz, M. Sea state bias—20 years on. In Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, Venice, Italy, 13–18 March 2006 (ESA SP-614, July 2006); Danesy, D., Ed.; ESA Publications Division: Noordwijk, The Netherlands, 2006. [Google Scholar]
- Reale, F.; Dentale, F.; Carratelli, E.P.; Fenoglio-Marc, L. Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sens. 2018, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Quartly, G.D.; Chen, G.; Nencioli, F.; Morrow, R.; Picot, N. An Overview of Requirements, Procedures and Current Advances in the Calibration/Validation of Radar Altimeters. Remote Sens. 2021, 13, 125. [Google Scholar] [CrossRef]
- Anguelova, M.; Webster, F. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P. Foam and Roughness Effects on Passive Microwave Remote Sensing of the Ocean. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2978–2985. [Google Scholar] [CrossRef]
- Anguelova, M.D. Global Whitecap Coverage from Satellite Remote Sensing and Wave Modelling. In Recent Advances in the Study of Oceanic Whitecaps. Twixt Wind and Waves; Vlahos, P., Monahan, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 11; pp. 153–174. [Google Scholar]
- Reul, N.; Chapron, B. A model of sea-foam thickness distribution for passive microwave remote sensing applications. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Reul, N.; Tenerelli, J.; Chapron, B.; Vandemark, D.; Quilfen, Y.; Kerr, Y. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Bowyer, P.J.; MacAfee, A.W. The Theory of Trapped-Fetch Waves with Tropical Cyclones—An Operational Perspective. Weather Forecast. 2005, 20, 229–244. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Golubkin, P.; Chapron, B. A simplified wave enhancement criterion for moving extreme events. J. Geophys. Res. Ocean. 2015, 120, 7538–7558. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar] [CrossRef]
- NOAA/NWS/NCEP/MMAB. User Manual and System Documentation of WAVEWATCHIII Version 6.07; Tech. Note 333; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2019.
- Katsaros, K.; Atakturk, S. Dependence of wave-breaking statistics on wind stress and wave developmen. In Breaking Waves; Banner, M., Grimshaw, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 119–132. [Google Scholar]
- Banner, M.; Babanin, A.; Young, I. Breaking Probability for Dominant Waves on the Sea Surface. J. Phys. Oceanogr. 2000, 30, 3145–3160. [Google Scholar] [CrossRef]
- Babanin, A.; Young, I.; Banner, M. Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res. Ocean. 2001, 106, 11659–11676. [Google Scholar] [CrossRef]
- Banner, M.; Gemmrich, J.; Farmer, D. Multiscale Measurements of Ocean Wave Breaking Probability. J. Phys. Oceanogr. 2002, 32, 3364–3375. [Google Scholar] [CrossRef]
- Phillips, O. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 1985, 156, 505–531. [Google Scholar] [CrossRef]
- Korinenko, A.; Malinovsky, V.; Kudryavtsev, V. Experimental Research of Statistical Characteristics of Wind Wave Breaking. Phys. Oceanogr. 2018, 25, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Korinenko, A.; Malinovsky, V.; Kudryavtsev, V.; Dulov, V. Statistical Characteristics of Wave Breakings and their Relation with the Wind Waves’ Energy Dissipation Based on the Field Measurements. Phys. Oceanogr. 2020, 27. [Google Scholar] [CrossRef]
- Fairall, C.; Bradley, E.; Hare, J.; Grachev, A.; Edson, J. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Earle, M.; Brown, R.; Baker, D.; McCall, J. Nondirectional and Directional Wave Data Analysis Procedures; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Data Buoy Center: Slidell, LA, USA, 1996. Available online: www.ndbc.noaa.gov/wavemeas.pdf (accessed on 2 April 2021).
