Remote Sensing of Ecosystem Structure—Part 2: Initial Findings of Ecosystem Functioning through Intra- and Inter-Annual Comparisons with Earth Observation Data
Abstract
:1. Introduction
2. Study Area
3. Data and Processing
3.1. Ecosystem Structure
3.2. Spectral Indices
3.3. Hydrometeorological Data
4. Results
4.1. Comparison of Wetting Conditions for the 2018 and 2019 Growing Seasons
4.2. Response Comparison of Vegetation-Related Spectral Indices for 2018 and 2019
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
fAPAR | May 2018 | July 2018 | August 2018 | September 2018 |
May 2019 | - | |||
July 2019 | - | |||
August 2019 | - | |||
September 2019 | - | |||
LAI | May 2018 | July 2018 | August 2018 | September 2018 |
May 2019 | - | |||
July 2019 | - | |||
August 2019 | - | |||
September 2019 | - |
fAPAR | July 2018 | August 2018 | September 2018 |
May 2018 | *** | ||
July 2018 | - | ||
August 2018 | - | ||
fAPAR | July 2019 | August 2019 | September 2019 |
May 2019 | - | ||
July 2019 | - | ||
August 2019 | - |
LAI | July 2018 | August 2018 | September 2018 |
May 2018 | - | ||
July 2018 | - | ||
August 2018 | - | ||
LAI | July 2019 | August 2019 | September 2019 |
May 2019 | - | ||
July 2019 | - | ||
August 2019 | - |
Conifer 2018 (Cluster 6) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | *** | *** |
Conifer 2019 (Cluster 6) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | *** | *** |
Deciduous 2018 (Cluster 2) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | - | *** |
Deciduous 2019 (Cluster 2) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | *** | *** |
Herbaceous/Meadows 2018 (Cluster 4 and 8) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | - | *** |
Herbaceous/Meadows 2019 (Cluster 4 and 8) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | *** | *** |
Emergent 2018 (Cluster 3 and 7) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | - | *** |
Emergent 2019 (Cluster 3 and 7) | May–July | July–August | August–September |
fAPAR | *** | *** | *** |
LAI | *** | *** | *** |
References
- U.S. Environmental Protection Agency (EPA). Why Are Wetlands Important? Available online: https://www.epa.gov/wetlands/why-are-wetlands-important (accessed on 29 August 2020).
- Ramsar Homepage. Available online: https://www.ramsar.org/ (accessed on 29 August 2020).
- Dennison, W.C.; Orth, R.J.; Moore, K.A.; Stevenson, J.C.; Carter, V.; Kollar, S.; Bergstrom, P.W.; Batiuk, R.A. Assessing water quality with submersed aquatic vegetation. BioScience 1993, 43, 86–94. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, e1353691. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote. Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- ESA Sentinel-2 European Space Agency. Available online: http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 21 March 2021).
- Weiss, M.; Baret, F. Sentinel-2 ToolBox Level2 Products: LAI, FAPAR, FCOVER Version 1.1. 2016. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 10 August 2021).
