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Abstract: The results of field observations of breaking of surface spectral peak waves, taken from an
oceanographic research platform, are presented. Whitecaps generated by breaking surface waves
were detected using video recordings of the sea surface, accompanied by co-located measurements of
waves and wind velocity. Whitecaps were separated according to the speed of their movement, c, and
then described in terms of spectral distributions of their areas and lengths over c. The contribution
of dominant waves to the whitecap coverage varies with the wave age and attains more than 50%
when seas are young. As found, the whitecap coverage and the total length of whitecaps generated
by dominant waves exhibit strong dependence on the dominant wave steepness, εp, the former
being proportional to ε6

p. This result supports a parameterization of the dissipation term, used in the
WAM model. A semi-empirical model of the whitecap coverage, where contributions of breaking of
dominant and equilibrium range waves are separated, is suggested.

Keywords: spectral peak; dominant waves; breaking waves; video recordings; whitecap coverage;
breaking probability

1. Introduction

The breaking of ocean surface waves has been a subject of extensive scientific inves-
tigations over the past decades, and significant progress in understanding of underlying
physics and statistical properties of breaking waves has already been made [1–4]. Wave
breaking is the principal mechanism of wave energy dissipation playing a crucial role in
the energy balance of surface waves. Form drag, supported by the airflow separation from
breaking crests, sea spray, and turbulence generated by breaking waves beneath the surface
are important agents in momentum, heat and gas exchanges at the ocean surface [5–10].

In the context of remote sensing, wave breaking contributes significantly to the in-
tensity of the radar backscatter at any polarization configuration [11–14] as well as to the
Doppler shift (see, e.g., [15] and references cited therein). Radar returns from breaking
waves can apparently result in overestimation of the sea surface height derived from
space-born altimeters [16], thereby forming a part of a so-called sea state bias in altimeter
data [17–19]. Dielectric properties of foam produced by breaking waves differ from those
of water and notably affect surface microwave emissivity, which is necessary to take into
account in processing and interpretation of the measurements made by space-born passive
microwave instruments [20–22]. Availability and extensive use of satellite microwave data
in L-band had led to comprehension that breaking of large-scale waves produces the thick-
est foam that can significantly impact measurements of passive microwave instruments in
this frequency band [23,24].

The breaking of dominant waves (spectral peak waves) deserves special attention.
Dominant waves contain most of the energy of the sea surface. Developing under extreme
atmospheric synoptic-scale systems, they can attain abnormal heights, representing a
serious threat to an open-sea navigation and coastal areas [25,26]. Therefore, modelling of
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the evolution of such waves, especially under severe wind conditions, is an issue of high
priority. Amongst energy sources governing spectral peak dynamics—nonlinear wave-
wave interactions, wind energy input and wave breaking dissipation—the latter is the only
term whose exact form remains unknown, and, as a consequence, various parametrisations
based on different physical approaches were suggested (see [4] and Section II.4 in [27]).
Effectively, the description of wave breaking dissipation, for the time being, has a semi-
empirical character. Typically, the dissipation term serves as a fitting function providing
consistency between wave model simulations and observational data (see, e.g., Chapter 2.3
in [28]). In this regard, the development of the realistic and physically grounded description
of dominant wave breaking is very desirable and valuable both for wave modelling and
microwave remote sensing methods.

Most of the studies on wave breaking hitherto have limited their attention to equilib-
rium range waves. Field observations of breaking of spectral peak waves are rare, and all
have focused on a breaking probability. The authors in [29–32] reported estimates of the
dominant wave breaking probability that were based on counting of breaking events either
using visual inspection, acoustic noise or water conductivity measurements.

The aim of the present study is to investigate whitecaps generated by breaking of
spectral peak waves and relationships between properties of the whitecaps and wind speed,
as well as properties of dominant waves, using video imagery of the sea surface in the
visible range. Discrimination between whitecaps produced by dominant and shorter wind-
waves is carried out according to the speed of advance of the whitecaps, i.e., following an
approach suggested by O. Phillips [33].

In Section 2, we describe the experimental equipment, data processing methods, esti-
mated parameters, and the selection of measurement time intervals. Results are presented
in Section 3. In Section 4, we suggest a semi-empirical model of the whitecap coverage,
where the distinction between breaking of dominant and equilibrium range waves is made.
A summary of the main findings is given in Section 5.

2. Materials and Methods

The data considered in this study were collected during autumn experimental cam-
paigns in 2013–2015, 2018 and 2019 on a Black Sea research platform located 400 m away
from the coast, near Katsively settlement, Crimea (see Figure 1). Below we provide a
brief overview of instrumentation. The reader is referred to [34,35] for a more detailed
description.

2.1. Experimental Equipment

Elevations of the sea surface were measured by an array of wave gauges operating at
20 Hz sampling frequency. The array consisted of six resistance string gauges distributed
over the vertices of a regular pentagon (plus an additional string in the centre) with the
circumradius of 25 cm. In 2018, owing to technical issues, only a single-string wave gauge,
operating at 10 Hz sampling frequency, was used.

The wind speed, its direction, air temperature and relative humidity were measured
by a meteorological weather station Davis6152EU mounted at 23 m height above the sea
surface. Using additional measurements of the water temperature, we applied the COARE
algorithm [36] to convert the wind speed to a standard 10 m height.

A video camera PanasonicHDC-HS900 was used to make video recordings of the sea
surface. The camera was mounted on a tripod and fasted to the platform’s base at 11.4 m
height above the sea level. The incidence angles of the camera varied in the range 50–65◦,
and the viewing angles of the lens were 54◦ along horizontal and 32◦ along vertical. At
such viewing geometry, the spatial resolution varied from about 1 cm to 2.5 cm. Sequences
of images were taken at a 50 frames per second rate with a 1920 × 1080 pixels resolution.
The observable surface area ranged from 311 to 2700 m2.
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Figure 1. Location of the Black Sea research platform and a general view on the instrumentation.

2.2. Wave and Wave Breaking Parameters

Owing to the specific location of the platform, observed sea states ranged from very
young to mature seas. Young wind-waves with inverse wave ages, α = U10/cp (U10 is the
wind speed at 10 m reference height, cp is the spectral peak phase speed), up to 6 were
generated by north winds associated with rather short, less than 1 km, fetches (see Figure 1).
Henceforth, we shall refer to these cases as the o f f shore-wind ones. In all of these cases,
developing wind-waves were superimposed on open-sea swell. For east and south-east
winds, wind-waves, reaching the platform, could be characterised as mature with inverse
wave ages of about 2. These sea conditions will be referred to as onshore-wind cases.

