Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions
Abstract
:1. Introduction
- Laboratory imaging spectrometry. We scanned the hand samples using hyperspectral cameras on a laboratory set-up to assess spectral separability and evaluate machine learning classification methods under close-to-optimal conditions.
- Simulation of hyperspectral imaging of the mine face. We scanned the whole set of hand samples with the same field set-up, illumination, and distance to object that are expected to be used in the mine gallery, evaluating machine learning methods to identify and map the distribution of materials in the resulting image.
2. Geological Settings
3. Materials and Methods
3.1. Laboratory Imaging Spectrometry
3.2. Ground-Based Panoramic Hyperspectral Imaging of Simulated Mine Face
3.3. Classification Processing
3.3.1. Linear Discriminant Analysis (LDA)
3.3.2. Support Vector Machines (SVM)
3.3.3. Random Forest
3.3.4. Validation
4. Results
4.1. Laboratory Imaging Spectrometry
4.2. Ground-Based Panoramic Hyperspectral Imaging of Simulated Mine Face
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Amigo Rubio, J.M. Hyperspectral Imaging; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-444-63977-6. [Google Scholar]
- Milton, E.J. Principles of field spectroscopy. Int. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley & Sons: New York, NY, USA, 1999; Volume 3, pp. 3–52. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and Near-Infrared Spectra of Minerals and Rocks: I Silicate Minerals. Mod. Geol. 1970, 1, 283–300. [Google Scholar]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral Remote Sensing in Lithological Mapping, Mineral Exploration, and Environmental Geology: An Updated Review. JARS 2021, 15, 031501. [Google Scholar] [CrossRef]
- Bedell, R.; Crósta, A.P.; Grunski, E. Remote Sensing and Spectral Geology; Society of Economic Geologists: Westminster, CO, USA, 2009; ISBN 978-1-934969-13-7. [Google Scholar]
- Pour, A.B.; Zoheir, B.; Pradhan, B.; Hashim, M. Editorial for the Special Issue: Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas. Remote Sens. 2021, 13, 519. [Google Scholar] [CrossRef]
- Gupta, R.P. Imaging Spectroscopy. In Remote Sensing Geology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 203–219. ISBN 978-3-662-55874-4. [Google Scholar]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Vázquez, I.; Bellido, E.; Carrère, V.; Müller, A. Pyrite mine waste and water mapping using Hymap and Hyperion hyperspectral data. Environ. Earth Sci. 2012, 66, 1957–1971. [Google Scholar] [CrossRef]
- Buzzi, J.; Riaza, A.; García-Meléndez, E.; Weide, S.; Bachmann, M. Mapping Changes in a Recovering Mine Site with Hyperspectral Airborne HyMap Imagery (Sotiel, SW Spain). Minerals 2014, 4, 313. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1846. [Google Scholar] [CrossRef] [Green Version]
- Bolin, B.J.; Moon, T.S. Sulfide detection in drill core from the Stillwater Complex using visible/near-infrared imaging spectroscopy. Geophysics 2003, 68, 1561–1568. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. Int. J. Remote Sens. 2012, 33, 1780–1798. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration mapping on drill cores using a HySpex SWIR-320m hyperspectral camera: Application to the exploration of an unconformity-related uranium deposit (Saskatchewan, Canada). J. Geochem. Explor. 2017, 172, 71–88. [Google Scholar] [CrossRef]
- Coulter, D.W.; Zhou, X.; Harris, P.D. Advances in Spectral Geology and Remote Sensing: 2008–2017. In Proceedings of the Exploration 17: Sixth Decennial International Conference on Mineral Exploration; Tschirhart, V., Thomas, M.D., Eds.; Decennial Mineral Exploration Conferences: Toronto, ON, Canada, 2017; pp. 23–50. [Google Scholar]
- Murphy, R.J.; Monteiro, S.T.; Schneider, S. Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3066–3080. [Google Scholar] [CrossRef]
- Ramanaidou, E.R.; Wells, M.A. Hyperspectral Imaging of Iron Ores. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM); Broekmans, M.A.T.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 575–580. ISBN 978-3-642-27681-1. [Google Scholar]
- Okyay, Ü.; Khan, S.; Lakshmikantha, M.; Sarmiento, S. Ground-Based Hyperspectral Image Analysis of the Lower Mississippian (Osagean) Reeds Spring Formation Rocks in Southwestern Missouri. Remote Sens. 2016, 8, 1018. [Google Scholar] [CrossRef] [Green Version]