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, FAPAR and FCover of winter wheat in Bulgaria. Eur. J. Remote Sens. 2021, 54, 89–108. [Google Scholar] [CrossRef]
- Gower, S.T.; Kucharik, C.J.; Norman, J.M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 1999, 70, 29–51. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Taberner, M.; Merlin, F.; Widlowski, J.-L.; Verstraete, M.M. Monitoring FAPAR over land surfaces with remote sensing data. In Remote Sensing for Agriculture, Ecosystems, and Hydrology V; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5232, pp. 237–244. [Google Scholar]
- Ogutu, B.O.; Dash, J.; Dawson, T.P. Evaluation of the influence of two operational fraction of absorbed photosynthetically active radiation (FAPAR) Products on terrestrial ecosystem productivity modelling. Int. J. Remote Sens. 2014, 35, 321–340. [Google Scholar] [CrossRef]
- Liu, N.; Treitz, P. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 445–456. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Bonan, B.B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens. Environ. 1993, 43, 303–314. [Google Scholar] [CrossRef]
- Putzenlechner, B.; Castro, S.; Kiese, R.; Ludwig, R.; Marzahn, P.; Sharp, I.; Sanchez-Azofeifa, A. Validation of sentinel-2 FAPAR products using ground observations across three forest ecosystems. Remote Sens. Environ. 2019, 232, 111310. [Google Scholar] [CrossRef]
- Peters, D.L.; Niemann, K.O.; Skelly, R. Remote sensing of ecosystem structure: Fusing passive and active remotely sensed data to characterize a deltaic wetland landscape. Remote Sens. 2020, 12, 3819. [Google Scholar] [CrossRef]
- Peters, D.L.; Prowse, T.D.; Pietroniro, A.; Leconte, R. Flood hydrology of the peace-athabasca delta, Northern Canada. Hydrol. Process. 2006, 20, 4073–4096. [Google Scholar] [CrossRef]
- Peters, D.L.; Buttle, J.M. The effects of flow regulation and climatic variability on obstructed drainage and reverse flow contribution in a Northern river–lake–Delta complex, Mackenzie basin headwaters. River Res. Appl. 2010, 26, 1065–1089. [Google Scholar] [CrossRef]
- Peters, D.L.; Prowse, T.D. Regulation effects on the Lower Peace River, Canada. Hydrol. Process. 2001, 15, 3181–3194. [Google Scholar] [CrossRef]
- Peters, D.L.; Prowse, T.D. Generation of streamflow to seasonal high waters in a freshwater delta, northwestern Canada. Hydrol. Process. 2006, 20, 4173–4196. [Google Scholar] [CrossRef]
- Peters, D.L.; Atkinson, D.; Monk, W.A.; Tenenbaum, D.E.; Baird, D.J. A multi-scale hydroclimatic analysis of runoff generation in the Athabasca River, Western Canada. Hydrol. Process. 2013, 27, 1915–1934. [Google Scholar] [CrossRef]
- Alexander, A.C.; Chambers, P.A. Assessment of seven canadian rivers in relation to stages in oil sands industrial development, 1972–2010. Environ. Rev. 2016, 24, 484–494. [Google Scholar] [CrossRef] [Green Version]
- PAD-PG. Peace-Athabasca Delta Project Group Technical Report: A Report on Low Water Levels in Lake Athabasca and Their Effect on the Peace-Athabasca Delta; Governments of Canada, Alberta and Saskatchewan: Canada, 1973; p. 176.
- Jaques, D.R. Topographic Mapping and Drying Trends in the Peace-Athabasca Delta, Alberta Using LANDSAT MSS Imagery; Report Prepared by Ecostat Geobotanical Surveys Inc. for Wood Buffalo National Park, Parks Canada: Fort Smith, NT, Canada, 1989. [Google Scholar]
- Peters, D.L.; Prowse, T.D.; Marsh, P.; Lafleur, P.M.; Buttle, J.M. Persistence of water within perched basins of the Peace-Athabasca Delta, Northern Canada. Wetl. Ecol. Manag. 2006, 14, 221–243. [Google Scholar] [CrossRef]
- Peters, D.L. Multi-Scale Hydroclimatic Controls on the Duration of Water in Perched Wetlands of a Cold Regions Delta, Northwestern Canada; Environment Canada: Saskatoon, SK, Canada, 2013; p. 43. [Google Scholar]
- Timoney, K.P. The Peace-Athabasca Delta: Portrait of a Dynamic Ecosystem; The University of Alberta Press: Edmonton, AB, Canada, 2013; ISBN 978-0-88864-730-6. [Google Scholar]
- Timoney, K. Landscape cover change in the Peace-Athabasca Delta, 1927–2001. Wetlands 2006, 26, 765–778. [Google Scholar] [CrossRef]
- Bush, A.; Monk, W.A.; Compson, Z.G.; Peters, D.L.; Porter, T.M.; Shokralla, S.; Wright, M.T.G.; Hajibabaei, M.; Baird, D.J. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. USA 2020, 117, 8539–8545. [Google Scholar] [CrossRef] [Green Version]
- McFeetters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Black, T.A. Measuring leaf area index on plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Moulin, S.; Bondeau, A.; Delecolle, R. Combining Agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021–1036. [Google Scholar] [CrossRef]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- ECCC HYDAT Water Survey Data Products 2020. Available online: https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services.html (accessed on 1 May 2021).
