
Sensors 2009, 9, 1-21; doi:10.3390/s90100001 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A One-Layer Satellite Surface Energy Balance for Estimating 
Evapotranspiration Rates and Crop Water Stress Indexes 
 

Salvatore Barbagallo, Simona Consoli * and Alfonso Russo  

 

Department of Agricultural Engineering, University of Catania / Via S. Sofia, 100 - 95123 Catania 

Italy; E-Mails: sbarbaga@unict.it; alfonso.russo@unict.it  

 

*  Author to whom correspondence should be addressed; E-Mail: simona.consoli@unict.it; 

Tel.: +39-095-7147547; Fax: +39-095-7147560 

 

Received: 25 September 2008; in revised form: 23 December 2008 / Accepted: 24 December 2008 / 

Published: 5 January 2009 

 

 

Abstract: Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern 

Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper 

TM5 images. A one-source parameterization of the surface sensible heat flux exchange 

using satellite surface temperature has been used. The transfer of sensible and latent heat is 

described by aerodynamic resistance and surface resistance. Required model inputs are 

brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, 

roughness lengths, net radiation, air temperature, air humidity and wind speed. The 

aerodynamic resistance (rah) is formulated on the basis of the Monin-Obukhov surface 

layer similarity theory and the surface resistance (rs) is evaluated from the energy balance 

equation. The instantaneous surface flux values were converted into evaporative fraction 

(EF) over the heterogeneous land surface to derive daily evapotranspiration values. 

Remote sensing-based assessments of crop water stress (CWSI) were also made in order to 

identify local irrigation requirements. Evapotranspiration data and crop coefficient values 

obtained from the approach were compared with: (i) data from the semi-empirical 

approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR 

regions of the electromagnetic spectrum with ground-based measurements and (ii) surface 

energy flux measurements collected from a micrometeorological tower located in the 

experiment area. The expected variability associated with ET flux measurements suggests 

that the approach-derived surface fluxes were in acceptable agreement with the 

observations. 
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1. Introduction  

 

During the past decades, considerable efforts have been made in the use of remote sensing to 

evaluate the interactions between land surface and atmospheric processes over a wide range of scales 

(spatial and temporal) [1-4]. Energy exchange at the land-atmosphere interface occurs through 

processes associated with surface radiation and energy balance. These processes are controlled by 

complex factors including surface resistance (which controls the partitioning of energy into heat and 

water vapour) surface roughness (which causes atmospheric turbulence near the surface, influencing 

the transfer rates of heat and water vapour into the atmosphere), amount and nature of vegetation 

cover, thermal soil properties and soil moisture content [5-7]. One of the appeals of remote sensing is 

that it facilitates evaluation of energy and water balances that can be used for monitoring crop water 

requirements, crop water stress and the effects of climate change within large areas or individual fields 

[8-10]. 

Generally, two main satellite-based approaches were applied over irrigated agricultural areas to 

estimate crop water needs in terms of evapotranspiration flux: (1) the reflectance-based crop 

coefficient method [11-12] and (2) the energy balance method [13-14]. In the reflectance-based crop 

coefficient method, spectral inputs in the red and near-infrared bands from ground-based radiometers, 

airborne sensors or satellite images are used to obtain vegetative indices (i.e. WDVI, NDVI, SAVI, 

etc.) related to the basal crop coefficient [15]. One of the main advantages of using crop coefficients is 

that they provide an underlying model for interpolation between satellite images over time. In the 

energy balance method, remotely sensed data in the thermal infrared spectrum are used to model 

different components of the energy balance equation, such as net radiation, soil heat flux, sensible heat 

flux and latent heat flux. The method is more complex to apply, requiring calibrated satellite imagery 

and the use of an atmospherically corrected thermal infrared band, which for most satellite instruments 

translates into lower spatial resolution [16].  

Modelling evapotranspiration on a large scale with heterogeneous surface conditions requires a 

great deal of simplification, while preserving the key surface elements which control energy balance. 