2.2.1. Waves

Surface elevation frequency spectra, S( f ), were routinely derived from a single wave
gauge using a conventional technique [37]. Additionally, directional spectra, S( f , φ),
were also estimated using the Extended Maximum Entropy Principle method [38], freely
available code being used [39].

In most cases, seas at the experimental site could be considered as mixed ones, i.e.,
wave fields were the superposition of developing wind-waves and swell. To discriminate
the two types of wave systems, we used a method suggested by [40], according to which
swell was defined as a part of the frequency spectrum lying below Toba’s equilibrium
range level ∝ f−4 [41].

Examples of frequency and directional wave spectra are shown in Figure 2, where
the Pierson-Moskowitz frequency [42] is displayed to indicate fully developed waves. On
11 September 2019, spectral peaks of wind-waves and swell are not well separated, but
clearly distinguishable. The corresponding directional wave spectrum shows that these
wave systems propagate in the same along-wind direction. Coexisting wind-waves and
swell in all of the onshore-wind conditions were not well separated both in directional and



Remote Sens. 2021, 13, 3321 4 of 23

frequency spectra. On 25 September 2013, the typical offshore-wind case, considerable split
between wind-waves and swell in frequency as well as direction domains can be seen.
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Figure 2. (left column) Frequency spectra, S( f ), spectral distribution of the total length of whitecaps, Λ( f ), and detected
number of breaking events. Dashed vertical lines indicate spectral peak frequencies, fp ( fpPM corresponds to the Pierson-
Moskowitz frequency) and solid vertical lines indicate spectral peak intervals ( fp(1− δ), fp(1 + δ)) built from swell and
wind-waves fp. Shaded blue area around S( f ) shows 95% confidence intervals. (right column) Directional wave spectra,
S( f , φ), where arrows show the wind direction. Figures in the top row are for a time interval of onshore winds on
11 September 2019, and those in the bottom row are for a time interval of offshore winds on 25 September 2013.

We quantify dominant waves in terms of the spectral peak frequency, fp, and variance,
ep (referred to as energy). In the case of mixed seas in the onshore-wind conditions, fp of
wind-waves was determined as the low-frequency intersection of Toba’s equilibrium range
spectrum with the measured S( f ). In the offshore-wind conditions, fp of wind-waves was
assigned manually. Following [30–32], the energy of dominant waves is defined as the
variance of surface elevations in the frequency band fp(1− δ) < f < fp(1 + δ), where
δ = 0.3 [43]:
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ep =
∫ fp(1+δ)

fp(1−δ)
S( f )d f . (1)

If spectral peak frequency bands of swell and wind-waves overlap with one another,
the integration domain in (1) can be “contaminated” with the energy of swell, as seen from
Figure 2. As mentioned above, mixed seas in the onshore-wind conditions demonstrated
poorly separated wind and swell wave systems both in frequency and direction domains.
To mitigate the energy contamination effect, we implemented one-dimensional spectrum
partitioning procedure described in Appendix A. After the procedure was applied, the
energy of dominant wind-waves was estimated according to (1).

Other important wave parameters, inferred from fp and ep, are the inverse wave age,
α = U10/cp, and the dominant wave steepness [30], εp = Hpkp/2 (Hp = 4√ep, and kp is
the spectral peak wavenumber). The peak frequency and wavenumber are related to one
another via the deep water dispersion relationship of surface gravity waves

ω2
p = gkp, (2)

where ωp = 2π fp is the angular wave frequency, g is the gravitational acceleration. Addi-
tionally, the propagation direction of dominant waves, φp, was determined as the direction
of the maximum of S( fp, φ).

2.2.2. Wave Breaking

Phillips [33] introduced a convenient measure Λ(c) to describe breaking waves such
that Λ(c)dc is the sum of lengths of breaking crests moving with speeds in range (c, c + dc)
per unit surface area. The total length of breaking crests of all waves per unit surface area
is then,

L =
∫

Λ(c)dc.

Similar to the definition of Λ(c), we introduce an active whitecap coverage distribu-
tion, q(c), such that q(c)dc represents the fraction of the sea surface covered by whitecaps
that move with speeds in range (c, c + dc). The total active whitecap coverage is therefore

Q =
∫

q(c)dc.

A relationship between the phase speed of the breaking wave and the speed of the
corresponding breaking crest (or the whitecap) is still an issue. Laboratory investiga-
tions [44–46] revealed that the speed of advance of the breaking crest, c, is slightly less than
the phase speed of the underlying wave, cw, i.e., c/cw = a, where 0.7 < a < 0.9. Validity of
these estimates in real conditions has not been established experimentally. In this work, we
assume a neutral c = cw relationship.

In order to extract geometric and kinematic properties of individual breaking crests
from video recordings, an algorithm devised by Mironov and Dulov [47] was employed. It
is important to note that the algorithm aims to detect actively breaking crests—active
whitecaps, if we adopt terminology from [48] (“stage A” breaking [49] or “dynamic
foam” [23,50])—and effectively disregards residual foam and bubble wakes (“stage B”
breaking [49] or “static foam” [23,50]) produced by breaking crests.

The optical parameters of the camera were obtained using an open-source camera
calibration toolbox [51]. These parameters allowed orthorectification of the original images
of the sea surface. Distortion effects due to the camera’s lens were ignored. As was
estimated, the error associated with this type of distortion in measuring the whitecap
lengths did not exceed 10% for the data on 24 September 2013. This day is characterized
by the largest incidence angles of the camera. On other days, the incidence angles were
significantly smaller, therefore the error was less than 10%.
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Some elements of the breaking wave detection procedure developed in [47] are shown
in Figures 3 and 4. Figure 3b illustrates a binarized image where foam from breaking waves
(Figure 3a) is distinguished on the surface, using a threshold brightness. Figure 3c exhibits
only active whitecaps (stage A foam) extracted from the binarized image, Figure 3b. In
general, the extraction was performed through the analysis of time evolution of the area
of an individual whitecap, Figure 4. Initially, the area grows and at some point starts
to decrease, indicating that the breaking crest has disappeared and only residual foam
is present for the rest of the time. The residual character of foam can also be seen in
time evolution of the whitecap’s centroid position where the distance at the final stage of
evolution exhibits oscillatory behaviour due to the wave orbital motion. For additional
information on the algorithm see [47].