- GOA Government of Alberta—Interpolated Weather Data Since 1961 for Alberta Townships. Available online: https://agriculture.alberta.ca/acis/township-data-viewer.jsp (accessed on 1 May 2021).
- Bonsal, B.; Prowse, T. Trends and variability in spring and autumn 0 °C-isotherm dates over Canada. Clim. Chang. 2003, 57. [Google Scholar] [CrossRef]
- Hamon, W.R. Estimating potential evapotranspiration. J. Hydraul. 1961, 87, 107–120. [Google Scholar]
- Remmer, C.R.; Owca, T.; Neary, L.; Wiklund, J.A.; Kay, M.; Wolfe, B.B.; Hall, R.I. Delineating extent and magnitude of river flooding to lakes across a northern delta using water isotope tracers. Hydrol. Process. 2020, 34, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.; Kozlova, M.; Skorik, N. A simple harmonic model for FAPAR temporal dynamics in the wetlands of the Volga-Akhtuba Floodplain. Remote Sens. 2016, 8, 762. [Google Scholar] [CrossRef] [Green Version]
- Aklilu Tesfaye, A.; Gessesse Awoke, B. Evaluation of the saturation property of vegetation indices derived from Sentinel-2 in mixed crop-forest ecosystem. Spat. Inf. Res. 2021, 29, 109–121. [Google Scholar] [CrossRef]
- Chernetskiy, M.; Gómez-Dans, J.; Gobron, N.; Morgan, O.; Lewis, P.; Truckenbrodt, S.; Schmullius, C. Estimation of FAPAR over croplands using MISR data and the earth observation land data assimilation system (EO-LDAS). Remote Sens. 2017, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- WBNP. Development of a Multi-Jurisdiction Action Plan to Protect the World Heritage Values of Wood Buffalo National Park. 2019. Available online: https://www.pc.gc.ca/en/pn-np/nt/woodbuffalo/info/action (accessed on 10 August 2021).
- JOSM. The Joint Canada | Alberta Implementation Plan. for Oil Sands Monitoring Annual Report; Government of Canada: Ottawa, ON, Canada, 2012; p. 32. Available online: http://www.publications.gc.ca/site/eng/9.697128/publication.html (accessed on 10 August 2021).
2018 | 2019 |
---|---|
22 May | 17 May |
11 July | 21 July |
3 August | 13 August |
19 September | 19 September |
Year | Mean Annual Temperature °C | Date of 0 °C Isotherm d | 1st of April Snowpack Index mm | Annual Precipitation mm | Potential Evaporation mm |
---|---|---|---|---|---|
2018 | −2.1 | 21 April | 83.1 | 259.7 | 480.1 |
2019 | −1.5 | 6 April | 63.9 | 309.7 | 446.3 |
1981–2000 Mean | −1.2 | 17 April | 81.7 | 352.3 | 470.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, D.L.; Niemann, K.O.; Skelly, R. Remote Sensing of Ecosystem Structure—Part 2: Initial Findings of Ecosystem Functioning through Intra- and Inter-Annual Comparisons with Earth Observation Data. Remote Sens. 2021, 13, 3219. https://doi.org/10.3390/rs13163219
Peters DL, Niemann KO, Skelly R. Remote Sensing of Ecosystem Structure—Part 2: Initial Findings of Ecosystem Functioning through Intra- and Inter-Annual Comparisons with Earth Observation Data. Remote Sensing. 2021; 13(16):3219. https://doi.org/10.3390/rs13163219
Chicago/Turabian StylePeters, Daniel L., K. Olaf Niemann, and Robert Skelly. 2021. "Remote Sensing of Ecosystem Structure—Part 2: Initial Findings of Ecosystem Functioning through Intra- and Inter-Annual Comparisons with Earth Observation Data" Remote Sensing 13, no. 16: 3219. https://doi.org/10.3390/rs13163219
APA StylePeters, D. L., Niemann, K. O., & Skelly, R. (2021). Remote Sensing of Ecosystem Structure—Part 2: Initial Findings of Ecosystem Functioning through Intra- and Inter-Annual Comparisons with Earth Observation Data. Remote Sensing, 13(16), 3219. https://doi.org/10.3390/rs13163219