For example, in the absence of vegetation, the surface characteristics can be described by surface 

albedo, emissivity, roughness length, and soil moisture content. When vegetation is present, the 

surface parameterization becomes more complex because vegetation transpiration is affected by the 

morphological and physiological characteristics of vegetation. It follows that when surface 

temperature is measured by a satellite (or an aircraft), the complex surface status can be lumped 

together, the remotely-sensed surface temperature representing a spatially integrated thermal status of 

the surface [10]. Based on these considerations, actual evapotranspiration from a heterogeneous 

surface can be conceptualized as a one-layer process from an average surface transferring sensible and 

latent heat [10, 17].  

In this paper, a one-layer resistance (surface and aerodynamic) model was applied to estimate 

evapotranspiration fluxes over a semi-arid agricultural area in Eastern Sicily (Italy). Remotely sensed 
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data of spatially integrated surface characteristics were combined with ground-based agro-

meteorological measurements. Satellite data was provided by the Landsat Thematic Mapper TM5 

sensor during June-September 2007. The objectives of the study were (i) to compare satellite-based 

energy balance surface fluxes with micrometeorological data from a flux tower that could be used to 

scale ET over orange orchards; (ii) to apply a reflectance-based approach to derive relationships 

between Landsat-based vegetation indices and crop coefficients (Kc) and (iii) to recognize plant water 

stress by satellite-based estimates of the crop water stress index (CWSI). 

 

2. Description of the modeling approach 

 

2.1. The surface energy balance approach 

 

The complex relationships between surface temperature, vegetation features and energy flux have 

been analysed by several authors [10, 18-20] and numerous studies have proposed the use of one-

dimensional (1-D) models to describe radiation conduction and turbulent transport mechanisms which 

influence energy balance and surface temperature [18] (Figure 1). Generally, all such models are based 

on energy conservation principles which dictate that net radiation RN (W m-2) is balanced by the soil 

heat flux (G, W m-2), sensible heat flux (H, W m-2) and latent heat flux (LE, W m-2) at the surface: 
LEHGNR               (1) 

Figure 1. Schematic diagram of one-source thermal-based model for energy balance terms. 

 
 

Generally, it is assumed that RN may be easily computed, and G is parameterized in a 

straightforward fashion (as a simple proportion of RN). The two remaining terms, H and LE, are 

turbulent flux quantities and are the most difficult to estimate.  

In the study, net radiation was estimated as: 

  4
sTs

4
aTar1sRNR                                         (2) 

where Rs is the incoming short wave radiation (Wm-2) measured by pyranometers,  is the Stefan-

Boltzman constant (5.67 10-8 Wsm-2K-4),  is emissivity and T is the temperature (K) with the 
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subscripts ‘a’ and ‘s’ for air and surface respectively; the surface albedo (r) is computed from the 

formulation proposed by Menenti in 1984 (see Table 1). 

 

Table 1. Vegetation parameters and vegetation indices analysed in the work. 

Indicators* Expression Parameters Reference 

Normalized Difference 

Vegetation Index ri

riNDVI







 

 [21] 

Weighted Difference 

Vegetation Index sr

si
riWDVI




   
[22] 

 

[22] 
Leaf Area Index 












WDVI

WDVI
1ln

*
1

LAI


 , WDVI∞ 

Soil Adjusted vegetation index    5.0ririSAVI   [23] 

Spectrally integrated 

hemispherical reflectance 

(albedo) 

  wr  w [24] 

r,i sr, si represent reflectance in the red and infrared region for vegetation and soil 

respectively; isthe extinction coefficient; w are weighted percentages of the extraterrestrial solar 

irradiance E0
 in each band of the sensor. 

 

Soil heat flux was calculated by assuming that the ratio G/RN is related to the fractional vegetation 

cover [8]. For vegetated surfaces the term G/RN is less with respect to bare soil because of the partial 

extinction of net radiation by the vegetation cover. Because spectral vegetation indices (VIs) are 

proportional to the net radiation extinction by the canopy, the VI can be used as a linear scaling factor 

to estimate G/RN over vegetated fields [25]. In order to avoid the calibration of the relationship 

between G/RN and VIs, it is assumed here that G/RN is related to the fractional vegetation cover by Eq. 

