Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture
Abstract
:1. Introduction
2. Waterlogging and Its Impact
3. Waterlogging and Satellite Remote Sensing
4. Detection of Waterlogging with Different Remote Sensing Techniques
5. Downscaling Using Ancillary Data
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop | Location | Timing | Duration (Days) | Yield Reduction (%) | Reference |
---|---|---|---|---|---|
Corn | Missouri, USA | Development | 3 | 10.0 | Kaur et al. [53] |
Corn | Missouri, USA | Development | 7 | 29.0 | Kaur et al. [53] |
Corn | Missouri, USA | Development | 3 | 21.0 | Kaur et al. [53] |
Corn | Missouri, USA | Development | 7 | 36.0 | Kaur et al. [53] |
Corn | Varanasi, India | Development | 5 | 21.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 19.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 51.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 55.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 33.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 43.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 80.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 21.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 78.0 | Shah et al. [52] |
Corn | Varanasi, India | Development | 5 | 76.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 12.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 15.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 29.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 31.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 21.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 28.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 44.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 26.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 33.0 | Shah et al. [52] |
Corn | Varanasi, India | Mid | 5 | 29.0 | Shah et al. [52] |
Corn | Shandong, China | Initial | 6 | 26.0 | Ren et al. [54] |
Corn | Shandong, China | Development | 6 | 21.0 | Ren et al. [54] |
Corn | Shandong, China | Mid | 6 | 13.0 | Ren et al. [54] |
Soybean | Missouri, USA | Mid | 8 | 14.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 20.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Development | 8 | 5.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 24.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Development | 8 | 17.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 24.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 39.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 23.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Development | 8 | 1.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 12.0 | Rhine et al. [55] |
Soybean | Missouri, USA | Mid | 8 | 20.0 | Rhine et al. [55] |
Soybean | Ohio, USA | Initial | 3 | 20.0 | Sullivan et al. [56] |
Soybean | Ohio, USA | Initial | 3 | 20.0 | Sullivan et al. [56] |
Soybean | Ohio, USA | Initial | 6 | 93.0 | Sullivan et al. [56] |
Soybean | Ohio, USA | Initial | 6 | 93.0 | Sullivan et al. [56] |
Soybean | Louisiana, USA | Initial | 7 | 29.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Initial | 7 | 9.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Development | 7 | 18.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Development | 7 | 64.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Mid | 7 | 93.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Mid | 7 | 67.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Late | 7 | 23.0 | Linkemer et al. [57] |
Soybean | Louisiana, USA | Late | 7 | 18.0 | Linkemer et al. [57] |
Wheat | Pisa, Italy | Development | 4 | 2.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 8 | 2.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 12 | 2.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 16 | 6.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 20 | 8.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 40 | 20.0 | Pampana et al. [46] |