(a) (b) (c)

Figure 3. (a) An example of a grayscale image of the sea surface with breaking waves on 24 September 2013 at around 12:34
(UTC + 3H). (b) The same with detected foam using brightness threshold and (c) with extracted active foam. A breaking
crest outlined in plot (c) is shown in Figure 4.

The final stage of video processing provided the following time-labeled attributes
of individual breaking events: the average speed (or the phase speed) of a whitecap,
cumulative sum of its areas, average whitecap length along the wave crest and the number
of frames occupied by a breaking event. To make it clear what is measured and analysed in
our work, hereafter we shall use the word whitecap instead of breaking crest when referring
to our experimental data.

Experimental estimates of Λ(c) and q(c) based on video recordings of the sea surface
were derived as averages amongst successive frames[

Λ(cj)

q(cj)

]
=

1
AN f r∆c

[
∑ ln(cj|cj − ∆c/2 ≤ cj ≤ cj + ∆c/2)

∑ sn(cj|cj − ∆c/2 ≤ cj ≤ cj + ∆c/2)

]
(3)

where ln and sn are the length and area of an individual whitecap in a given video frame,
A is the observable surface area, N f r is the number of frames, comprising a time interval
and ∆c is the phase speed bin width. The summation in (3) is performed over individual
breaking events and frames. To filter out rare fictitious breaking events, values of both Λ(c)
and q(c) were assigned to zero in phase speed bins where the number of events was less
than 5.
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Figure 4. (top) A sequence of orthorectified frames with the whitecap outlined in Figure 3c. (bottom) The area, distance
of the whitecap’s centroid from an arbitrary origin, and length of the whitecap as a function of time. Red and blue
markers indicate stage A and stage B breaking, respectively. Vertical black lines show time moments corresponding to the
above frames.

Examples of estimated Λ(c), expressed in terms of f using (2) as Λ( f ) = g/(2π f 2)Λ(c),
are shown in Figure 2 together with the number of events in each frequency bin. Other
examples of Λ(c) and q(c) are shown in Figure 5 for each entry in Tables 1 and 2. These
figures will be discussed in the Results section.

The total length of whitecaps of dominant waves per unit surface area, Lp (the total
length of whitecaps for short), and the active whitecap coverage of these waves, Qp, are
defined as integrals of experimental estimates of Λ(c) and q(c) over the same spectral band
as in (1):

Lp =
∫ cp/(1−δ)

cp/(1+δ)
Λ(c)dc, Qp =

∫ cp/(1−δ)

cp/(1+δ)
q(c)dc. (4)

Tables 1 and 2 provide a summary of average wind conditions and different wave as
well as wave breaking parameters within the time intervals described below.

2.3. Selection of Time Intervals

For the data analysis, we selected measurements confined to time intervals satisfying
the following conditions: (i) an interval’s least squares wind acceleration did not exceed
2× 10−3 m s−2 (it was also the requirement for the prior time interval to have a slowly
changing wind speed), (ii) the wind direction standard deviation was below 10◦, and
(iii) the number of breaking events of dominant waves was not less than 10 events.

In the onshore-wind conditions, statistical wave breaking parameters of dominant
waves were calculated for consecutive 25 to 30 min-long time intervals. In the offshore-
wind conditions, the fetches are short, i.e., it can take the field of breaking waves less than
25–30 min to reach the steady state. This point is important, since the number of days with
offshore winds was small, and we needed to extract from such wind conditions as much
information as possible.
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Figure 5. (a,b) The Λ distributions as a function of c and c/cp, where cp is the peak phase speed. (c,d) The same, but for q
distributions.

Aiming to reduce the measurement interval and, therefore, increase the number of
independent data samples, collected at different wind speeds, we needed to make sure
that conditions of the wave field stationarity are satisfied for the selected time intervals.
Following the theory of self-similarity of the wind-wave development [52] from the state
of rest in fetch-limited conditions, the time, t, required for a front separating areas of fetch-
and duration-limited wave growth to travel from a coast to a given point at a distance x,
e.g., the research platform, is [53]:

t̃ =
4πξ0

Rx(1− qx)
x̃1−qx ,

where t̃ = tg/U10 is dimensionless time, {ξ0, Rx, qx} is a set of empirical constants for the
fetch-limited wave growth and x̃ = xg/U2

10 is dimensionless distance.
Fetches of typical offshore wind-waves, propagating from the Blue Gulf, vary from about

600 to 800 m. Adopting the empirical constants ξ0 = 2.41, Rx = 0.76, qx = 0.275 [53] and
substituting U10 = 8–18 m s−1 and x = 600–800 m to the above expression, we obtain the
lower tl = 15 min and the upper tu = 25 min estimates of the time interval preceding
the measurement, within which the stationarity of the wind is required to guarantee the
stationary wave field.

An example of wind time series for typical onshore- and offshore-wind conditions is
shown in Figure 6. The total number of time intervals satisfying the requirements above
was 23 (Table 1) at the onshore and 5 at the offshore winds (Table 2).
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Figure 6. (top) Wind speed, U10 and direction, φU time series for a video record in the onshore-wind
conditions. (bottom) The same, but in the offshore-wind conditions. Black lines are 15-min-average
wind speed. Black vertical thick lines indicate time intervals of continuous video recordings of the
sea surface. Shaded gray rectangles indicate time intervals, for which the wave spectra and statistical
wave breaking parameters of dominant waves were estimated and shown in Figure 2.

Table 1. Wind data, wave and wave breaking parameters of dominant wind-waves in the onshore-wind conditions. In the
table, U10 and φU is the wind speed and direction at 10 m height, φp is the wave propagation direction, α is the inverse
wave age, fp, ep, εp are the frequency, energy and steepness of dominant waves, Lp and Qp are the total length of whitecaps
per unit surface area and the active whitecap coverage of dominant waves, respectively, Pp is the dominant wave breaking
probability and N is the number of breaking events of dominant waves.

#
Date

(Time in UTC + 3H)

U10[
m s−1

] φU

[deg.]

φp

[deg.]

