Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photometer Measurements
2.1.1. Default Configuration
2.1.2. Hybrid Configuration
2.2. Sentinel-2 Data
2.3. Experiment Setup
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET: A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Goloub, P.; Li, Z.; Dubovik, O.; Blarel, L.; Podvin, T.; Jankowiak, I.; Lecoq, R.; Deroo, C.; Chatenet, B.; Morel, J.P.; et al. PHOTONS/AERONET Sun-photometer network overview: Description, activities, results. Proc. SPIE 2008, 6936, 69360V. [Google Scholar] [CrossRef] [Green Version]
- Toledano, C.; González, R.; Fuertes, D.; Cuevas, E.; Eck, T.F.; Kazadzis, S.; Kouremeti, N.; Gröbner, J.; Goloub, P.; Blarel, L.; et al. Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña. Atmos. Chem. Phys. 2018, 18, 14555–14567. [Google Scholar] [CrossRef] [Green Version]
- Bokoye, A.I.; Royer, A.; O’Neill, N.T.; Cliche, P.; Fedosejevs, G.; Teillet, P.M.; McArthur, L.J.B. Characterization of atmospheric aerosols across Canada from a ground-based Sun-photometer network: AEROCAN. Atmos. Ocean 2001, 39, 429–456. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.M.; Forgan, B.W.; Campbell, S.K. The Climatology of Australian Aerosol. Atmos. Chem. Phys. 2017, 17, 5131–5154. [Google Scholar] [CrossRef] [Green Version]
- Sakerin, S.M.; Kabanov, D.M.; Panchenko, M.V.; Pol’kin, V.V.; Holben, B.N.; Smirnov, A.V.; Beresnev, S.A.; Gorda, S.Y.; Kornienko, G.I.; Nikolashkin, S.V.; et al. Monitoring of atmospheric aerosol in the Asian part of Russia in 2004 within the framework of AEROSIBNET program. Atmos. Ocean. Opt. 2005, 18, 871–878. [Google Scholar]
- Che, H.; Zhang, X.-Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.-C.; Wang, H.; Blarel, L.; et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. [Google Scholar] [CrossRef]
- Nakajima, T.; Tonna, G.; Rao, R.; Boi, P.; Kaufman, Y.; Holben, B. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt. 1996, 35, 2672–2686. [Google Scholar] [CrossRef] [PubMed]
- Schafer, J.S.; Eck, T.F.; Holben, B.N.; Thornhill, K.L.; Anderson, B.E.; Sinyuk, A.; Giles, D.M.; Winstead, E.L.; Ziemba, L.D.; Beyersdorf, A.J.; et al. Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments. J. Geophys. Res. Atmos. 2014, 119, 7439–7452. [Google Scholar] [CrossRef] [Green Version]
- Andrews, E.; Ogren, J.A.; Kinne, S.; Samset, B. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements. Atmos. Chem. Phys. 2017, 17, 6041–6072. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Soroki, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Meygret, A.; Santer, R.P.; Berthelot, B. ROSAS: A robotic station for atmosphere and surface characterization dedicated to on-orbit calibration. Proc. SPIE 2011, 8153, 815311. [Google Scholar] [CrossRef]
- Goyens, C.; Ruddick, K.; Kuusk, J. Spectral Requirements for the Development of a New Hyperspectral Radiometer Integrated in Automated Networks—The Hypernets Sensor. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Hagolle, O.; Colin, J.; Kettig, P.; d’Angelo, P.; Auer, S.; Doxani, G.; Coustance, C.; Desjardins, C. Sentinel-2 surface reflectance products generated by THEIA and DLR: Methods, validation and applications. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 1, 9–15. [Google Scholar] [CrossRef]
- Vrieling, A.; De Leeuw, J.; Said, M.Y. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series. Remote Sens. 2013, 5, 982. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.; Dechant, B.; Rebmann, C.; Vohland, M.; Cuntz, M.; Doktor, D. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors. Sensors 2017, 17, 1855. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ehsani, R.; Shi, Y.; Abdulridha, J.; de Castro, A.I.; Xu, Y. Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Comput. Electron. Agric. 2017, 135, 289–299. [Google Scholar] [CrossRef]
- Manjunath, K.R.; Kumar, A.; Meenakshi, M.; Renu, R.; Uniyal, S.K.; Singh, R.D.; Ahuja, P.S.; Ray, S.S.; Panigrahy, S. Developing Spectral Library of Major Plant Species of Western Himalayas Using Ground Observations. J. Indian Soc. Remote Sens. 2013, 42, 201–216. [Google Scholar] [CrossRef]
Index | CIMEL Sun/Sky Photometer Spectral Bands (in nm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
340 | 380 | 440 | 500 | 675 | 870 | 937 | 1020 | 1640 | |
CI2 (carotenoid index 2) | x | x | |||||||
EVI (enhanced vegetation index) | x | x | x | ||||||
EVI2 (enhanced vegetation index 2) | x | x | |||||||
LWVI-1 (normalized difference leaf water) | x | x | |||||||
MSAVI2 (modified soil-adjusted vegetation index) | x | x | |||||||
NBR (normalized burn ratio) | x | x | |||||||
NDVI (normalized difference vegetation index) | x | x | |||||||
NPCI (normalized pigment chlorophyll index) | x | x | |||||||
SAVI (soil-adjusted vegetation index) | x | x | |||||||
SIWSI (vegetation water content) | x | x | |||||||
SLAVI (specific-leaf-area vegetation index) | x | x | x | ||||||
SR (simple ratio) | x | x | |||||||
SR3 (simple ratio 3) | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrer, D.; Meurey, C.; Hagolle, O.; Bigeard, G.; Paci, A.; Donier, J.-M.; Bergametti, G.; Bergot, T.; Calvet, J.-C.; Goloub, P.; et al. Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties? Remote Sens. 2021, 13, 3072. https://doi.org/10.3390/rs13163072
Carrer D, Meurey C, Hagolle O, Bigeard G, Paci A, Donier J-M, Bergametti G, Bergot T, Calvet J-C, Goloub P, et al. Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties? Remote Sensing. 2021; 13(16):3072. https://doi.org/10.3390/rs13163072
Chicago/Turabian StyleCarrer, Dominique, Catherine Meurey, Olivier Hagolle, Guillaume Bigeard, Alexandre Paci, Jean-Marie Donier, Gilles Bergametti, Thierry Bergot, Jean-Christophe Calvet, Philippe Goloub, and et al. 2021. "Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties?" Remote Sensing 13, no. 16: 3072. https://doi.org/10.3390/rs13163072
APA StyleCarrer, D., Meurey, C., Hagolle, O., Bigeard, G., Paci, A., Donier, J. -M., Bergametti, G., Bergot, T., Calvet, J. -C., Goloub, P., Victori, S., & Wang, Z. (2021). Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties? Remote Sensing, 13(16), 3072. https://doi.org/10.3390/rs13163072