Wheat | Pisa, Italy | Development | 60 | 30.0 | Pampana et al. [46] |
Wheat | Arkansas, USA | Development | 28 | 42.0 | Arguello et al. [48] |
Wheat | Arkansas, USA | Development | 14 | 13.0 | Arguello et al. [48] |
Wheat | Lleida, Spain | Development | 4 | 18.0 | Marti et al. [47] |
Wheat | Lleida, Spain | Development | 8 | 19.0 | Marti et al. [47] |
Wheat | Lleida, Spain | Development | 12 | 13.0 | Marti et al. [47] |
Wheat | Lleida, Spain | Development | 16 | 28.0 | Marti et al. [47] |
Wheat | Lleida, Spain | Development | 20 | 38.0 | Marti et al. [47] |
Wheat | Lleida, Spain | Development | 24 | 46.0 | Marti et al. [47] |
Cotton | Xinxiang, China | Initial | 2 | 0.5 | Wang et al. [127] |
Cotton | Xinxiang, China | Initial | 4 | 0.5 | Wang et al. [127] |
Cotton | Xinxiang, China | Initial | 6 | 4.8 | Wang et al. [127] |
Cotton | Xinxiang, China | Initial | 8 | 13.1 | Wang et al. [127] |
Cotton | Xinxiang, China | Initial | 10 | 18.3 | Wang et al. [127] |
Cotton | Xinxiang, China | Development | 2 | 4.3 | Wang et al. [127] |
Cotton | Xinxiang, China | Development | 4 | 4.8 | Wang et al. [127] |
Cotton | Xinxiang, China | Development | 6 | 8.3 | Wang et al. [127] |
Cotton | Xinxiang, China | Development | 8 | 20.2 | Wang et al. [127] |
Cotton | Xinxiang, China | Development | 10 | 27.9 | Wang et al. [127] |
Cotton | Xinxiang, China | Mid | 2 | 14.3 | Wang et al. [127] |
Cotton | Xinxiang, China | Mid | 4 | 23.1 | Wang et al. [127] |
Cotton | Xinxiang, China | Mid | 6 | 26.7 | Wang et al. [127] |
Cotton | Xinxiang, China | Mid | 8 | 36.9 | Wang et al. [127] |
Cotton | Xinxiang, China | Mid | 10 | 38.8 | Wang et al. [127] |
Cotton | Xinxiang, China | Late | 2 | 0.0 | Wang et al. [127] |
Cotton | Xinxiang, China | Late | 4 | 0.5 | Wang et al. [127] |
Cotton | Xinxiang, China | Late | 6 | 4.8 | Wang et al. [127] |
Cotton | Xinxiang, China | Late | 8 | 4.8 | Wang et al. [127] |
Cotton | Xinxiang, China | Late | 10 | 7.6 | Wang et al. [127] |
Tomato | Manikganj, Bangladesh | Development | 3 | 54.0 | Tareq et al. [49] |
Tomato | Manikganj, Bangladesh | Development | 6 | 65.0 | Tareq et al. [49] |
Tomato | Manikganj, Bangladesh | Development | 9 | 77.0 | Tareq et al. [49] |
Tomato | Manikganj, Bangladesh | Development | 12 | 85.0 | Tareq et al. [49] |
Tomato | Taiwan | Development | 2 | 24.0 | Ezin et al. [50] |
Tomato | Taiwan | Development | 4 | 44.0 | Ezin et al. [50] |
Tomato | Taiwan | Development | 8 | 60.0 | Ezin et al. [50] |
Tomato | Odisha, India | Development | 1 | 29.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 2 | 65.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 1 | 47.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 2 | 59.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 1 | 30.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 2 | 54.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 1 | 44.0 | Mohanty et al. [51] |
Tomato | Odisha, India | Development | 2 | 66.0 | Mohanty et al. [51] |
References
- Houk, E.; Frasier, M.; Schuck, E. The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin. Agric. Water Manag. 2006, 85, 175–183. [Google Scholar] [CrossRef]
- Wallender, W.W.; Tanji, K.K. Agricultural Salinity Assessment and Management; American Society of Civil Engineers (ASCE): Reston, Virginia, 2011. [Google Scholar]
- Shaw, R.E.; Meyer, W.S.; McNeill, A.; Tyerman, S.D. Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models. Crop. Pasture Sci. 2013, 64, 549–562. [Google Scholar] [CrossRef]
- Dennis, E.S.; Dolferus, R.; Ellis, M.; Rahman, M.; Wu, Y.; Hoeren, F.; Grover, A.; Ismond, K.; Good, A.; Peacock, W. Molecular strategies for improving waterlogging tolerance in plants. J. Exp. Bot. 2000, 51, 89–97. [Google Scholar] [CrossRef] [PubMed]
- FAO. Coping with Water Scarcity in Agriculture a Global Framework for Action in a Changing Climate. 2016. Available online: http://www.fao.org/3/a-i6459e.pdf (accessed on 13 April 2021).