3. The fractional vegetation cover is estimated from LAI. 

       soilNRGvf1vegNRGvfNRG 
                      (3) 

with (G/RN)veg=0.05, (G/RN)soil=0.315, and fv estimated from LAI. 

The terms of Eq. (1) are modelled using a 1-D flux-gradient expression based on a convection 

analogue to Ohm’s law: 

ahr
aTsT

pCH



                        (4) 

where  is air density (Kg m-3), Cp is the specific heat of air at a constant pressure (J kg-1 K-1) and  rah 

is the aerodynamic resistance for sensible heat (s m-1). Eq. 4 is a one-layer bulk transfer equation based 

on the assumption that the radiometric temperature measured by a thermal infrared radiometer is 

identical to aerodynamic temperature. In fact, in the case of full canopy cover, there is near-

equivalence between these two temperatures and it is found that estimates of evapotraspiration using 

radiometric temperatures are in good agreement with observed values [10, 26-27]. 
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Surface temperature (Ts) is the thermal emission from the landscape surface, including vegetated 

surfaces, as well as other surfaces (such as bare soil). In the study Ts was derived from band 6 TIR of 

Landsat TM5 using the model developed by Sobrino et al. in 2004: 

       (5) 

 

 

where  is the wavelength of emitted radiance (=11.5), r=hc equalling 1.438 10-2 mK, where h is 

Planck’s constant (6.626 10-34 J s), c the velocity of light (2.998 108 m s-1) and  the Boltzman 

constant (1.38 10-23 JK-1); emissivity  was estimated through [28]: 

                                      svf1vvf                                                                   (6) 

where v and s denote emissivity of vegetation (0.985) and soil (0.960). The fractional vegetation 

cover fv is related to leaf area index (LAI), LAI5.0e1vf   [9]. By applying the inverse of Plank’s 

radiation equation, spectral radiance in the thermal band was converted to brightness temperature TB: 













1L
1K

ln

2K
BT              (7) 

where K1 and K2 are calibration constants (equal to 607.76 W m-2 sr-1 m-1 and 1260.56 K 

respectively) defined for Landsat 5 TM sensor [29]; L is the pixel value as radiance (W m-2 sr-1 m-1), 

L=G(CVDN)+B, with CVDN the pixel value as digital number, G and B the gain and the offset for 

TM6, respectively [30]. The inverse of Planck’s law, used to derive Ts, can be interpreted as a 

correction of the atmospheric and emissivity effects on the data measured by the sensor [31]. 

Latent heat transfer is expressed as: 

sravr
ae)sT(sepC

LE






             (8) 

where  is the psychometric constant (0.066 kPa C-1), es(Ts) is the saturated vapour pressure at the 

surface temperature (kPa), ea is the vapour pressure at the reference height (kPa), rav is the 

physiological resistance (s m-1) to moisture transport at the surface. The surface resistance rs (s m-1) to 

vapour transfer exerts strong control on the partitioning of available energy (RN-G) between H and LE.   

The aerodynamic resistance rah of eq. 4 was calculated on the basis of the Monin-Obukhov surface 

layer similarity theory [32]: 

            

(9) 

 

 

where zoh e zom are roughness lengths for sensible heat and for momentum (m), respectively; 

zom=0.13hc (with hc the mean height of the crop in meters); zoh=0.1zom [26]; d=0.66hc is the zero-

plane displacement height (m); sh e sm are the stability correction functions for momentum and 

sensible heat; k (0.4) is von Karman’s constant; u (m s-1) is the wind speed at level z (10 meters). The 

stability correction functions were determined with the Businger-Dyer formulations [33] for unstable 

conditions [34]: 

)ln(r
T1

T
T

B

B
s






 



uk

z
dz

ln
z

dz
ln

r
2

sm
om

sh
oh

ah 

















 
















 


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2/)xarctan(2
2

2x1
ln

2

x1
ln2sm 











 




 

         (10) 











 


2

2x1
ln2sh             (11) 

where x=(1-16Ri)
1/4, with 

   
2uaT

dzaTsTg
iR




  the Richardson number, and g is the acceleration due to 

gravity (m s-2). 