- Hashimoto, N.; Nagai, T.; Asai, T. Extension of the Maximum Entropy Principle Method for Directional Wave Spectrum Estimation. In Coastal Engineering 1994; 1994; pp. 232–246. [Google Scholar] [CrossRef]
- Johnson, D. DIWASP, a Directional Wave Spectra Toolbox for MATLAB: User Manual; Res. Rep. WP-1601-DJ (V1.1); Centre Water Reseach, University Western Australia: Crawley, WA, Australia, 2002. [Google Scholar]
- Hanson, J.; Phillips, O. Wind Sea Growth and Dissipation in the Open Ocean. J. Phys. Oceanogr. 1999, 29, 1633–1648. [Google Scholar] [CrossRef]
- Toba, Y. Local balance in the air-sea boundary processes. J. Oceanogr. Soc. Jpn. 1973, 29, 209–220. [Google Scholar] [CrossRef]
- Pierson, W.; Moskowitz, L. A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.; Bouws, E.; Carlson, H.; Cartwright, D.; Enke, K.; Ewing, J.; Gienapp, H.; Hasselmann, D.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrogr. Inst. 1973, 8, 1–95. [Google Scholar]
- Rapp, R.; Melville, W. Laboratory measurements of deep-water breaking waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 331, 735–800. [Google Scholar] [CrossRef] [Green Version]
- Stansell, P.; MacFarlane, C. Experimental Investigation of Wave Breaking Criteria Based on Wave Phase Speeds. J. Phys. Oceanogr. 2002, 32, 1269–1283. [Google Scholar] [CrossRef]
- Banner, M.; Peirson, W. Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 2007, 585, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Mironov, A.; Dulov, V. Detection of wave breaking using sea surface video records. Meas. Sci. Technol. 2007, 19, 015405. [Google Scholar] [CrossRef]
- Anguelova, M.; Hwang, P. Using Energy Dissipation Rate to Obtain Active Whitecap Fraction. J. Phys. Oceanogr. 2016, 46, 461–481. [Google Scholar] [CrossRef]
- Monahan, E.; Woolf, D. Comments on “Variations of Whitecap Coverage with Wind stress and Water Temperature”. J. Phys. Oceanogr. 1989, 19, 706–709. [Google Scholar] [CrossRef] [Green Version]
- Bondur, V.; Sharkov, E. Statistical properties of whitecaps on a rough sea. Oceanology 1982, 22, 274–279. [Google Scholar]
- Bouguet, J.Y. Camera Calibration Toolbox for Matlab; Computational Vision at the California Institute of Technology: Pasadena, CA, USA; Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed on 12 July 2021).
- Kitaigorodskii, S. The Physics of Air-Sea Interaction; Israel Program for Scientific Translation Publisher: Jerusalem, Israel, 1973. [Google Scholar]
- Dulov, V.; Kudryavtsev, V.; Skiba, E. On fetch- and duration-limited wind wave growth: Data and parametric model. Ocean Model. 2020, 153, 101676. [Google Scholar] [CrossRef]
- Jessup, A.; Phadnis, K. Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Technol. 2005, 16, 1961–1969. [Google Scholar] [CrossRef]
- Sutherland, P.; Melville, W. Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett. 2013, 40, 3074–3079. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Yurovskaya, M.; Chapron, B. 2D parametric model for surface wave development under varying wind field in space and time. J. Geophys. Res. Ocean. 2021, 126. [Google Scholar] [CrossRef]
- Banner, M.; Morison, R. Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Model. 2010, 33, 177–189. [Google Scholar] [CrossRef]