- Steduto, P.; Hoogeveen, J.; Winpenny, J.; Burke, J. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Ward, P.; Dunin, F.; Micin, S. Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation. Agric. Water Manag. 2002, 53, 83–97. [Google Scholar] [CrossRef]
- Christen, E.W.; Ayars, J.E.; Hornbuckle, J.W. Subsurface drainage design and management in irrigated areas of Australia. Irrig. Sci. 2001, 21, 35–43. [Google Scholar] [CrossRef]
- Singh, A. Hydrological problems of water resources in irrigated agriculture: A management perspective. J. Hydrol. 2016, 541, 1430–1440. [Google Scholar] [CrossRef]
- Poddar, R.; Qureshi, M.E.; Syme, G. Comparing irrigation management reforms in Australia and India—A special reference to participatory irrigation management. Irrig. Drain. 2011, 60, 139–150. [Google Scholar] [CrossRef]
- Valipour, M. Drainage, waterlogging, and salinity. Arch. Agron. Soil Sci. 2014, 60, 1625–1640. [Google Scholar] [CrossRef]
- Neumann, K.; Stehfest, E.; Verburg, P.H.; Siebert, S.; Müller, C.; Veldkamp, T. Exploring global irrigation patterns: A multilevel modelling approach. Agric. Syst. 2011, 104, 703–713. [Google Scholar] [CrossRef]
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Nelson, G.; Guo, Z.; Sun, Y. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields from tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Projected water consumption in future global agriculture: Scenarios and related impacts. Sci. Total. Environ. 2011, 409, 4206–4216. [Google Scholar] [CrossRef]
- Mashnik, D.; Jacobus, H.; Barghouth, A.; Wang, E.J.; Blanchard, J.; Shelby, R. Increasing productivity through irrigation: Problems and solutions implemented in Africa and Asia. Sustain. Energy Technol. Assess. 2017, 22, 220–227. [Google Scholar] [CrossRef]
- FAO. AQUASTAT Main Database, Food and Agriculture Organization of the United Nations (FAO). 2016. Available online: http://www.fao.org/nr/water/aquastat/data/ (accessed on 27 October 2019).
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, I.M.; Maxwell, R.M. Human impacts on terrestrial hydrology: Climate change versus pumping and irrigation. Environ. Res. Lett. 2012, 7, 044022. [Google Scholar] [CrossRef] [Green Version]
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 2016, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, F.; D’Urso, G.; De Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–95. [Google Scholar] [CrossRef]
- Vanino, S.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D Urso, G.; Menenti, M. Remote sensing for crop water management from ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [Green Version]
- Glaz, B.; Morris, D.R.; Daroub, S.H. Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table. Crop Sci. 2004, 44, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Inman-Bamber, N.; Smith, D. Water relations in sugarcane and response to water deficits. Field Crop. Res. 2005, 92, 185–202. [Google Scholar] [CrossRef]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Jones, H. Opportunities and pitfalls in the use of thermal sensing for monitoring water stress and transpiration. Acta Hortic. 2018, 1197, 31–44. [Google Scholar] [CrossRef]
- Mondal, D.; Pal, S. Monitoring dual-season hydrological dynamics of seasonally flooded wetlands in the lower reach of Mayurakshi River, Eastern India. Geocarto Int. 2018, 33, 225–239. [Google Scholar] [CrossRef]
- Singh, S.K.; Pandey, A. Geomorphology and the controls of geohydrology on waterlogging in Gangetic Plains, North Bihar, India. Environ. Earth Sci. 2014, 71, 1561–1579. [Google Scholar] [CrossRef]
- Choubey, V. Detection and delineation of waterlogging by remote sensing techniques. J. Indian Soc. Remote. Sens. 1997, 25, 123–135. [Google Scholar] [CrossRef]
- Chowdary, V.; Chandran, R.V.; Neeti, N.; Bothale, R.; Srivastava, Y.; Ingle, P.; Ramakrishnan, D.; Dutta, D.; Jeyaram, A.; Sharma, J.; et al. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric. Water Manag. 2008, 95, 754–766. [Google Scholar] [CrossRef]
- El Bastawesy, M.; Ali, R.R. The use of GIS and remote sensing for the assessment of waterlogging in the dryland irrigated catchments of Farafra Oasis, Egypt. Hydrol. Process. 2013, 27, 206–216. [Google Scholar] [CrossRef]
