Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Concept
3.2. Ground Clutter (GC) Monitoring
3.3. Calculation of Calibration Bias in ZH Based on SC Principle
- The data from the third to the last elevation angles with a pulse width of 2 μs were selected to minimize the impact of the GC.
- The contamination by the bright band was removed based on the statistics of the monthly averaged bright band [30] and ρHV.
- The partial beam blockage region was identified based on beam blockage simulation (BBF). The BBF is calculated by assuming the beam propagation in the standard atmosphere and the Gaussian beam pattern using digital elevation model (DEM) data with a horizontal resolution of 30 m [31,32]. The azimuth angle, where the BBF was greater than 10%, was excluded.
- The relationship between ZH and specific attenuation (A = 3.348 × 10−6 ZH0.755) was used to correct the ZH loss caused by rain attenuation [33]. The ZH-A relationship was derived from Precipitation Occurrence Sensor System (POSS) disdrometer data collected at Busan (35.12°N, 129.10°E), South Korea.
- Azimuth angles containing ZH above 45 dBZ were excluded to avoid the presence of hail.
- If the mean ZH near the radar was above 30 dBZ, the scan was excluded to avoid wet radome attenuation.
3.4. Intercomparison
- The difference between the heights at the center of beam is less than 500 m.
- The center of beam is within volume of beam of each radar.
- The height at the center of the beam was limited to 0.5 to 3.0 km to select the ZH in the rain region.
- The range of volume of beam from the radar was limited to 200 km.
4. Results
4.1. Monitoring of the RCA and Calibration Bias
4.1.1. Well-Calibrated Radar
4.1.2. Monitor the Antenna Pointing
4.1.3. Change in RCA due to the Calibration Status
4.2. Evaluation of Calibration Bias
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Whiton, R.C.; Smith, P.L.; Harbuck, A.C. Calibration of weather radar systems using the sun as a radio source. In Proceedings of the 17th Conference on Radar Meteorology, Seattle, WA, USA, 26–29 October 1976; pp. 60–65. [Google Scholar]
- Pratte, J.F.; Ferraro, D.G. Automated solar gain calibration. In Proceedings of the 24th Conference on Radar Meteorology, Tallahassee, FL, USA, 27–31 March 1989; American Meteorological Society: Boston, MA, USA; pp. 619–622. [Google Scholar]
- Atlas, D. Radar calibration: Some simple approaches. Bull. Amer. Meteor. Soc. 2002, 83, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Sempere-Torres, D.; Sanchez-Diezma, R.; Berenguer, M.; Pascual, R.; Zawadzki, I. Improving radar rainfall measurement stability using mountain returns in real time. Preprints. In Proceedings of the 31st Conference on Radar Meteorology, Seattle, WA, USA, 6–12 August 2003; American Meteorological Society: Boston, MA, USA; pp. 220–221. [Google Scholar]
- Melnikov, V.M.; Zrnic, D.S.; Doviak, R.J.; Carter, J.K. Calibration and Performance analysis of NSSL’s Polarimetric WSR88D; NOAA/NSSL Rep., 77; National Severe Storms Laboratory: Norman, OK, USA, May 2003. [Google Scholar]
- Free, A.D.; Patel, N.K.; Ice, R.L.; Boydstun, O.E. WSR-88D ORDA antenna gain and beamwidth algorithms. In Proceedings of the 23rd Conference on Interactive Information Processing Systems, San Antonio, TX, USA, 14–18 January 2007; American Meteorological Society: Boston, MA, USA. [Google Scholar]
- Silberstein, D.S.; Wolff, D.B.; Marks, D.A.; Atlas, D.; Pippitt, J.L. Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Ocean. Technol. 2008, 25, 2037–2045. [Google Scholar] [CrossRef]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V. Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens. 1992, 30, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V. Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Ocean. Technol. 1999, 16, 1690–1697. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Yates, D.N.; Brandes, E.A. The influence of terrain on rainfall estimates from radar reflectivity and specific propagation phase observations. J. Atmos. Ocean. Technol. 1999, 16, 837–845. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Giangrande, S.E.; Melnikov, V.M.; Schuur, T.J. Calibration issues of dual-polarization radar measurements. J. Atmos. Ocean. Technol. 