- Okyay, U.; Khan, S.D. Spatial Co-Registration and Spectral Concatenation of Panoramic Ground-Based Hyperspectral Images. Photogramm. Eng. Remote Sens. 2018, 84, 781–790. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S. Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies. Earth-Sci. Rev. 2019, 198, 102952. [Google Scholar] [CrossRef]
- Pirard, E. Multispectral imaging of ore minerals in optical microscopy. Mineral. Mag. 2004, 68, 323–333. [Google Scholar] [CrossRef]
- Pirard, E.; Bernhardt, H.-J.; Catalina, J.-C.; Brea, C.; Segundo, F.; Castroviejo, R. From Spectrophotometry to Multispectral Imaging of Ore Minerals in Visible and Near Infrared (VNIR) Microscopy. In Proceedings of the 9th International Congress for Applied Mineralogy (ICAM 2008), Brisbane, Australia, 8–10 September 2008; ISBN 978-1-920806-86-6. [Google Scholar]
- Berrezueta, E.; Ordóñez-Casado, B.; Bonilla, W.; Banda, R.; Castroviejo, R.; Carrión, P.; Puglla, S. Ore Petrography Using Optical Image Analysis: Application to Zaruma-Portovelo Deposit (Ecuador). Geosciences 2016, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- López-Benito, A.; Catalina, J.C.; Alarcón, D.; Grunwald, Ú.; Romero, P.; Castroviejo, R. Automated ore microscopy based on multispectral measurements of specular reflectance. A comparative study of some supervised classification techniques. Miner. Eng. 2020, 146, 106136. [Google Scholar] [CrossRef]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral and LiDAR data. Eur. J. Remote Sens. 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.J.; Goetz, A. The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Varshney, P.K.; Arora, M. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-642-06001-4. [Google Scholar]
- van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 1249. [Google Scholar] [CrossRef] [Green Version]
- Kokaly, R.; Graham, G.E.; Hoefen, T.M.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.; Buchhorn, M.; Prakash, A. Multiscale hyperspectral imaging of the Orange Hill Porphyry Copper Deposit, Alaska, USA, with laboratory-, field-, and aircraft-based imaging spectrometers. In Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration; Tschirhart, V., Thomas, M.D., Eds.; Decennial Mineral Exploration Conferences: Toronto, ON, Canada, 2017; pp. 923–943. [Google Scholar]
- Camps-Valls, G. Machine learning in remote sensing data processing. In Proceedings of the 2009 IEEE International Workshop on Machine Learning for Signal Processing, Grenoble, France, 1–4 September 2009; pp. 1–6. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Krupnik, D.; Khan, S.D. High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 2020, 10, 967. [Google Scholar] [CrossRef]
- Simancas, J.F. Variscan Cycle. In The Geology of Iberia: A Geodynamic Approach: Volume 2: The Variscan Cycle; Quesada, C., Oliveira, J.T., Eds.; Regional Geology Reviews; Springer: Cham, Switzerland, 2019; pp. 1–25. ISBN 978-3-030-10519-8. [Google Scholar]
- Ruiz Mora, J.E. Mineralizaciones estannovolframíferas en Noia y Lousame: Estudio previo. Cadernos Lab. Xeol. Laxe Revista Xeol. Galega Hercinico Penins. 1982, 3, 595–622. [Google Scholar]
- Mangas Viñuela, J.; Arribas Moreno, A. Estudio de las inclusiones fluidas atrapadas en cristales de casiterita y cuarzo del yacimiento de San Finx (La Coruña, España). Bol. Sociedad Esp. Mineral. 1989, 12, 241–259. [Google Scholar]
- Rodríguez-Terente, L.-M.; Fernández-González, M.-Á.; Losada-García, I. Estudio cristalográfico de la Bertrandita de las minas de San Finx (A Coruña, España). Macla 2014, 19, 1–2. [Google Scholar]
- Llana-Funez, S. La Estructura de la Unidad de Malpica-Tui (Cordillera Varisca en Iberia); Universidad de Oviedo: Oviedo, Spain, 2001; ISBN 84-7840-431-7. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2018. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 19 April 2021).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the “Geospatial” Data Abstraction Library. 2019. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 19 April 2021).
- Leutner, B.; Horning, N.; Schwalb-Willmann, J. RStoolbox: Tools for Remote Sensing Data Analysis. 2019. Available online: https://cran.r-project.org/web/packages/RStoolbox/RStoolbox.pdf (accessed on 19 April 2021).
- O’Brien, J. GdalUtilities: R Wrappers for the GDAL Utilities Executables Shipped with Sf. 2018. Available online: https://cran.r-project.org/web/packages/gdalUtilities/index.html (accessed on 19 April 2021).
- Reudenbach, C. Link2GI: Linking Geographic Information Systems, Remote Sensing and Other Command Line Tools. 2019. Available online: https://cran.r-project.org/web/packages/link2GI/link2GI.pdf (accessed on 19 April 2021).
- GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction Software Library; Open Source Geospatial Foundation: Chicago, IL, USA, 2019. [Google Scholar]
- Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open source processing of remote sensing images. Open Geospat. Data Softw. Stand. 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- McInerney, D.; Kempeneers, P. Pktools. In Open Source Geospatial Tools: Applications in Earth Observation; Earth Systems Data and Models; McInerney, D., Kempeneers, P., Eds.; Springer: Cham, Switzerland, 2015; pp. 173–197. ISBN 978-3-319-01824-9. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- EnMAP Core Science Team. EnMAP-Box 3-A QGIS Plugin to Process and Visualize Hyperspectral Remote Sensing Data. 2019. Available online: https://enmap-box.readthedocs.io (accessed on 19 April 2021).
- QGIS.org. QGIS Geographic Information System. QGIS Association, 2021. Available online: http://www.qgis.org (accessed on 19 April 2021).
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Data Series; U.S. Geological Survey: Reston, VA, USA, 2017; p. 68.
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-25128-6. [Google Scholar]
- Jiang, J.; Liu, D.; Gu, J.; Susstrunk, S. What is the space of spectral sensitivity functions for digital color cameras? In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Washington, DC, USA, 15–17 January 2013; IEEE: Clearwater Beach, FL, USA, 2013; pp. 168–179. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071); TU Wien: Vienna, Austria, 2020. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 149119. [Google Scholar] [CrossRef] [Green Version]
- Castle, M.; Keller, J. Rolling Ball Background Subtraction. Available online: https://imagej.net/plugins/rolling-ball.html (accessed on 19 April 2021).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R Springer Texts in Statistics, 1st ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7138-7. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A. Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics. Remote Sens. 2020, 12, 1905. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Lecture Notes in Computer Science; Losada, D.E., Fernández-Luna, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408, pp. 345–359. ISBN 978-3-540-25295-5. [Google Scholar]
- Fraser, S.; Whitbourn, L.B.; Yang, K.; Ramanaidou, E.; Connor, P.; Poropat, G.; Soole, P.; Mason, P.; Coward, D.; Philips, R. Mineralogical Face-Mapping Using Hyperspectral Scanning for Mine Mapping and Control. In Proceedings of the Australasian Institute of Mining and Metallurgy Publication Series; Australasian Institute of Mining and Metallurgy: Darwin, Australia, 2006; Volume AusIMM, pp. 227–232. [Google Scholar]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending geometallurgy to the mine scale with hyperspectral imaging: A pilot study using drone- and ground-based scanning. Min. Metall. Explor. 2021, 38, 799–818. [Google Scholar] [CrossRef]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-scale, multi-sensor data integration for automated 3-D geological mapping. Ore Geol. Rev. 2021, 136, 104252. [Google Scholar] [CrossRef]
- Li, P.; Xiao, X. Multispectral image segmentation by a multichannel watershed-based approach. Int. J. Remote Sens. 2007, 28, 4429–4452. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Q.; Dong, J.; Xu, Q. Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. Remote Sens. 2018, 10, 1271. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Shervashidze, N.; Borgwardt, K. Spatio-Spectral Remote Sensing Image Classification With Graph Kernels. IEEE Geosci. Remote Sens. Lett. 2010, 7, 741–745. [Google Scholar] [CrossRef]
FX10 | FX17 | FX10_FX17 | |
---|---|---|---|
Spectral range (nm) | 397–1004 | 936–1720 | 397–1720 |
Spectral bands | 448 | 224 | 628 |
Spectral FWHM (nm) | 1.34–1.41 | 3.46–3.48 | 1.34–3.48 |
Pixels/line | 1024 | 640 | 1024 |
FOV (°) | 38° | 38° | |
SNR | 600:1 | 1000:1 |
Camera | Spectral Range (nm) | Overall Accuracy | Average Producer’s Accuracy | Average User’s Accuracy |
---|---|---|---|---|
FX10_FX17 | 450–1650 | 0.982 | 0.982 | 0.978 |
FX10 | 450–950 | 0.954 | 0.939 | 0.964 |
FX17 | 950–1650 | 0.945 | 0.934 | 0.941 |