α

[−]

fp

[Hz]

ep[
m2
] εp

[−]

Lp[
m−1

] Qp

[−]

Pp

[−]

N

[−]

1 *
13 October 2018

10:12–10:42
17.8 77.4 – 1.8 1.6× 10−1 1.3× 10−1 7.3× 10−2 1.2× 10−5 5.4× 10−6 1.1× 10−3 223

2 *
13 October 2018

10:42–11:08
18.1 75.5 – 2.1 1.8× 10−1 1.7× 10−1 1.1× 10−1 5.2× 10−5 3.4× 10−5 3.6× 10−3 750

3 *
14 October 2018

09:05–09:35
16.5 69.2 – 1.6 1.5× 10−1 2.7× 10−1 9.4× 10−2 3.1× 10−6 9.7× 10−7 3.0× 10−4 14

4 *
14 October 2018

09:35–10:05
17.4 65.8 – 1.8 1.6× 10−1 2.6× 10−1 1.0× 10−1 6.9× 10−6 8.5× 10−6 6.0× 10−4 13

5 *
15 October 2018

09:58–10:28
12.0 77.0 – 1.6 2.1× 10−1 5.8× 10−2 8.4× 10−2 2.2× 10−5 7.6× 10−6 1.2× 10−3 413

6 *
15 October 2018

10:28–10:58
13.2 75.4 – 1.8 2.1× 10−1 6.2× 10−2 8.7× 10−2 1.6× 10−5 5.1× 10−6 9.0× 10−4 296

7 *
15 October 2018

11:06–11:36
14.0 76.7 – 1.9 2.1× 10−1 6.0× 10−2 8.6× 10−2 3.0× 10−5 1.6× 10−5 1.6× 10−3 469

8
10 September 2019

10:01–10:31
13.4 90.0 81.3 2.4 2.8× 10−1 3.0× 10−2 1.1× 10−1 4.8× 10−5 1.8× 10−5 1.4× 10−3 313

9
10 September 2019

10:31–11:01
13.4 90.0 81.9 2.4 2.8× 10−1 2.3× 10−2 9.7× 10−2 2.3× 10−5 1.2× 10−5 7.0× 10−4 92

10
10 September 2019

11:01–11:31
13.4 90.0 91.7 2.5 2.9× 10−1 2.1× 10−2 1.0× 10−1 2.1× 10−5 7.4× 10−6 6.0× 10−4 119
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Table 1. Cont.

#
Date

(Time in UTC + 3H)

U10[
m s−1

] φU

[deg.]

φp

[deg.]

α

[−]

fp

[Hz]

ep[
m2
] εp

[−]

Lp[
m−1

] Qp

[−]

Pp

[−]

N

[−]

11
10 September 2019

11:31–11:57
13.3 90.0 93.3 2.3 2.8× 10−1 2.7× 10−2 1.0× 10−1 1.3× 10−5 3.3× 10−6 4.0× 10−4 112

12
10 September 2019

12:01–12:31
12.8 90.0 95.1 2.2 2.7× 10−1 2.9× 10−2 9.7× 10−2 9.9× 10−6 3.0× 10−6 3.0× 10−4 82

13
10 September 2019

12:31–13:01
13.8 90.0 93.7 2.5 2.8× 10−1 3.0× 10−2 1.1× 10−1 1.3× 10−5 8.3× 10−6 4.0× 10−4 70

14
10 September 2019

13:01–13:31
14.8 90.0 91.7 2.5 2.7× 10−1 3.8× 10−2 1.1× 10−1 1.9× 10−5 9.3× 10−6 6.0× 10−4 74

15
11 September 2019

11:30–12:00
14.7 90.0 87.8 2.3 2.4× 10−1 6.3× 10−2 1.2× 10−1 5.7× 10−5 2.8× 10−5 2.2× 10−3 317

16
11 September 2019

12:00–12:30
15.0 90.0 89.8 2.2 2.3× 10−1 6.5× 10−2 1.1× 10−1 3.3× 10−5 1.9× 10−5 1.4× 10−3 172

17
11 September 2019

12:30–13:00
15.3 90.0 89.7 2.5 2.5× 10−1 4.2× 10−2 1.0× 10−1 5.5× 10−5 3.2× 10−5 2.0× 10−3 306

18
11 September 2019

13:00–13:28
15.7 90.0 90.5 2.7 2.7× 10−1 4.5× 10−2 1.2× 10−1 1.1× 10−4 5.6× 10−5 3.3× 10−3 534

19
11 September 2019

13:30–14:00
16.2 90.0 86.0 2.6 2.5× 10−1 4.9× 10−2 1.1× 10−1 6.6× 10−5 3.9× 10−5 2.4× 10−3 378

20
11 September 2019

14:00–14:30
16.0 90.0 90.0 2.7 2.7× 10−1 4.2× 10−2 1.2× 10−1 5.9× 10−5 2.7× 10−5 1.9× 10−3 299

21
11 September 2019

14:30–15:00
15.9 90.0 92.5 2.9 2.8× 10−1 3.3× 10−2 1.2× 10−1 7.4× 10−5 4.8× 10−5 2.2× 10−3 354

22
11 September 2019

15:00–15:30
15.6 90.0 92.3 2.7 2.7× 10−1 3.7× 10−2 1.1× 10−1 4.1× 10−5 1.9× 10−5 1.2× 10−3 271

23
11 September 2019

15:30–16:00
14.9 90.0 93.4 2.7 2.8× 10−1 3.5× 10−2 1.2× 10−1 4.7× 10−5 2.0× 10−5 1.3× 10−3 349

* The seas with single-peak wave spectra. The energy and steepness of the rest of the table’s entries were estimated after the one-dimensional
partitioning was applied (Appendix A).

Table 2. The same as Table 1, but for dominant wind-waves in the offshore-wind conditions.

#
Date

(Time in UTC + 3H)

U10[
m s−1

] φU

[deg.]

φp

[deg.]

α

[−]

fp

[Hz]

ep[
m2
] εp

[−]

Lp[
m−1

] Qp

[−]

Pp

[−]

N

[−]

1
24 September 2013

11:51–12:11
15.1 327.8 340.3 6.0 6.2× 10−1 4.3× 10−3 2.1× 10−1 6.0× 10−3

(4.9× 10−2)
1.7× 10−3 3.8× 10−2

(2.4× 10−1)
16,389

2
24 September 2013

12:18–12:39
12.6 328.5 357.7 5.1 6.3× 10−1 3.4× 10−3 1.9× 10−1 4.2× 10−3

(3.5× 10−2)
1.0× 10−3 2.6× 10−2

(1.7× 10−1)
13,195

3
25 September 2013

14:56–15:16
16.6 339.7 342.2 5.9 5.6× 10−1 8.5× 10−3 2.3× 10−1 3.8× 10−3

(1.2× 10−2)
1.4× 10−3 3.1× 10−2

(6.9× 10−2)
15,725

4
25 September 2013

15:26–15:46
14.8 336.6 357.0 5.3 5.6× 10−1 6.0× 10−3 2.0× 10−1 1.5× 10−3

(4.7× 10−3)
4.6× 10−4 1.2× 10−2

(2.7× 10−2)
8323

5
07 October 2015

16:20–16:35
8.7 3.7 349.0 4.1 7.4× 10−1 1.3× 10−3 1.6× 10−1 5.2× 10−4

(1.5× 10−2)
7.0× 10−5 2.2× 10−3

(6.1× 10−2)
1085

Values in parentheses are L∗p and P∗p calculated from the recovered lengths of breaking fronts.