Surface resistance is determined by substituting eqs. (4) and (8) into eq. (1), without making a 

distinction between soil evaporation and plant transpiration: 

  
     av

ahaspN

ass
s r

rTTCGR

eTe
r 





// 

                     (12) 

in which the physiological resistance rav was considered equal to rah [10]. 

The applied method calculates instantaneous evapotranspiration (LE) estimates only. The 

extrapolation of LE into daily estimates, which most interests agricultural water management, was 

based on evaporative fraction (EF) [14]: 

GNR

LE
EF


            (13) 

Daily evapotranspiration ET24 (mm d-1) values were then calculated by the following equation: 

L

R
EFET N 24,

24             (14) 

where L (MJ m-2 mm-1) is the latent heat of vaporization and RN,24 is the daytime (09:00 to 16:00 LST) 

net radiation measured by a micrometeorological flux tower. 

 

2.2. The crop water stress index 

 

In the study, the analysis of the crop water stress index (CWSI) [35-36] was used to indicate plant 

water stress as measure of the transpiration rate occurring from the vegetated surface (using canopy 

temperature data). CWSI values of zero indicate no water stress, and values of 1 represent maximum 

water stress. The CWSI was computed as [35]: 
   

   loweraTsTupperaTsT
loweraTsTaTsT

CWSI



           (15) 

where (Ts-Ta) is the measurement, (Ts-Ta)lower is the theoretical minimum value for (Ts-Ta) and (Ts-

Ta)upper is the theoretical maximum value for (Ts-Ta).  

Jackson et al., using a steady state energy balance of a crop canopy, developed a theoretical CSWI 

where: 
   

   ahrsr1

VPD

ahrsr1
ahrsr1

pC

GNRahr
aTsT











                               (16) 

in which VPD is the vapor pressure deficit (kPa); the other variables of Eq. 16 are satellite-based 

estimates and were introduced in the previous paragraph.  
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Eq. 16 is used to calculate the theoretical minimum and maximum values of (Ts-Ta), using inputs of 

RN, G, rah, rs, and VPD, with Ts the pixel composite temperature of vegetation and soil. The maximum 

theoretical value for (Ts-Ta) was evaluated assuming rs approaches infinity: 

   
pC

GNRahr
upperaTsT




                   (17) 

The minimum theoretical value for (Ts-Ta) was defined by setting rs equal to zero in Eq. 16: 

   












VPD

pC

GNRahr
loweraTsT                 (18) 

 

2.3. The Kc reflectance-based approach 

 

The reflectance-based crop coefficient method [12] consists of the direct application of a theoretical 

ET equation to define Kc [12, 37]: 

0ET
cET

cK                    (19) 

While reference evapotranspiration (ET0) accounts for variations in weather and offers a measure of 

the ‘evaporative’ demand of the atmosphere, crop coefficients (Kc) account for the difference between 

reference (ET0) and potential (ETc) crop evapotranspiration. The main factors affecting that difference 

are light absorption by the canopy, canopy roughness (which affects turbulence), crop physiology, leaf 

density and surface wetness. Crop coefficient values (Kc) thus estimated were expressed as follows 

[55]: 





4

0i

i
ic LAICK   with   4,.3,.2 ,1,.0i              ribiaiC        (20) 

where the coefficients a and b of the polynomial equation were determined as functions of climatic 

data (net radiation RN, air temperature T, air humidity RH, and wind speed u) measured by the 

automatic stations located within the study-area and canopy properties (LAI, albedo r) were 

determined using remote sensed data [12, 38].  

Eq. 20 evidences that the values of Kc is not only dependent on the canopy variables, but also on the 

meteorological data. Canopy variables, except albedo which depends also on the soil surface moisture, 

change slowly over time. In the calculation of Kc by means of Eq. 20, albedo is linearly interpolated 

between two consecutive satellite passes. As a consequence, the variation of r with changing surface 

soil moisture is not considered. This assumption may appear rather questionable however, especially 

for surface with partial ground cover. The influence of soil moisture on the spectral properties in such 

conditions was analysed by Kustas et al. (1994) [39]. In this case, r was measured by means of low-

altitude spectral data on different dates. By comparing observation before and after several rainfall 

events at eight sites, the maximum observed variation of r was 0.03. The effect of variation of this 

order of magnitude on Kc is negligible. 