- Ritzema, H. Drain for Gain: Managing salinity in irrigated lands—A review. Agric. Water Manag. 2016, 176, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Fukao, T.; Barrera-Figueroa, B.E.; Juntawong, P.; Pena-Castro, J.M. Submergence and waterlogging stress in plants A review highlighting research opportunities and understudied aspects. Front. Plant Sci. 2019, 10, 340. [Google Scholar] [CrossRef]
- Sasidharan, R.; Voesenek, L.A. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 2015, 169, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.; Kumutha, D.; Ezhilmathi, K.; Deshmukh, P.; Srivastava, G. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 2008, 52, 401. [Google Scholar] [CrossRef]
- Parent, C.; Capelli, N.; Berger, A.; Crèvecoeur, M.; Dat, J.F. An overview of plant responses to soil waterlogging. Plant Stress 2008, 2, 20–27. [Google Scholar]
- Irfan, M.; Hayat, S.; Hayat, Q.; Afroz, S.; Ahmad, A. Physiological and biochemical changes in plants under waterlogging. Protoplasma 2010, 241, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [Google Scholar] [CrossRef]
- Gomathi, R.; Rao, P.G.; Chandran, K.; Selvi, A. Adaptive responses of sugarcane to waterlogging stress: An over view. Sugar Tech 2015, 17, 325–338. [Google Scholar] [CrossRef]
- Bellini, C.; Pacurar, D.I.; Perrone, I. Adventitious roots and lateral roots: Similarities and differences. Annu. Rev. Plant Biol. 2014, 65, 639–666. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 2016, 44, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Marti, J.; Savin, R.; Slafer, G. Wheat yield as affected by length of exposure to waterlogging during stem elongation. J. Agron. Crop. Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Arguello, M.N.; Mason, R.E.; Roberts, T.L.; Subramanian, N.; Acuna, A.; Addison, C.K.; Lozada, D.N.; Miller, R.G.; Gbur, E. Performance of soft red winter wheat subjected to field soil waterlogging: Grain yield and yield components. Field Crop. Res. 2016, 194, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Tareq, M.Z.; Sarker, M.S.A.; Sarker, M.D.H.; Moniruzzaman, M.; Hasibuzzaman, A.S.M.; Islam, S.N. Waterlogging stress adversely affects growth and development of Tomato. Asian J. Crop 2020, 2, 44–50. [Google Scholar]
- Ezin, V.; Pena, R.D.L.; Ahanchede, A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz. J. Plant Physiol. 2010, 22, 131–142. [Google Scholar] [CrossRef]
- Mohanty, A.; Panda, R.; Rout, G.; Muduli, K.; Tripathy, P. Impact of short term water logging on flowering, fruit setting, yield and yield attributes in tomato (Solanum lycopersicum L. Mill). J. Pharmacogn. Phytochem. 2020, 9, 760–763. [Google Scholar]
- Shah, N.A.; Srivastava, J.P.; da Silva, J.A.T.; Shahi, J.P. Morphological and yield responses of maize (Zea mays L.) genotypes subjected to root zone excess soil moisture stress. Plant Stress 2012, 6, 59–72. [Google Scholar]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Dudenhoeffer, C.J. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron. J. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Root and shoot responses of summer maize to waterlogging at different stages. Agron. J. 2016, 108, 1060–1069. [Google Scholar] [CrossRef]
- Rhine, M.D.; Stevens, G.; Shannon, G.; Wrather, A.; Sleper, D. Yield and nutritional responses to waterlogging of soybean cultivars. Irrig. Sci. 2010, 28, 135–142. [Google Scholar] [CrossRef]
- Sullivan, M.; VanToai, T.; Fausey, N.; Beuerlein, J.; Parkinson, R.; Soboyejo, A. Evaluating on-farm flooding impacts on soybean. Crop Sci. 2001, 41, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Linkemer, G.; Board, J.E.; Musgrave, M.E. Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci. 1998, 38, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Avivi, S.; Arini, S.F.M.; Soeparjono, S.; Restanto, D.P.; Fanata, W.I.D.; Widjaya, K.A. Tolerance Screening of Sugarcane Varieties Toward Waterlogging Stress. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 142, p. 03007. [Google Scholar]
- Rietz, D.; Haynes, R. Effect of irrigation-induced salinity and sodicity on sugarcane yield. Proc. S. Afr. Sugar Technol. Assoc. 2002, 76, 173–185. [Google Scholar]
- Warrence, N.J.; Bauder, J.W.; Pearson, K.E. Basics of Salinity and Sodicity Effects on Soil Physical Properties; Montana State University-Bozeman: Bozeman, MT, USA, 2002; Volume 129. [Google Scholar]