3. Results
3.1. Λ(c) and q(c) Distributions

Examples of Λ( f ) = g/(2π f 2)Λ(c) are shown in Figure 2. Swell waves were not
observed to break in all the onshore- and offshore-wind cases, and the fastest whitecaps
are attributed to dominant wind-waves. As anticipated, the number of detected breaking
events is the smallest in the spectral peak region and rapidly increases towards higher wave
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frequencies. Subsequent roll-off in the number of events as a functions of f and values of
Λ( f ) at high frequencies (low phase speeds) is a known peculiarity of wave breaking data
derived from visible video imagery.

This peculiarity originates from the fact that a regular video camera detects whitecaps
that result from the air entrainment during the breaking process. At scales of short gravity
waves with wavelengths less than 2 m, the surface tension starts to affect the breaking
crest dynamics by reducing the intensity of the air entrainment and results in complete
disappearance of whitecaps of decimeters-scale waves. Breaking continues to occur at small
scales up to capillary wave scales, which is evident from infrared-camera recordings [54,55].
The Λ(c) measured by both infrared and visible video cameras are identical at phase speeds
of breaking crests higher than 3 m s−1, but demonstrate significant difference at lower
phase speeds: Λ(c) from visible imagery exhibits a considerable roll-off, whereas Λ(c)
from infrared imagery increases towards the shortest gravity waves (see Figure 1 in [55]
and Figure 6 in [35]).

Our experimental estimates of Λ(c) and q(c) for both the onshore- and offshore-wind
conditions (for each entry in Tables 1 and 2) are shown in Figure 5a,c. Since the two wave
breaking distributions have very similar spectral behaviour, below we focus on the analysis
of q(c) only. In the range of the observed c, from 3 to 8 m s−1, values of q(c) decrease with
the speed of whitecaps. Distributions q(c) at the offshore winds are more scattered than
those in the onshore-wind conditions. Similar to Λ(c), q(c) in at the onshore winds exhibits
the roll-off behaviour at c < 3 m s−1 with the maximum around c = 3 m s−1. As discussed
above, such behaviour is presumably caused by the impact of the surface tension on the
whitecap formation process associated with breaking of short gravity waves. It is seen in
Figure 5c that the maxima of q(c) at the offshore winds are noticeably shifted towards low
c relative to the corresponding maxima at the onshore winds. A possible reason for this is
that the rate of a whitecaps production by steep offshore wind-waves is much greater than
the production by onshore wind-wives in the same range of c (from 2 to 3 m s−1).

Functions Λ(c/cp) = cpΛ(c) and q(c/cp) = cpq(c) in Figure 5b,d clearly show that
the peak of q(c) at the offshore winds relates to the spectral peak region where the surface
tension apparently is not capable of suppressing generation of whitecaps of dominant
waves. Unlike these cases, q(c) in the onshore-wind conditions takes minimal values
around the spectral peak, suggesting that waves from the equilibrium range make the main
contribution to Q.

Figure 7a illustrates the contribution of dominant wave breaking to the total active
whitecap coverage, Q. According to these estimates, young wind-waves associated with the
offshore winds are responsible for 55.5 to 69.3%, for more than a half, of Q. More developed
onshore wind-waves contribute 0.4–3.2% to Q. Figure 7b shows that the contribution
of dominant waves to Q has no particular dependence on U10. Thus, from this results
we conclude that the contribution of dominant waves to Q is not wind-speed, but wave-
age dependent.

3.2. Dependencies of Qp

Recently, authors [56] have proposed a parametric model of dominant waves de-
veloping under nonuniform wind fields. Within the model’s framework, the statistical
parameters of the dominant wave breaking, Lp and Qp, exhibit a particular relationship
to the dominant wave steepness, namely Qp ∝ ε6

p, which, following Toba’s fetch laws,
transforms to Qp ∝ α3, and Lpk−1

p ∝ ε6
p. Below, we examine our experimental data for

these relationships.
Firstly, the wind speed dependence of Qp is illustrated in Figure 8a. The aggregated

data (onshore and offshore-wind data) do not demonstrate any dependence of Qp on U10.
However, if we consider Qp at the onshore and offshore winds separately, some wind-speed
correlation can be revealed. This implies that there is another parameter, apart from the
wind speed, that governs the breaking of dominant waves.
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(a) (b)

Figure 7. (a) The contribution of dominant waves to the observed total active whitecap coverage, Q, as a function of the
inverse wave age, α. (b) The same, but as a function of the wind speed, U10. Squares and triangles correspond to the onshore-
and offshore-wind conditions, respectively. Lines indicate calculations from a semi-empirical model of Q, introduced in
Section 4, for different U10 and dominant wave steepness, εp.
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Figure 8. (a) The active whitecap coverage of dominant waves, Qp, as a function of the wind speed,
U10, (b) inverse wave age, α, and (c) dominant wave steepness, εp, (d) The α as a function of εp. In
the subfigures, a squared correlation coefficient, r2, and confidence bounds are based on the best
linear fit in the log–log domain. For the colour-coding see the legend.

The active whitecap coverage of dominant waves represented as a function of the
inverse wave age in Figure 8b demonstrates clear correlation. The Qp produced by young
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wind-waves at the offshore winds attains values up to 0.17%, whereas more developed
onshore dominant waves have much lower values of Qp, about 10−4%. The power fit to
the data points gives

Qp = 3.28× 10−7α4.50, 1.6 < α < 5.9. (5)

The steepness of dominant waves is a fundamental parameter of the surface waves
and serves as a measure of their nonlinearity [30]. Figure 8c demonstrates correlation of
Qp and εp with the power fit

Qp = 7.99ε5.88
p , 0.072 < εp < 0.231. (6)

High correlation of Qp with both α and εp is not surprising, since these quantities are
related by the experimental fetch laws

εp = 5.80× 10−2α0.72, 1.6 < α < 5.9, (7)

shown in Figure 8d.
The experimental exponent in (6) agrees well with the prediction Qp ∝ ε6

p [56]. The
difference between the model and experimental exponents in Qp ∝ αb, where b = 3
according to [56] and b = 4.50 following from (5), is a consequence of a deviation of the
observed fetch-limited wave growth law (7) from Toba’s law εp ∝ α1/2 used in [56].