- Dulov, V.; Kudryavtsev, V.; Bol’Shakov, A. A Field Study of Whitecap Coverage and its Modulations by Energy Containing Surface Waves. In Gas Transfer at Water Surfaces; American Geophysical Union (AGU): Washington, DC, USA, 2002; pp. 187–192. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Huq, P. Effects of Salinity on Surface Lifetime of Large Individual Bubbles. J. Mar. Sci. Eng. 2017, 5, 41. [Google Scholar] [CrossRef]
- Brumer, S.; Zappa, C.; Brooks, I.; Tamura, H.; Brown, S.; Blomquist, B.; Fairall, C.; Cifuentes-Lorenzen, A. Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS. J. Phys. Oceanogr. 2017, 47, 2211–2235. [Google Scholar] [CrossRef]
- Kleiss, J.; Melville, W. Observations of Wave Breaking Kinematics in Fetch-Limited Seas. J. Phys. Oceanogr. 2010, 40, 2575–2604. [Google Scholar] [CrossRef]
- Donelan, M.A.; Pierson, W.J. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. Ocean. 1987, 92, 4971–5029. [Google Scholar] [CrossRef]
- Dulov, V.A.; Korinenko, A.E.; Kudryavtsev, V.N.; Malinovsky, V.V. Modulation of Wind-Wave Breaking by Long Surface Waves. Remote Sens. 2021, 13, 2825. [Google Scholar] [CrossRef]
- Anguelova, M. Complex dielectric constant of sea foam at microwave frequencies. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.; Reul, N.; Meissner, T.; Yueh, S. Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions. J. Phys. Oceanogr. 2019, 49, 2291–2307. [Google Scholar] [CrossRef]
- Melville, W.; Matusov, P. Distribution of breaking waves at the ocean surface. Nature 2002, 417, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Gemmrich, J.; Banner, M.; Garrett, C. Spectrally Resolved Energy Dissipation Rate and Momentum Flux of Breaking Waves. J. Phys. Oceanogr. 2008, 38, 1296–1312. [Google Scholar] [CrossRef]
# | Date (Time in UTC + 3H) | N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 * | 13 October 2018 10:12–10:42 | 17.8 | 77.4 | – | 1.8 | 1.6 × 10−1 | 1.3 × 10−1 | 7.3 × 10−2 | 1.2 × 10−5 | 5.4 × 10−6 | 1.1 × 10−3 | 223 |
2 * | 13 October 2018 10:42–11:08 | 18.1 | 75.5 | – | 2.1 | 1.8 × 10−1 | 1.7 × 10−1 | 1.1 × 10−1 | 5.2 × 10−5 | 3.4 × 10−5 | 3.6 × 10−3 | 750 |
3 * | 14 October 2018 09:05–09:35 | 16.5 | 69.2 | – | 1.6 | 1.5 × 10−1 | 2.7 × 10−1 | 9.4 × 10−2 | 3.1 × 10−6 | 9.7 × 10−7 | 3.0 × 10−4 | 14 |
4 * | 14 October 2018 09:35–10:05 | 17.4 | 65.8 | – | 1.8 | 1.6 × 10−1 | 2.6 × 10−1 | 1.0 × 10−1 | 6.9 × 10−6 | 8.5 × 10−6 | 6.0 × 10−4 | 13 |
5 * | 15 October 2018 09:58–10:28 | 12.0 | 77.0 | – | 1.6 | 2.1 × 10−1 | 5.8 × 10−2 | 8.4 × 10−2 | 2.2 × 10−5 | 7.6 × 10−6 | 1.2 × 10−3 | 413 |
6 * | 15 October 2018 10:28–10:58 | 13.2 | 75.4 | – | 1.8 | 2.1 × 10−1 | 6.2 × 10−2 | 8.7 × 10−2 | 1.6 × 10−5 | 5.1 × 10−6 | 9.0 × 10−4 | 296 |
7 * | 15 October 2018 11:06–11:36 | 14.0 | 76.7 | – | 1.9 | 2.1 × 10−1 | 6.0 × 10−2 | 8.6 × 10−2 | 3.0 × 10−5 | 1.6 × 10−5 | 1.6 × 10−3 | 469 |
8 | 10 September 2019 10:01–10:31 | 13.4 | 90.0 | 81.3 | 2.4 | 2.8 × 10−1 | 3.0 × 10−2 | 1.1 × 10−1 | 4.8 × 10−5 | 1.8 × 10−5 | 1.4 × 10−3 | 313 |
9 | 10 September 2019 10:31–11:01 | 13.4 | 90.0 | 81.9 | 2.4 | 2.8 × 10−1 | 2.3 × 10−2 | 9.7 × 10−2 | 2.3 × 10−5 | 1.2 × 10−5 | 7.0 × 10−4 | 92 |
10 | 10 September 2019 11:01–11:31 | 13.4 | 90.0 | 91.7 | 2.5 | 2.9 × 10−1 | 2.1 × 10−2 | 1.0 × 10−1 | 2.1 × 10−5 | 7.4 × 10−6 | 6.0 × 10−4 | 119 |
11 | 10 September 2019 11:31–11:57 | 13.3 | 90.0 | 93.3 | 2.3 | 2.8 × 10−1 | 2.7 × 10−2 | 1.0 × 10−1 | 1.3 × 10−5 | 3.3 × 10−6 | 4.0 × 10−4 | 112 |
12 | 10 September 2019 12:01–12:31 | 12.8 | 90.0 | 95.1 | 2.2 | 2.7 × 10−1 | 2.9 × 10−2 | 9.7 × 10−2 | 9.9 × 10−6 | 3.0 × 10−6 | 3.0 × 10−4 | 82 |