By multiplying pixel-wise, the crop coefficient of Eq.20 and the ET0 values, the potential 

evapotranspiration (ETc) fluxes of the crop were estimated. This procedure avoids the need for 

frequent acquisition of satellite data, since they are used to determine albedo and LAI which don’t 

change very rapidly. 
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3. Application of the proposed approach 

 

3.1. Experimental site and micrometeorological energy fluxes 

 

The Catania Plain area is the largest agricultural district in Sicily (Italy), with an area of about 

50,000 ha (Table 2 and Figure 2). It is characterized by citrus orchards for more than 90% of the 

irrigated area (about 18,000 ha), the other cultivated crops being fodder, artichokes, watermelons and 

vegetables. The irrigation water for the Plain is provided by the Salso-Simeto river system. Irrigation 

applications are delivered from collective water distribution networks at fixed intervals (generally 21 

days during the irrigation season) and are applied at farm level by micro-sprayers. The climate is semi-

arid and the annual potential ET exceeds by about 30% the mean annual rainfall (about 500 mm) [40].  

 

Table 2. Coordinates for the four corners of the Landsat images located in UTM zone 33N. 

Corner coordinates (WGS 84) X Y 

Upper left 472006 4155746 

Upper right 508658 4155746 

Lower left 472006 4127050 

Lower right 508658 4127050 

 

During June-September 2007, surface energy fluxes, meteorological data and radiometric 

temperatures were measured by a micrometeorological flux tower located in an experimental area with 

a fetch of more than 200 m in all directions. Generally, fetch represents the distance from the 

micrometeorological tower in which the canopy characteristics (crop type and crop height) are 

uniform. 

The variation of the main components of the energy balance equation (eq.1) was computed at 1 

hour intervals throughout the monitored period. Net radiation RN was measured using a “Kippen & 

Zonen” net radiometer mounted at about 1 m above the orchard canopy (crop mean height of about 3.5 

m). Soil heat flux density G was measured using three REBS/HFP01 soil heat flux plates and two 

Campbell Scientific, Inc. ‘CS’ ® TCAV soil averaging temperature sensors to account for soil heat 

storage above each heat flux plate.  

The plates were inserted horizontally into the soil at a depth of 0.05 m, and the soil thermocouples 

were placed 0.01-0.04 deep. The plates and temperature sensors were placed in and outside of the tree 

rows to obtain a good estimate of soil heat flux within the orchard. In particular, the control points 

were placed near the tree (shaded point), at 1/4 of the distance between orchard row (penumbral 

effect), and at 1/2 of the distance between rows (illuminated point). The volumetric heat capacity of 

soil was used to compute changes in heat storage above the flux plates. It was computed according to:  

                 (21) 

where b is the bulk density and  is the volumetric water content measured by three TDR CS616 

located at the same depth of the heat flux plates. High frequency temperature data was collected at 4 

Hz using two 76.2 m diameter fine-wire thermocouples mounted at 0.5 meters above the canopy top. 

When plotted against time the temperature traces show ramp-like characteristics, which are used to 

  6
b 10190.4837.0Cv 
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estimate heat fluxes using a conservation of energy equation [41-44]. The temperature data was 

analyzed to determine the mean ramp amplitude (a) and the inverse ramp frequency (d+s) using a 

structure function [45] and time lags of 0.25 and 0.50 seconds for each of the two thermocouples. 

Sensible heat flux was calculated as: 

z
sd

a
pCH 









                                                        (22) 

 

Figure 2. Catania Plain irrigation area. 

 

10 km 
SIAS whether stations 

 
 

Factor  is a correction term for unequal heating below the sensors that depends on the 

measurement height (z), on canopy structure and thermocouple size. In combination, half-hourly data 

on H, RN and G were used to calculate latent heat flux density (LE) as the residual of the energy 

balance equation. The actual crop ET (ETa) was computed by dividing hourly the means of LE by the 

latent heat of vaporization L=2.45 MJ m-2 mm-1.  