3.3. Dependencies of Lp

Originally, Λ(c) was introduced for lengths of breaking wave f ronts [33]. As far as
visible video imagery is concerned, measured Λ(c) contains information about lengths of
whitecaps. Lengths of fast moving (and large scale) whitecaps of dominant waves in the
onshore-wind conditions apparently correspond to lengths of breaking wave fronts. At
the offshore winds dominant wind-waves are relatively short, and their breaking may be
noticeably affected by the action of the surface tension. Possible evidence for that is the roll-
off of Λ(c) at the offshore winds that takes place around phase speeds of dominant waves
(see Figure 5b). In this case, the measured lengths of whitecaps are likely to be smaller than
those of breaking wave fronts. To “recover” breaking front lengths of dominant waves,
L∗p, in the offshore-wind conditions by “correcting” respective Λ(c), we used a heuristic
method described in Appendix B. Values of L∗p are provided in Table 2.

The experimental estimates of Lp normalised by the spectral peak wavenumber as a
function of εp is shown in Figure 9a. The power fit to the data points results in

Lpk−1
p = 6.31× 10−1ε3.77

p , 0.072 < εp < 0.231, (8)

where the exponent of the steepness is lower than the anticipated 6th power. If we use
the recovered values L∗p that are only relevant to the offshore-wind cases, the power fit is
enhanced giving a higher exponent for εp: L∗pk−1

p = 1.18× 102ε6.03
p .

Following ideas of Phillips [33] on self-similarity of geometric properties of breaking
waves, the authors in [56] suggested that Qp is proportional to Lpk−1

p . Our experimental
data, shown in Figure 9b, demonstrate a deviation from the linear behaviour:

Lpk−1
p = 2.47× 10−1Q0.68

p , 9.7× 10−7 < Qp < 1.7× 10−3. (9)

Such a deviation is probably caused by loss of self-similarity of whitecaps due to
the action of the surface tension in the offshore-wind conditions as was mentioned in
Section 3.1.
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Figure 9. (a). The total length of whitecaps of dominant waves per unit surface area, Lp, normalised by the peak wavenumber,
kp, as a function of the dominant wave steepness, εp. (b) The same quantity, but as a function of the active whitecap coverage
of dominant waves, Qp. Notation and colour-coding are the same as in Figure 8. Gray markers are for the recovered L∗p at
the offshore winds, which represents the total length of the breaking fronts of dominant waves. The gray line corresponds
to the power fit to the total cloud of points when red markers are replaced with gray ones.

3.4. Dominant Wave Breaking Probability

Amongst statistical wave breaking parameters of dominant waves, a probability of
breaking, Pp, has drawn the most attention in the literature. Prior measurements of the
wave breaking probability were reported in [29–32]. It was found that, besides the steepness
of dominant waves, vertical surface current shear, finite depth and wave development
stage can influence Pp.

The dominant wave breaking probability—probability that a breaking crest of the dom-
inant wave passes a fixed point on the sea surface—expressed in terms of Λ(c) reads [32]:

Pp =
∫ cp/(1−δ)

cp/(1+δ)
cΛ(c)dc

/∫ cp/(1−δ)

cp/(1+δ)
cΠ(c)dc =

Rp

0.6 fp
, (10)

where Rp is the passage rate of breaking crests of dominant waves past a fixed point,
cΠ(c)dc is the total passage rate of dominant wave crests that move with phase speeds
in the range (c, c + dc) and 0.6 is an empirical constant (see [57] for details). Below we
provide estimates of the probability derived from our measurements and compare them
with the previously reported results.

Figure 10 shows a dependence of Pp, estimated from (10), on εp where we also show
data from [29–32]. Values of Pp are provided in Tables 1 and 2. Comparing our data with
previously reported observations, we arrive at interesting, if not confusing, conclusion:
our estimates of Pp at εp around 0.1 are by one—two orders of magnitude lower than the
other Black Sea data reported earlier [30] and by two orders of magnitude lower than the
Lake George data [31]. The probability of breaking of steep and young wind-waves at the
offshore winds derived from lengths of whitecaps is at most 0.04, whereas the maximum
probability in the same conditions derived from lengths of breaking fronts, P∗p , is 0.24.
In our experiments, the number of breaking events of dominant waves with εp < 0.07
was negligible.

One possible reason for such a dramatic discrepancy may arise from the fact that the
authors in [29–31] did not discriminate breaking crests of dominant waves from those of
shorter waves occurring on crests of dominant waves. As found by [58], the effect of the
modulation of short wave breaking by longer surface waves is very strong. They observed
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that breaking of short waves takes place on crests of longer waves and is practically absent
in troughs. This phenomenon may lead to apparent overestimation of Pp if short-scale
and slow breaking events on crests of dominant waves are not filtered out when dealing
with breaking of dominant waves. The speed of advance of whitecaps produced by
dominant waves is significantly larger than the apparent speed of whitecaps of shorter
waves (the sum of the intrinsic advance speed of whitecaps of short breaking waves and
orbital velocity of dominant waves) riding the dominant wave crest. In our measurements,
breaking events were differentiated according to speeds of whitecaps. Hence, we expect
our estimates of Pp to be lower than those reported by [29–31]. Data from [32] are closer to
our measurements by an order of magnitude since the authors differentiated breaking of
different spectral components.

0.05 0.1 0.15 0.2

10 -3

10 -2

10 -1

10 0

*

an
d

p
p

Figure 10. Estimated probability of dominant wave breaking, Pp, as a function of the dominant
wave steepness, εp, together with previously reported field data, shown as black markers. In
the legend: SO—Southern Ocean, BS—Black Sea, LG—Lake George, LW—Lake Washington data
described in [30,31], and BGF—data points of [32]. Notation and colour-coding are the same as in
Figures 8 and 9. Gray markers are for the P∗p at the offshore winds. The gray line corresponds to the
power fit to the total cloud of points when red markers are replaced with gray ones.