Canon 60D | 0.745 | 0.662 | 0.828 |
Predicted | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Instrument | ChalB | Chal | Css | Mal | Mus | Qtz | Wlf | Prod. Acc. | Usr. Acc. | F1 | |
Bright chalcopyrite | FX10_FX17 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | |
FX10 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | ||
FX17 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | ||
RGB | 13 | 0 | 0 | 0 | 0 | 2 | 0 | 0.87 | 1.00 | 0.93 | ||
Chalcopyrite | FX10_FX17 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0.94 | 0.97 | |
FX10 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0.75 | 0.86 | ||
FX17 | 0 | 13 | 2 | 0 | 0 | 0 | 0 | 0.87 | 0.87 | 0.87 | ||
RGB | 0 | 3 | 0 | 0 | 0 | 0 | 12 | 0.20 | 0.43 | 0.27 | ||
Cassiterite | FX10_FX17 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 1.00 | 0.91 | 0.95 | |
FX10 | 0 | 2 | 8 | 0 | 0 | 0 | 0 | 0.80 | 1.00 | 0.89 | ||
FX17 | 0 | 1 | 9 | 0 | 0 | 0 | 0 | 0.90 | 0.75 | 0.82 | ||
RGB | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0.00 | 0/0 | 0/0 | ||
Malachite | FX10_FX17 | 0 | 1 | 0 | 9 | 0 | 0 | 0 | 0.90 | 1.00 | 0.95 | |
FX10 | 0 | 2 | 0 | 8 | 0 | 0 | 0 | 0.80 | 1.00 | 0.89 | ||
FX17 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | ||
RGB | 0 | 4 | 0 | 6 | 0 | 0 | 0 | 0.60 | 1.00 | 0.75 | ||
Muscovite | FX10_FX17 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 1.00 | 1.00 | 1.00 | |
FX10 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 1.00 | 1.00 | 1.00 | ||
FX17 | 0 | 1 | 0 | 0 | 8 | 0 | 1 | 0.80 | 1.00 | 0.89 | ||
RGB | 0 | 0 | 0 | 0 | 8 | 1 | 1 | 0.80 | 1.00 | 0.89 | ||
Quartz | FX10_FX17 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 1.00 | 1.00 | 1.00 | |
FX10 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 1.00 | 1.00 | 1.00 | ||
FX17 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 1.00 | 1.00 | 1.00 | ||
RGB | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 1.00 | 0.83 | 0.91 | ||
Wolframite | FX10_FX17 | 0 | 0 | 1 | 0 | 0 | 0 | 34 | 0.97 | 1.00 | 0.99 | |
FX10 | 0 | 1 | 0 | 0 | 0 | 0 | 34 | 0.97 | 1.00 | 0.99 | ||
FX17 | 0 | 0 | 1 | 0 | 0 | 0 | 34 | 0.97 | 0.97 | 0.97 | ||
RGB | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 1.00 | 0.60 | 0.75 |
Classification Method | Overall Accuracy | Average Producer’s Accuracy | Average User’s Accuracy |
---|---|---|---|
LDA | 0.982 | 0.982 | 0.978 |
SVM | 0.982 | 0.987 | 0.971 |
RF | 0.964 | 0.958 | 0.952 |
Classification Method | All Classes | Relevant Classes |
---|---|---|
LDA | 0.906 | 0.845 |
SVM | 0.908 | 0.813 |
RF | 0.914 | 0.849 |
Observed | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Css | Chal | Mal | Mus | Wlf | Smg | Oxd | Qtz | User’s Accuracy | Producer’s Accuracy | F1 | |
Cassiterite | 54 | 0 | 0 | 0 | 14 | 2 | 0 | 4 | 0.701 | 0.519 | 0.597 | |
Chalcopyrite | 3 | 19 | 0 | 0 | 6 | 7 | 0 | 0 | 0.528 | 0.613 | 0.567 | |
Malachite | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 1.000 | 1.000 | 1.000 | |
Muscovite | 0 | 0 | 0 | 19 | 0 | 10 | 0 | 0 | 0.655 | 0.594 | 0.623 | |
Wolframite | 39 | 3 | 0 | 0 | 311 | 0 | 0 | 0 | 0.854 | 0.912 | 0.882 | |
Small grains | 3 | 8 | 0 | 10 | 4 | 109 | 0 | 0 | 0.741 | 0.813 | 0.776 | |
Oxide | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 0.868 | 0.805 | 0.835 | |
Quartz | 3 | 0 | 0 | 0 | 4 | 0 | 2 | 351 | 0.975 | 0.989 | 0.981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, A.; Garcia, E.; Barroso, G.; Martí, D.; Fernandez-Turiel, J.-L.; Ibáñez-Insa, J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sens. 2021, 13, 3258. https://doi.org/10.3390/rs13163258
Lobo A, Garcia E, Barroso G, Martí D, Fernandez-Turiel J-L, Ibáñez-Insa J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sensing. 2021; 13(16):3258. https://doi.org/10.3390/rs13163258
Chicago/Turabian StyleLobo, Agustin, Emma Garcia, Gisela Barroso, David Martí, Jose-Luis Fernandez-Turiel, and Jordi Ibáñez-Insa. 2021. "Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions" Remote Sensing 13, no. 16: 3258. https://doi.org/10.3390/rs13163258
APA StyleLobo, A., Garcia, E., Barroso, G., Martí, D., Fernandez-Turiel, J. -L., & Ibáñez-Insa, J. (2021). Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sensing, 13(16), 3258. https://doi.org/10.3390/rs13163258