- den Besten, N.; Kassing, R.; Muchanga, E.; Earnshaw, C.; de Jeu, R.; Karimi, P.; van der Zaag, P. A novel approach to the use of earth observation to estimate daily evaporation in a sugarcane plantation in Xinavane, Mozambique. Phys. Chem. Earth Parts A/B/C 2020, 102940. [Google Scholar] [CrossRef]
- Vilanculos, M.; Mafalacusser, J. Soil Survey Report of Acucareira de Xinavane, SA; Technical Report; Instituto de Investigacao Agraria de Mocambique: Xinavane, Mozambique, 2012. [Google Scholar]
- Martinez-Feria, R.A.; Basso, B. Unstable crop yields reveal opportunities for site-specific adaptations to climate variability. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ritzema, H.; Satyanarayana, T.; Raman, S.; Boonstra, J. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agric. Water Manag. 2008, 95, 179–189. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Liu, K.; Cheng, L.; Wang, L.; Ye, A. Interactions between Lake-Level Fluctuations and Waterlogging Disasters around a Large-Scale Shallow Lake: An Empirical Analysis from China. Water 2019, 11, 318. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zeng, W.; Jin, Y.; Zha, Y.; Mi, B.; Zhang, S. Development of a waterlogging analysis system for paddy fields in irrigation districts. J. Hydrol. 2020, 591, 125325. [Google Scholar] [CrossRef]
- Mandal, A.K.; Sharma, R. Delineation and characterization of waterlogged salt affected soils in IGNP using remote sensing and GIS. J. Indian Soc. Remote. Sens. 2011, 39, 39–50. [Google Scholar] [CrossRef]
- Dwivedi, R.; Ramana, K.; Sreenivas, K. Temporal behaviour of surface waterlogged areas using spaceborne multispectral multitemporal measurements. J. Indian Soc. Remote. Sens. 2007, 35, 173–184. [Google Scholar] [CrossRef]
- Fei, X.; LI, Y.z.; Yun, D.; Feng, L.; Yi, Y.; Qi, F.; Xuan, B. Monitoring perennial sub-surface waterlogged croplands based on MODIS in Jianghan Plain, middle reaches of the Yangtze River. J. Integr. Agric. 2014, 13, 1791–1801. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Martens, B.; de Jeu, R.; Verhoest, N.; Schuurmans, H.; Kleijer, J.; Miralles, D. Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sens. 2018, 10, 1720. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Kimball, J.S.; Yi, Y.; Running, S.W.; Guan, K.; Moreno, A.; Wu, X.; Maneta, M. Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework. Remote Sens. Environ. 2019, 230, 111201. [Google Scholar] [CrossRef]
- Govender, M.; Govender, P.; Weiersbye, I.; Witkowski, E.; Ahmed, F. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water Sa 2009, 35, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.D. Remote sensing of biotic and abiotic plant stress. Annu. Rev. Phytopathol. 1986, 24, 265–287. [Google Scholar] [CrossRef]
- Maes, W.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, S.; Consoli, S.; Russo, A. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes. Sensors 2009, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- den Besten, N.; Schellekens, J.; De Jeu, R.; Van der Zaag, P. The influence of shallow groundwater on the actual transpiration flux of irrigated fields using satellite observations. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI; International Society for Optics and Photonics: Strasbourg, France, 2019; Volume 11149, p. 111490N. [Google Scholar]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Hong, S.h.; Hendrickx, J.M.; Borchers, B. Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale. J. Hydrol. 2009, 370, 122–138. [Google Scholar] [CrossRef]
- Miralles, D.; Holmes, T.; De Jeu, R.; Gash, J.; Meesters, A.; Dolman, A. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Ph.D. Thesis, VU University Amsterdam, Amsterdam, The Netherlands, 2011. [Google Scholar]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Anderson, M.; Kustas, W.; Norman, J.; Hain, C.; Mecikalski, J.; Schultz, L.; González-Dugo, M.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. Discuss 2010, 7, 5957–5990. [Google Scholar]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Gowda, P.; Senay, G.; Howell, T.; Marek, T. Lysimetric evaluation of Simplified Surface Energy Balance approach in the Texas high plains. Appl. Eng. Agric. 2009, 25, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- FAO. Database Methodology: Level 2 Data; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Prigent, C.; Lettenmaier, D.P.; Aires, F.; Papa, F. Toward a high-resolution monitoring of continental surface water extent and dynamics, at global scale: From GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). In Surveys in Geophysics; Springer: Cham, Switzerland, 2016; pp. 339–355. [Google Scholar]