The other possible reason lies in the dependence of the kinematic viscosity on sea water
properties. Unlike the Black Sea case, less saline waters in lakes George and Washington
have lower kinematic viscosity and therefore more dominant wave breaking is expected in
these waters (see, e.g., [59]).
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4. Discussion
4.1. Dissipation

As was mentioned in Section 1, the dissipation term in the wave energy balance
equation is a function to be fitted to experimental data. For example, a source term in the
WAM model describing the energy dissipation due to breaking has a form:

D(ω) ∝ ω̄(ek̄2)2
[
(1− d)k/k̄ + d(k/k̄)2

]
S(ω), (11)

where d is a constant, e is the total wave energy, ω̄ and k̄ denote weighted averages of
the angular frequency and wavenumber, respectively, and S(ω) is the surface elevation
frequency spectrum (see Section 2.3.9 in [28]).

Integration of (11) over the spectral peak region to the first order gives

∫ ωp(1+δ)

ωp(1−δ)
D(ω)dω ∝ ωpep(epk2

p)
2 ∝ ωpepε4

p. (12)

Alternatively, the rate of energy dissipation of dominant waves according to [33] is,

D ∝ g−2c5
pLp,

which, adopting the relationship Lp ∝ kpQp as per [33], comes to

D ∝ g−2kpc5
pQp ∝ ωpepε4

p, (13)

where in the last relationship we used Qp ∝ ε6
p found in the present study. The expression (13)

coincides with (12), suggesting that our experimental data supports the dissipation term
parameterization used in the WAM model.

4.2. Semi-Empirical Expression for Q

The most widely used parameterizations of the whitecap coverage are based on
the wind speed scaling (see, e.g., Tables in [20,60]), but the scattering between these
parameterizations is rather large. An alternative parametrization of the whitecap coverage
involves the wave-age scaling [60,61]. However, use of the wave age as a parameter, when
fitting to experimental data, does not result in a remarkable collapse of data points, as
compared to the wind-speed scaling.

As a matter of fact, any integral parameter of wave breaking, e.g., the whitecap
coverage, should depend on both the wind speed and wave age. On the one hand, breaking
of equilibrium range waves provides dissipation of the energy, coming from the wind.
Therefore, the contribution of these waves to integral wave breaking parameters is solely
wind-speed dependent [33]. On the other hand, as found from our measurements, breaking
parameters of spectral peak waves are dependent on the wave steepness and through the
fetch laws—on the wave age.

Following this reasoning, it appears sensible to assume that the total active whitecap
coverage can be represented as sum of the dominant wave, Qp, and the equilibrium range
wave, Qe, contributions:

Q = Qp + Qe. (14)

In line with [33], we describe wave breaking in the equilibrium range, assuming the
balance between dissipation due to breaking and the wind energy input. As a consequence,
Qe is defined as:

Qe ∝
∫ cp/(1+δ)

cT

β(c)B(c)c−1dc

∝ (U10/cT)
2+2/n − [(1 + δ)U10/cp]

2+2/n,
(15)

where β(c) ∝ (U10/c)2 is the wave growth rate, B(c) ∝ (U10/c)2/n is the saturation
spectrum with n—the wave breaking dissipation exponent, parameterized as a power
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function of B(c). Depending on a wave model, n varies from n = 2 [33] to n = 5 [62]. The
quantity cT in (15) is a phase speed such that at c < cT the surface tension suppresses sharp
crest disturbances triggering off the air entrainment, as mentioned in Section 3.1.

Combining the parameterization (6) (with the exponent of εp rounded to 6) with the
expression (15) we arrive at the following semi-empirical expression of Q:

Q = b1ε6
ph(x∗) + b2

[(
U10

cT

)2+2/n
−
[
(1 + δ)

U10

cp

]2+2/n
]

, (16)

where h(x∗) is the Heaviside function with x∗ = cp/(1− δ)− cT , chosen so Qp vanishes
when c of the entire spectral peak region are below cT set to 2 m s−1, constant b1 corresponds
to our experimental data (6), constant b2 = 1.39× 10−5 is chosen to match the data reported
in [35] (see their Figure 4). The exponent n is set to 5 to be consistent with [62] and with the
experimental findings of [35,63].

An example of model simulations of Q using (16) as a function of the wind speed
for various α and εp is shown in Figure 11. For mature seas at moderate and high winds,
the spectral peak phase speed, cp, is significantly larger than cT . Since the contribution of
dominant waves to Q in such conditions is small, Q is wholly governed by U10. In case
of young seas, the spectral peak phase speed is close to cT , and, as a consequence, the
contribution of the equilibrium range waves to Q becomes dependent on both the wind
speed and inverse wave age. Thus, we see that at low U10, the scatter of the modelled Q is
provided by the dominant waves and the dependence of Qp on εp and α; Q is completely
governed by U10 at high wind speeds. It is interesting to note that the scatter of Q is much
broader for the observed range of εp than for the range of α.

When α is used as a parameter for Qp, our measurements show an unsatisfactory
agreement with the modelled Q in Figure 11a. According to the semi-empirical model, at
U10 from 10 to 15 m s−1, Q is fully provided by Qp, when α is around 6, but our field data
show that the equilibrium range has a nonzero contribution to the observed Q. Conversely,
when α is around 2, the experimental data is below the modelled Q. Our data for the
intermediate α have moderate agreement with the model. If we parameterize Qp using εp
directly, a better agreement between the model and data is seen at high εp (see Figure 11b).

Unlike the comparison with Q, in Figure 7 a better agreement is seen between the
observed contribution of dominant waves to Q and the modelled one, although the model
slightly overestimates the contribution of Qp to Q in the offshore-wind conditions, predict-
ing 100% contribution when the observed values do not exceed 80%.

(a) (b)

Figure 11. (a). The semi-empirical total active whitecap coverage, Q, as a function of the wind speed, U10, for different
inverse wave ages, α. (b) The same, but for different dominant wave steepness, εp. Markers represent our experimental
estimates of Q. Squares and triangles correspond to the onshore- and offshore-wind conditions, respectively. A thick gray
line indicates the parameterization of [35].
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5. Conclusions

This study presented the results of field investigations of dominant surface wave
breaking in different wind and wave conditions. Very young waves were generated by
offshore winds and mature surface waves travelled from the open sea. The wave breaking
data were obtained at the Black Sea research platform using visible video imagery of the sea
surface accompanied by co-located measurements of waves and wind. The active whitecap
coverage and the total length of whitecaps of dominant waves were derived from spectral
distributions of the active whitecap coverage, q(c), and whitecap lengths Λ(c).