13 | 10 September 2019 12:31–13:01 | 13.8 | 90.0 | 93.7 | 2.5 | 2.8 × 10−1 | 3.0 × 10−2 | 1.1 × 10−1 | 1.3 × 10−5 | 8.3 × 10−6 | 4.0 × 10−4 | 70 |
14 | 10 September 2019 13:01–13:31 | 14.8 | 90.0 | 91.7 | 2.5 | 2.7 × 10−1 | 3.8 × 10−2 | 1.1 × 10−1 | 1.9 × 10−5 | 9.3 × 10−6 | 6.0 × 10−4 | 74 |
15 | 11 September 2019 11:30–12:00 | 14.7 | 90.0 | 87.8 | 2.3 | 2.4 × 10−1 | 6.3 × 10−2 | 1.2 × 10−1 | 5.7 × 10−5 | 2.8 × 10−5 | 2.2 × 10−3 | 317 |
16 | 11 September 2019 12:00–12:30 | 15.0 | 90.0 | 89.8 | 2.2 | 2.3 × 10−1 | 6.5 × 10−2 | 1.1 × 10−1 | 3.3 × 10−5 | 1.9 × 10−5 | 1.4 × 10−3 | 172 |
17 | 11 September 2019 12:30–13:00 | 15.3 | 90.0 | 89.7 | 2.5 | 2.5 × 10−1 | 4.2 × 10−2 | 1.0 × 10−1 | 5.5 × 10−5 | 3.2 × 10−5 | 2.0 × 10−3 | 306 |
18 | 11 September 2019 13:00–13:28 | 15.7 | 90.0 | 90.5 | 2.7 | 2.7 × 10−1 | 4.5 × 10−2 | 1.2 × 10−1 | 1.1 × 10−4 | 5.6 × 10−5 | 3.3 × 10−3 | 534 |
19 | 11 September 2019 13:30–14:00 | 16.2 | 90.0 | 86.0 | 2.6 | 2.5 × 10−1 | 4.9 × 10−2 | 1.1 × 10−1 | 6.6 × 10−5 | 3.9 × 10−5 | 2.4 × 10−3 | 378 |
20 | 11 September 2019 14:00–14:30 | 16.0 | 90.0 | 90.0 | 2.7 | 2.7 × 10−1 | 4.2 × 10−2 | 1.2 × 10−1 | 5.9 × 10−5 | 2.7 × 10−5 | 1.9 × 10−3 | 299 |
21 | 11 September 2019 14:30–15:00 | 15.9 | 90.0 | 92.5 | 2.9 | 2.8 × 10−1 | 3.3 × 10−2 | 1.2 × 10−1 | 7.4 × 10−5 | 4.8 × 10−5 | 2.2 × 10−3 | 354 |
22 | 11 September 2019 15:00–15:30 | 15.6 | 90.0 | 92.3 | 2.7 | 2.7 × 10−1 | 3.7 × 10−2 | 1.1 × 10−1 | 4.1 × 10−5 | 1.9 × 10−5 | 1.2 × 10−3 | 271 |
23 | 11 September 2019 15:30–16:00 | 14.9 | 90.0 | 93.4 | 2.7 | 2.8 × 10−1 | 3.5 × 10−2 | 1.2 × 10−1 | 4.7 × 10−5 | 2.0 × 10−5 | 1.3 × 10−3 | 349 |
# | Date (Time in UTC + 3H) | N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 24 September 2013 11:51–12:11 | 15.1 | 327.8 | 340.3 | 6.0 | 6.2 × 10−1 | 4.3 × 10−3 | 2.1 × 10−1 | 6.0 × 10−3 (4.9 × 10−2) | 1.7 × 10−3 | 3.8 × 10−2 (2.4 × 10−1) | 16,389 |
2 | 24 September 2013 12:18–12:39 | 12.6 | 328.5 | 357.7 | 5.1 | 6.3 × 10−1 | 3.4 × 10−3 | 1.9 × 10−1 | 4.2 × 10−3 (3.5 × 10−2) | 1.0 × 10−3 | 2.6 × 10−2 (1.7 × 10−1) | 13,195 |
3 | 25 September 2013 14:56–15:16 | 16.6 | 339.7 | 342.2 | 5.9 | 5.6 × 10−1 | 8.5 × 10−3 | 2.3 × 10−1 | 3.8 × 10−3 (1.2 × 10−2) | 1.4 × 10−3 | 3.1 × 10−2 (6.9 × 10−2) | 15,725 |
4 | 25 September 2013 15:26–15:46 | 14.8 | 336.6 | 357.0 | 5.3 | 5.6 × 10−1 | 6.0 × 10−3 | 2.0 × 10−1 | 1.5 × 10−3 (4.7 × 10−3) | 4.6 × 10−4 | 1.2 × 10−2 (2.7 × 10−2) | 8323 |
5 | 07 October 2015 16:20–16:35 | 8.7 | 3.7 | 349.0 | 4.1 | 7.4 × 10−1 | 1.3 × 10−3 | 1.6 × 10−1 | 5.2 × 10−4 (1.5 × 10−2) | 7.0 × 10−5 | 2.2 × 10−3 (6.1 × 10−2) | 1085 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivaev, P.D.; Kudryavtsev, V.N.; Korinenko, A.E.; Malinovsky, V.V. Field Observations of Breaking of Dominant Surface Waves. Remote Sens. 2021, 13, 3321. https://doi.org/10.3390/rs13163321
Pivaev PD, Kudryavtsev VN, Korinenko AE, Malinovsky VV. Field Observations of Breaking of Dominant Surface Waves. Remote Sensing. 2021; 13(16):3321. https://doi.org/10.3390/rs13163321
Chicago/Turabian StylePivaev, Pavel D., Vladimir N. Kudryavtsev, Aleksandr E. Korinenko, and Vladimir V. Malinovsky. 2021. "Field Observations of Breaking of Dominant Surface Waves" Remote Sensing 13, no. 16: 3321. https://doi.org/10.3390/rs13163321
APA StylePivaev, P. D., Kudryavtsev, V. N., Korinenko, A. E., & Malinovsky, V. V. (2021). Field Observations of Breaking of Dominant Surface Waves. Remote Sensing, 13(16), 3321. https://doi.org/10.3390/rs13163321