Generally, crop coefficients are determined by calculating the ratio Kc = ETc/ET0, where ETc is the 

evapotranspiration of a well-watered crop. Since these orchards are well managed, it is assumed that 

there was little or no transpiration reducing water stress and ETa ≈ ETc.  

The spatial distribution of solar radiation, air temperature, vapour pressure, relative humidity, wind 

speed and direction, and rainfall came from six automatic weather stations (Campbell Scientific, 

Logan, UT) located in the Catania Plain area (see Figure 2). These weather stations are part of the 

Sicilian Agrometeorological Information Service (SIAS). Hourly weather data was used to calculate 

reference evapotranspiration ET0 (eq. 23) using the FAO 56 Penamn-Monteith equation for short crops 

[37, 46]. Hourly ET0 values were summed over 24-hour periods to obtain daily ET0 data: 

   
 2

2

34.01
273

900
408.0

0 u

eeu
T

GR
ET

asN












                               (23) 

In Eq. 23,  is the slope of saturation vapour pressure at air temperature (kPa oC-1),  is the 

psychrometric constant (kPa oC-1), T is the daily mean air temperature (oC), u2 is the mean wind speed 

in m s-1 and es-ea is the vapour pressure deficit (kPa).  

Soil moisture was monitored continuously using the Time Domain Reflectrometry (TDR) technique 

in different fields within the experimental area, at soil depths of 15, 30 and 60 cm.  The soil type in the 
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experimental field was clay [47] with a soil moisture content at field capacity of about 35% and an 

available water holding capacity of about 190 mm m-1 on an oven dry weight loss basis.  

Leaf area index (LAI) values were measured with a Licor LAI-2000 digital analyzer at regular 

intervals during the satellite acquisitions.   

 

3.2. Processing satellite-based data 

 

The satellite data consisted of Landsat Thematic Mapper TM5 images (Table 3) acquired on June 

14th, July 22nd, August 17th and September 8th 2007. The images were geometrically rectified to a 

Universal Transversal Mercator projection system (UTM) by using a linear transformation of 

coordinates and the nearest-neighbour resampling method for pixel reflectance values [48]. The 

reflectance values in the VIS/NIR region of the electromagnetic spectrum were calculated from the 

images, or at the top of atmosphere or by applying a correction for the atmospheric effects. In the first 

case, the reflectance at the top of atmosphere (TOA,) was computed according to the following 

equation: 





cos0E

2dL
,TOA        (24) 

where L is the spectral radiance at the sensors (mW/cm2srm); d is the Earth-Sun distance in 

Astronomical Units; E0
 is the extraterrestrial solar irradiance (W/m2);  is the solar zenith angle in 

degrees.  

Table 3. TM Landsat-5 TM postcalibration features.  

Sensor 
Pixel size 

(m) 
Band 

Band range 

(m) 

Gain* 

(W m-2 sr-1 m-1) 

Offset 

(W m-2 sr-1 m-1) 

Landsat 5 TM 

30 

1 0.45-0.52 0.6023 -1.50 

2 0.52-0.60 1.1749 -2.80 

3 0.63-0.69 0.8058 -1.20 

4 0.76-0.90 0.8145 -1.50 

5 1.55-1.75 0.1087 -0.37 

120 6 10.4-12.5 0.0551 1.20 

30 7 2.08-2.35 0.0569 -0.15 

* Gain and Offset are band-specific rescaling factors typically given in the product header file 

 

In the second case, atmospherically corrected reflectance values were derived by means of the 

ATCOR procedure [49] assuming constant atmospheric conditions over the image and different types 

of standard atmospheric profiles, i.e. mid-latitude summer, rural, maritime, etc. The correction, based 

on the mid-latitude summer profile, was considered the most reliable comparing the resulting spectra 

for some targets i.e. vegetation, water and soil. Thermal band 6 needs no calibration, since the derived 

surface temperature data accords well with the surface temperature data from the infrared 

thermometers (CS Model IRTS-P) mounted at a height of 4 m above ground and pointing 45° towards 

the surface. The average range of processed Landsat TM temperatures is 29-44°C, and the mean air 
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temperature (measured at the six weather stations at about 10 meters of height) is between 30-43°C at 

the local time (10:00 a.m.) of satellite overpass. Landsat TM pixels encompassing the tower site were 

used to establish relationships between flux tower ET and the satellite data for energy flux and 

vegetation indices.  