As found, the contribution of dominant waves to the total active whitecap coverage,
Q, depends on the inverse wave age, α = U10/cp, and varies from 55.5% to 69.3%, when
waves are young, and from 0.3% to 3.2%, when waves are mature.

The active whitecap coverage, produced by dominant waves, Qp, exhibits a clear
dependence on the dominant wave steepness, εp = kp Hp/2, showing proportionality to εp
to the power of 6. This exponent supports the parametric model proposed in [56] as well
as the dissipation term parameterization used in the WAM model. Since εp is related to the
inverse wave age, Qp also depends on α.

We found that the dominant wave breaking probability, Pp, is two orders of magnitude
lower than the previously reported values [29–31]. Unlike the previous studies, in our
measurements, all the detected whitecaps were differentiated according to the speed of
their movement. Therefore, breaking of short, slow, and modulated waves on crests of
dominant waves was filtered out.

In this study, we suggested a semi-empirical model for Q that takes into account
separated contributions of breaking waves from spectral peak and equilibrium range
intervals. According to this model, Q is a function of the wind speed and dominant wave
steepness. The model predicts significant scatter of Q below U10 = 15 m s−1 at different
inverse wave ages observed in our experiments.

The results of this study have possible and important applications to passive mi-
crowave remote sensing of the ocean surface. As dielectric properties of wave breaking
foam are very different from those of water, microwave emmisivity of the ocean surface is
significantly affected by breaking waves (see e.g., [20,64,65] and references cited therein).
As argued by [23,24], C- and L-band microwave emission of the ocean surface may be
dominated by large-scale breaking waves. At high wind conditions (e.g., in tropical and
extra-tropical cyclones) dominant waves are strongly undeveloped. Whitecap coverage,
produced by these waves, significantly contributes to the total Q. Since the large-scale
breaking is capable of affecting L- and C-band emission of the ocean surface, reliable quan-
tification of dominant wave breaking is vital to retrieve geophysical parameters from the
satellite microwave data at the extreme conditions. Our results have possible applications
for space-born altimeters as well: the so-called electromagnetic bias of the sea surface
height is mainly caused by the different roughness of the sea surface on crests compared
with that on troughs, which makes scattering nonuniform over the dominant wave profile
and creates an offset between the mean scattering surface and the actual mean sea surface
height [16,17].
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Appendix A. One-Dimensional Spectrum Partitioning

To perform partitioning of the frequency spectra, we assume that swell spectrum is
narrow and can be approximated by a quadratic polynomial in the log-log domain.

The procedure is the following. The spectral peak of wind-waves and the correspond-
ing peak frequency are determined as described in the main text. At first, the swell spectral
peak frequency, f s

p, is assigned manually. Then all the spectral points, that fall into the
interval around the swell peak frequency, f s

p(1− δ) < f < f s
p(1 + δ), provided they are

out of the wind-wave spectral peak region, are used in the quadratic fit in the log-log do-
main. After the polynomial fit, f s

p is reassigned from the parabola, and the swell spectrum
quadratic approximation is then subtracted from the original (parent) spectrum to give a
refined wind-wave spectrum. This partition of wind-waves was further used to compute
the energy and steepness of dominant waves. Application of this partitioning procedure
and its impact on the energy of wind-waves is illustrated in Figure A1, where ep is the
energy of dominant wind-waves, computed from the original spectrum, and ẽp is the same,
but calculated from the partitioned one.
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Figure A1. (left) An example of swell and wind-wave systems separation in the frequency domain.
The spectrum is from the upper left Figure 2. Orange circles show points used in the polynomial fit
in the log-log domain. (right) Relative change in the energy of wind-waves after partitioning.

Appendix B. Offshore Λ(c)

In the offshore-wind conditions, the dominant wind-waves are relatively short and
their breaking can be affected by the action of the surface tension. The latter suppresses
sharp breaking crest disturbances that provide entrainment of the air, seen as white-
caps. Therefore, the lengths of the whitecaps may be smaller than those of the actually
breaking fronts. In order to retrieve breaking front lengths, we suggest the following
heuristic method.

The roll-off of Λ(c) in the range of c < 3 m s−1 (see Figure 5a) can be regarded as an intrin-
sic feature of the lengths of the whitecaps, derived from visible video imagery [34,61,66,67].
However, infrared video recordings [54,55] suggest that the distribution of the lengths
of the breaking fronts, Λ∗(c), increases monotonically towards lower phase speeds up to
micro-scale breaking associated with generation of parasitic capillaries.

We assume that the measured Λ(c) in the spectral peak region at the offshore winds
may be corrupted by the effect of the surface tension (since the Λ(c) roll-off happens at the
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dominant wave scales) and, thus, is different from the “true” Λ∗(c). In order to retrieve
distributions of breaking front lengths from the measured Λ(c), we introduce a correction
function Φ(c) defined as,

Λ∗(c) = Λ(c)Φ(c),

To determine this function we use all available data at the onshore winds. Assuming
that Λ̃∗(c) = Λ∗(c)/(gu3

∗) ∝ c−6 (see [33], which is supported by experimental data,
e.g., [35,61]), we fit our data scaled by gu3

∗, Λ̃(c) = Λ(c)/(gu3
∗), at c > 3 m s−1 by a power

function of c with a prescribed −6 exponent as in Figure A2. This fit is then extrapolated to
the interval c < 3 m s−1. The approximation by the power function was performed using
the best linear fit in the log-log domain. The full power fit to our data at c > 3 m s−1 gives
the exponent close to –6.

Deviation of the average Λ̃(c) at c < 3 m s−1 from the extrapolated Λ̃∗(c) is considered
as an empirical estimate of the correction function Φ(c),

Φ(c) =

{
Λ̃∗(c)/Λ̃(c), c ≤ 3 m s−1

1, c > 3 m s−1

which is further used to retrieve breaking front lengths from the measured lengths of whitecaps.

1 2 3 4 5 6 7 8 9 10
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10 -2

10 0
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Figure A2. (a) Measured Λ̃(c) (gray lines) with their arithmetic average (black line). Vertical black line
divides the range of phase speeds into the one used for the curve fitting (solid coloured lines) and for the
extrapolation (dash coloured lines). (b) The correction function, Φ(c), for both power approximations.
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