- Giddings, L.; Choudhury, B. Observation of hydrological features with Nimbus-7 37 GHz data, applied to South America. Int. J. Remote Sens. 1989, 10, 1673–1686. [Google Scholar] [CrossRef]
- Sippel, S.J.; Hamilton, S.K.; Melack, J.M.; Choudhury, B.J. Determination of inundation area in the Amazon River floodplain using the SMMR 37 GHz polarization difference. Remote Sens. Environ. 1994, 48, 70–76. [Google Scholar] [CrossRef]
- Basist, A.; Williams, C., Jr.; Ross, T.F.; Menne, M.J.; Grody, N.; Ferraro, R.; Shen, S.; Chang, A.T. Using the Special Sensor Microwave Imager to monitor surface wetness. J. Hydrometeorol. 2001, 2, 297–308. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 1-Microwave Remote Sensing Fundamentals and Radiometry; Artech House: London, UK, 1981. [Google Scholar]
- Prigent, C.; Aires, F.; Rossow, W.; Matthews, E. Joint characterization of vegetation by satellite observations from visible to microwave wavelengths: A sensitivity analysis. J. Geophys. Res. Atmos. 2001, 106, 20665–20685. [Google Scholar] [CrossRef]
- Choudhury, B.J. Monitoring global land surface using Nimbus-7 37 GHz data theory and examples. Int. J. Remote. Sens. 1989, 10, 1579–1605. [Google Scholar] [CrossRef]
- Sippe, S.; Hamilton, S.; Melack, J.; Novo, E. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. Int. J. Remote. Sens. 1998, 19, 3055–3074. [Google Scholar] [CrossRef]
- Hamilton, S.; Sippel, S.; Melack, J. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch. FÜR Hydrobiol. 1996, 137, 1–23. [Google Scholar] [CrossRef]
- Shang, H. Applications of Passive Microwave Data to Monitor Inundated Areas and Model Stream Flow. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Scofield, R.A.; Achutuni, R. The satellite forecasting funnel approach for predicting flash floods. Remote Sens. Rev. 1996, 14, 251–282. [Google Scholar] [CrossRef]
- Prigent, C.; Papa, F.; Aires, F.; Rossow, W.; Matthews, E. Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res. Atmos. 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Parrens, M.; Al Bitar, A.; Frappart, F.; Papa, F.; Calmant, S.; Crétaux, J.F.; Wigneron, J.P.; Kerr, Y. Mapping dynamic water fraction under the tropical rain forests of the Amazonian Basin from SMOS brightness temperatures. Water 2017, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Chaubell, J.; Yueh, S.; Entekhabi, D.; Peng, J. Resolution enhancement of SMAP radiometer data using the Backus Gilbert optimum interpolation technique. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 284–287. [Google Scholar]
- de Jeu, R.A.M.; de Nijs, A.H.A.; van Klink, M.H.W. Method and System for Improving the Resolution of Sensor Data. U.S. Patent 10,643,098, 5 May 2020. [Google Scholar]
- van der Schalie, R.; de Jeu, R.A.; Kerr, Y.; Wigneron, J.P.; Rodríguez-Fernández, N.J.; Al-Yaari, A.; Parinussa, R.M.; Mecklenburg, S.; Drusch, M. The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E. Remote Sens. Environ. 2017, 189, 180–193. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Prigent, C.; Jimenez, C.; Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. Atmos. 2020, 125, e2019JD030711. [Google Scholar] [CrossRef]
- Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Boni, G.; Squicciarino, G.; Chini, M. Mapping flooded vegetation using COSMO-SkyMed: Comparison with polarimetric and optical data over rice fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 2650–2662. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation—A review of characteristics and approaches. Int. J. Remote. Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Davidson, M.; Chini, M.; Dierking, W.; Djavidnia, S.; Haarpaintner, J.; Hajduch, G.; Laurin, G.; Lavalle, M.; López-Martínez, C.; Nagler, T.; et al. Copernicus L-band SAR Mission Requirements Document. 2019. Available online: https://esamultimedia.esa.int/docs/EarthObservation/Copernicus_L-band_SAR_mission_ROSE-L_MRD_v2.0_issued.pdf (accessed on 13 April 2021).