2005, 22, 1138–1155. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.W.; Zawadzki, I. Radar calibration by gage, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol. 2006, 328, 83–97. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, G.W.; Kim, G. Rainfall estimation from an operational S-band dual-polarization radar: Effect of radar calibration. J. Meteor. Soc. Jpn. 2015, 93, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Joss, J.; Waldvogel, A. A raindrop spectrograph with automatic analysis. Pure Appl. Geophys. 1967, 68, 240–246. [Google Scholar] [CrossRef]
- Brandes, E.A.; Vivekanandan, J.; Wilson, J.W. A comparison of radar reflectivity estimates of rainfall from collocated radars. J. Atmos. Ocean. Technol. 1999, 16, 1264–1272. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Lee, L.G. Rainfall measurement error by WSR88D radars due to variations in Z-R law parameters and the radar constant. J. Atmos. Ocean. Technol. 1999, 16, 1017–1024. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Morales, C.A.; Dinku, T. The use of TRMM precipitation radar observation in determining ground radar calibration biases. J. Atmos. Ocean. Technol. 2001, 18, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Bringi, V.; Thurai, M.; Petersen, W.A.; Gatlin, P.N. Using a network of 2D video disdrometers for external radar calibration of NASA’s S-band polarimetric radar. In Proceedings of the 36th Conference on Radar Meteorology, Breckenridge, CO, USA, 16–20 September 2013. [Google Scholar]
- Park, S.; Jung, S.-H.; Lee, G. Cross validation of TRMM PR reflectivity profiles using 3D reflectivity composite from the ground-based radar network over the Korean Peninsula. J. Hydrometeorol. 2015, 16, 668–687. [Google Scholar] [CrossRef]
- Warren, R.A.; Protat, A.; Siems, S.T.; Ramsay, H.A.; Louf, V.; Manton, M.J.; Kane, T.A. Calibrating ground-based radars against TRMM and GPM. J. Atmos. Ocean. Technol. 2018, 35, 323–346. [Google Scholar] [CrossRef]
- Keem, M.; Seo, B.-C.; Krajewski, W.F.; Morris, K.R. Inter-comparison of reflectivity measurements between GPM DPR and NEXRAD radars. Atmos. Res. 2019, 226, 49–65. [Google Scholar] [CrossRef]
- Rinehart, R.E. On the use of ground return targets for radar reflectivity factor calibration checks. J. Appl. Meteorol. Climatol. 1978, 17, 1342–1350. [Google Scholar] [CrossRef] [Green Version]
- Wolff, D.B.; Marks, D.A.; Petersen, W.A. General application of the relative calibration adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration. J. Atmos. Ocean. Technol. 2015, 32, 496–506. [Google Scholar] [CrossRef]
- Hunzinger, A.; Hardin, J.; Bharadwaj, N.; Varble, A.; Matthews, A. An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range-height indicator (RHI) scans. Atmos. Meas. Tech. 2020, 13, 3147–3166. [Google Scholar] [CrossRef]
- Vaccarono, M.; Bechini, R.; Chandrasekar, C.V.; Cremonini, R.; Cassardo, C. An integrated approach to monitoring the calibration stability of operational dual-polarization radars. Atmos. Meas. Tech. 2016, 9, 5367–5383. [Google Scholar] [CrossRef] [Green Version]
- Louf, V.; Protat, A.; Warren, R.A.; Collis, S.M.; Wolff, D.B.; Raunyiar, S.; Jakob, C.; Petersen, W.A. An integrated approach to weather radar calibration and monitoring using ground clutter and satellite comparisons. J. Atmos. Ocean. Technol. 2019, 36, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Crisologo, I.; Heistermann, M. Using ground radar overlaps to verift tge retrieval of calibration bias estimates from spaceborn platforms. Atmos. Meas. Tech. 2020, 13, 645–659. [Google Scholar] [CrossRef]
- Lee, J.-E.; Jung, S.-H.; Kim, J.-S.; Jang, K. Sensitivity analysis of polarimetric observations by two different pulse lengths of dual-polarization weather radar. Atmosphere 2019, 29, 192–211, (In Korean with English abstract). [Google Scholar]
- Oh, Y.-A.; Kim, H.-L.; Suk, M.-K. Clutter elimination algorithm for non-precipitation echo of radar data considering meteorological and observational properties in polarimetric measurements. Remote Sens. 2020, 12, 3790. [Google Scholar] [CrossRef]