 

4. Results and Discussion 

 

4.1. Comparing the model estimates of energy flux with micrometeorological measurements 

 

The results that follow are based on the models described in the previous sections using satellite and 

field data collected during the period of experiment in 2007. The micrometeorological data recorded 

by the flux tower in the orchard is used to illustrate the suitability of the one-layer approach for 

computing evapotranspiration rates. Figure 3 shows the tower-based daily energy balance calculations 

from June - September 2007. Sensible heat flux (H) was between zero and 3.4 MJ m-2 d-1 with an 

average of 2.5 MJ m-2 d-1. Latent heat flux (LE) averaged 11.6 MJ m-2d-1, varying between 4.2 and 

16.2 MJ m-2d-1. Net radiation (RN) values varied between a maximum of 18.9 and a minimum of 2.7 

MJ m-2 d-1
, with an average of 13.3 MJ m-2d-1. The lower RN values were most likely caused by 

precipitation and the greater albedo due to cloud cover. An average solar radiation (Rs) near 19.5 MJ 

m-2d-1 was recorded during the monitoring. On a daily basis the G term was generally close to zero.  

 

Figure 3. Daily values of energy flux, rainfall and irrigation rates during June-September 2007. 
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Micrometerological tower fluxes during the satellite overpass (10:00 a.m. local time) are plotted in 

Figure 4. In general, agreement between the modeled and observed fluxes was good. The observed 

mean energy fluxes were respectively 521.5, 42.5, 31.7 and 447.3 W m-2 for net radiation (RN), soil 

heat flux (G), sensible (H) and latent heat (LE) flux densities. The energy fluxes obtained by 

processing TM bands during the satellite acquisition dates had a relatively narrow spatial distribution 

(maximum time variation of about 24%) at the tower site, with average values of 570, 40.4, 45.6 and 

408.3 W m-2 respectively for net radiation (RN), soil heat flux (G), sensible (H) and latent heat (LE) 

flux densities. The daytime (from 09:00 to 16:00 LST) averages and standard deviation of evaporative 
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fraction (EF) during the satellite acquisitions (see Fig. 4) were computed in order to justify the 

assumption of a constant EF in Eq. 14. In particular, the mean (about 0.90) of daytime EF, which 

characterizes the partition of the energy budget at the daily time scale, varied little (0.06) based on 

average cloudiness. The temporal variability of the partitioning, expressed in terms of EF daily 

standard deviation, reached a maximum of 14%. The experiment showed that the evaporative fraction 

computed from flux measurements at 4 hours past sunrise tends to increase very slowly, thus to 

assume that the underestimation in daytime average would be not significant.  

 

Figure 4. Hourly energy flux and EF at the micrometeorological station in the study area. 
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The spatial variability of surface energy fluxes from Landsat scenes of about 850 mixed pixels was 

depicted in Figure 5. The study revealed that the amount of energy available for physical and 

biological processes over the crop (RN) varied from a maximum of 638 W m-2 on August 17th 2007 to a 

minimum of 361 W m-2 on September 8th. The main variation of latent heat flux density (LE) occurred 

due to variations of solar radiation, temperature, leaf area index and soil moisture.  