- Jensen, K.; McDonald, K.; Podest, E.; Rodriguez-Alvarez, N.; Horna, V.; Steiner, N. Assessing L-band GNSS-reflectometry and imaging radar for detecting sub-canopy inundation dynamics in a tropical wetlands complex. Remote Sens. 2018, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, R.; McDonald, K.C.; Chapman, B.D.; Jensen, K.; Podest, E.; Tessler, Z.D.; Bohn, T.J.; Zimmermann, R. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens. 2015, 7, 16688–16732. [Google Scholar] [CrossRef] [Green Version]
- Parrens, M.; Al Bitar, A.; Frappart, F.; Paiva, R.; Wongchuig, S.; Papa, F.; Yamasaki, D.; Kerr, Y. High resolution mapping of inundation area in the Amazon basin from a combination of L-band passive microwave, optical and radar datasets. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 58–71. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.; Matthews, E. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Galantowicz, J.F.; Picton, J.; Root, B. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing. AGU Fall Meet. Abstr. 2017, 2017, NH23E–2833. [Google Scholar]
- Aires, F.; Papa, F.; Prigent, C. A long-term, high-resolution wetland dataset over the Amazon Basin, downscaled from a multiwavelength retrieval using SAR data. J. Hydrometeorol. 2013, 14, 594–607. [Google Scholar] [CrossRef] [Green Version]
- Galantowicz, J.F. High-resolution flood mapping from low-resolution passive microwave data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1499–1502. [Google Scholar]
- Aires, F.; Miolane, L.; Prigent, C.; Pham, B.; Fluet-Chouinard, E.; Lehner, B.; Papa, F. A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations. J. Hydrometeorol. 2017, 18, 1305–1325. [Google Scholar] [CrossRef]
- Schumann, G.J.; Bates, P.D. The need for a high-accuracy, open-access global DEM. Front. Earth Sci. 2018, 6, 225. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Z.; Zhang, W.; Meng, Z.; Chang, X.; Lv, M. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE 2017, 12, e0169029. [Google Scholar] [CrossRef] [Green Version]
Name | Spatial Res | Temporal Resolution | Crop Stress Product | Crop Stress Bands | Source |
---|---|---|---|---|---|
MODIS ET | 30 m | Daily | EVI, NDVI, LST | TIR, Red, NIR | [72,80] |
SEBAL | 30 m | Daily | EVI, NDVI, LST | TIR, Red, NIR | [81,82] |
GLEAM | 100 m | Daily | VOD, Microwave SM | X, C, L-band | [71,83] |
Alexi | 5–10 km | Daily | LST, fPAR | TIR, Red, NIR | [84,85] |
DisAlexi | 30 m | Every 5–16 days | LST, fPAR | TIR, Red, NIR | [85,86] |
SSEB | 120 m | Daily | LST, NDVI | TIR, Red, NIR | [87,88] |
TSEB | 30 m | Every 8 days | LST, NDVI | TIR, Red, NIR | [89,90] |
METRIC | 30 m | Every 8 days | EVI, NDVI, LST | TIR, Red, NIR | [90,91] |
WaPOR | 30–100 m | Every 10 days | LST, NDVI | TIR, Red, NIR | [92] |
PT-JPL | 70 m | Daily | NDVI | Red, NIR | [93] |
Disadvantages | Advantages | |
---|---|---|
Passive microwaves | coarse spatial resolution, | almost daily observations, |
downscaling needed, | detects beneath canopy (frequency dependent) | |
saturation (crop specific) | ||
VIS and NIR | cloud interference, | inundation easily detected, |
saturation | high spatial resolution, | |
SAR | saturation (crop specific) | high spatial resolution, |
no cloud interference | ||
detects beneath canopy (frequency dependent) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
den Besten, N.; Steele-Dunne, S.; de Jeu, R.; van der Zaag, P. Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture. Remote Sens. 2021, 13, 2929. https://doi.org/10.3390/rs13152929
den Besten N, Steele-Dunne S, de Jeu R, van der Zaag P. Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture. Remote Sensing. 2021; 13(15):2929. https://doi.org/10.3390/rs13152929
Chicago/Turabian Styleden Besten, Nadja, Susan Steele-Dunne, Richard de Jeu, and Pieter van der Zaag. 2021. "Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture" Remote Sensing 13, no. 15: 2929. https://doi.org/10.3390/rs13152929
APA Styleden Besten, N., Steele-Dunne, S., de Jeu, R., & van der Zaag, P. (2021). Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture. Remote Sensing, 13(15), 2929. https://doi.org/10.3390/rs13152929