- Lee, S.-H. Detection of Bright Band and Analysis of Its Characteristics Using the KMA Weather Radar Data. Master’s Thesis, Kyung National University, Daegu, Korea, June 2012. [Google Scholar]
- Delrieu, G.; Creutin, J.D. Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Ocean. Technol. 1995, 12, 1038–1049. [Google Scholar] [CrossRef] [Green Version]
- Kucera, P.A.; Krajewski, W.F.; Young, C.B. Radar beam occultation studies using GIS and DEM technology: An example study of Guam. J. Atmos. Ocean. Technol. 2004, 21, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-G.; Lee, G. Calibration of radar reflectivity measurements from the KMA operational radar network. Asia-Pac. J. Atmos. Sci. 2010, 46, 243–259. [Google Scholar] [CrossRef]
Radar | Elevation Angle (°) High PRF [Hz] | ||||||||
---|---|---|---|---|---|---|---|---|---|
GDK | −0.40 | 0.01 | 0.31 | 0.80 | 1.41 | 2.50 | 4.20 | 7.11 | 15.01 |
620 | 620 | 620 | 620 | 620 | 620 | 830 | 1200 | 1200 | |
BRI | 0.10 | 0.42 | 0.81 | 1.41 | 2.20 | 3.41 | 5.10 | 7.61 | 15.01 |
620 | 620 | 620 | 620 | 620 | 680 | 935 | 1200 | 1200 | |
KWK | −0.19 | 0.00 | 0.30 | 0.81 | 1.50 | 2.60 | 4.40 | 7.30 | 15.01 |
620 | 620 | 620 | 620 | 620 | 620 | 830 | 1200 | 1200 | |
MYN | −0.80 | −0.39 | 0.01 | 0.41 | 0.91 | 1.91 | 3.60 | 7.00 | 15.01 |
525 | 530 | 560 | 595 | 620 | 680 | 680 | 1200 | 1200 | |
KSN | 0.00 | 0.30 | 0.70 | 1.30 | 2.10 | 3.21 | 5.00 | 7.61 | 15.01 |
620 | 620 | 620 | 620 | 620 | 650 | 935 | 1200 | 1200 | |
PSN | −0.09 | 0.20 | 0.60 | 1.10 | 1.81 | 3.00 | 4.71 | 7.40 | 15.01 |
620 | 620 | 620 | 620 | 620 | 620 | 880 | 1200 | 1200 | |
JNI | −0.09 | 0.20 | 0.60 | 1.10 | 1.81 | 3.00 | 4.71 | 7.42 | 15.02 |
620 | 620 | 620 | 620 | 620 | 650 | 880 | 1200 | 1200 | |
SSP | 0.20 | 0.50 | 1.01 | 1.60 | 2.41 | 3.50 | 5.20 | 7.60 | 15.00 |
620 | 620 | 620 | 620 | 620 | 680 | 935 | 1200 | 1200 | |
GSN | 0.20 | 0.50 | 1.01 | 1.60 | 2.41 | 3.50 | 5.20 | 7.60 | 15.01 |
620 | 620 | 620 | 620 | 620 | 680 | 935 | 1200 | 1200 |
Site | Elev. No. | Elevation (°) | Range (km) | Pulse Width (μs) | High PRF (Hz) | Dual PRF | Nyquist Velocity (m s−1) | Antenna Scan Speed (ºs−1) | Sampling Number |
---|---|---|---|---|---|---|---|---|---|
GSN | 1 | 0.2 | 240 | 2.0 | 620 | 5:4 | 65.8 | 12.0 | 45 |
2 | 0.5 | 240 | 2.0 | 620 | 5:4 | 65.8 | 12.0 | 45 | |
3 | 1.0 | 240 | 2.0 | 620 | 5:4 | 65.8 | 12.0 | 45 | |
4 | 1.6 | 240 | 2.0 | 620 | 5:4 | 65.8 | 12.0 | 45 | |
5 | 2.4 | 240 | 2.0 | 620 | 5:4 | 65.8 | 12.0 | 45 | |
6 | 3.5 | 220 | 1.0 | 680 | 5:4 | 72.2 | 13.0 | 45 | |
7 | 5.2 | 160 | 1.0 | 935 | 5:4 | 99.2 | 18.0 | 45 | |
8 | 7.6 | 120 | 1.0 | 1200 | 5:4 | 127.4 | 24.0 | 45 | |
9 | 15.0 | 60 | 1.0 | 1200 | 5:4 | 127.4 | 24.0 | 45 |
Radar 1 (Reference) | Radar 2 | Distance between Two Radars (km) | Number of Overlapping Volumes |
---|---|---|---|
KWK | BRI | 214 | 575 |
GDK | KWK | 86 | 1240 |
KSN | KWK | 160 | 1064 |
JNI | KSN | 176 | 762 |
MYN | GNG | 183 | 500 |
MYN | KSN | 200 | 595 |
PSN | MYN | 118 | 1595 |
GSN | JNI | 132 | 846 |
SSP | JNI | 131 | 987 |
Site | P1 | P2 | P3 | |||
---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | |
GDK | −0.11 | 0.17 | 0.69 | 0.16 | - | - |
KWK | −0.11 | 0.15 | 22.62 | 2.79 | −0.59 | 0.16 |
GNG | −0.14 | 0.16 | - | - | - | - |
MYN | 0.13 | 0.26 | 3.10 | 0.29 | 3.59 | 0.29 |
KSN | −0.02 | 0.2 | −1.09 | 0.18 | −1.44 | 0.20 |
PSN | −0.17 | 0.1 | −0.31 | 0.12 | −0.60 | 0.13 |
SSP | 0.03 | 0.14 | −0.35 | 0.23 | −0.04 | 0.15 |
GSN | 0.06 | 0.09 | 4.16 | 0.10 | 0.12 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-E.; Kwon, S.; Jung, S.-H. Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network. Remote Sens. 2021, 13, 2936. https://doi.org/10.3390/rs13152936
Lee J-E, Kwon S, Jung S-H. Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network. Remote Sensing. 2021; 13(15):2936. https://doi.org/10.3390/rs13152936
Chicago/Turabian StyleLee, Jeong-Eun, Soohyun Kwon, and Sung-Hwa Jung. 2021. "Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network" Remote Sensing 13, no. 15: 2936. https://doi.org/10.3390/rs13152936
APA StyleLee, J. -E., Kwon, S., & Jung, S. -H. (2021). Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network. Remote Sensing, 13(15), 2936. https://doi.org/10.3390/rs13152936