The LE variation was from 564 W m-2 on July 22nd to 127 W m-2 on September 8th. The soil heat 

flux range was 28.8 - 48.5 W m-2, with a maximum spatial variation of 10%. Sensible heat flux from 

the surface to the atmosphere (H) varied from 74.7 W m-2 on August 17th to 17.5 on September 8th 

2007, with a mean of 45.6 W m-2 and spatial variation of 24%. Daily satellite ET24 (mm d-1) values 

strongly (R2=0.8, with R2 the determination coefficient) correlated with NDVI and LAI. ET correlated 

more weakly (R2=0.37) with net radiation (RN) across the period, showing that the plants were not 

radiation-limited most of the time. Hence, ET was mainly determined by the amount of green 

vegetation or functioning vegetation in the agricultural field which is typical for semi-arid  

landscapes [50].  

Because of the limited frequency of Landsat images, daily evapotranspiration (ET24) data was 

estimated by linearly interpolating the variable values for the periods in between two consecutive 

images, in the same spatial resolution as the original satellite scenes. The calculated ET24 values 

compare fairly well to the tower flux estimates of evapotranspiration using the Surface Renewal 

technique (Figure 6). Mean ET24 values across June-September 2007 were 4.98 (5.30) and 5.08 mm d-
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1, respectively, from a satellite energy balance approach and from tower flux measurements with a 

temporal variability of about 15%.  

 

Figure 5. Spatial distribution of remote sensed energy flux (satellite acquisition from June 

to September 2007). 
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Figure 6. Comparison of ET24 values predicted from the satellite energy balance approach 

with those calculated from tower flux measurements (data were paired from June 14th to 

September 8th 2007). 
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In Figure 7, the satellite-based crop coefficients (Kc) computed as the ratio between ET24 (mm d-1) 

and the grass reference ET from eq. 23, were compared with tower flux crop coefficients and the 

results of the reflectance-based approach. Crop coefficients during June-September 2007 were in the 

ranges 0.75-0.92, 0.76-0.89 and 0.5-1.14 from respectively, satellite energy balance, reflectance-based 

approach and tower flux data. Maximum variability occurred with Kc tower flux data whereas the 

satellite-based Kc estimates were more uniform. On average (about 0.8), crop coefficients were slightly 

higher than those reported in the widely used FAO 56 [37] and FAO 24 [51] publications for orchards 
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with about 70% ground cover, corrected for local humidity and temperature as suggested by Allen et 

al. in 1998. The higher Kc values from in situ measurements might be due to better available moisture 

for trees resulting from rainfall events (especially during the first week of June) and frequent irrigation 

with microsprayers. Linear correlations express the increase in Kc from the reflectance-based approach 

with NDVI. The linear trend presents a determination coefficients (R2) higher than 0.90, with minimal 

scatter around the regression lines. It must be inferred that the relationship Kc-NDVI is strictly related 

to the selected crop and the specific conditions of that area. Furthermore, it is well suited to orchard 

crops with pretty steady LAI values.  

 

Figure 7. Kc from field data compared with Kc from the satellite approach. 
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Figure 8 depicts the aerodynamic rah and surface rs resistances as functions of the fractional 

vegetation cover (fv). Generally, a rather small range of rah values represents each fv (Fig. 8a) part of 

which could be due to the quite homogeneous vegetation coverage (Table 4) (citrus orchards cover 

more than 90% of the site) and quite low spatial resolution of the surface temperatures Ts (120 m). 

Generally, the rah values were about 15% lower than those from other studies for citrus orchards [7]. 

Physically, we would expect that surface/plant systems with less resistance to energy flux transport 

would have less sensible heat and greater evaporation. The resulting value of roughness length is about 

an order of magnitude less than the height of the roughness elements, and in general agreement with 

that obtained for natural surfaces by Mahrt and Ek in 1993 [52] using aircraft measurements. In Figure 

8b, rs tends to change logarithmically with vegetation density variation. Dense vegetation (fv=0.88; rs 

145-160 s m-1) has been found for stressed canopies in semi-arid areas [53]. High surface resistances 

reflect dry soil surfaces and, generally, correspond to low soil moisture content at the irrigated site. 

This was confirmed by soil water content (TDR probes) at selected control sites reaching minimums of 

27% when the Ts-Ta difference was maximum.  As expected, both Ts-Ta and rs are lower when LAI 

(and fv) is high.  
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Figure 8. (a) Satellite-based aerodynamic resistance (rah) as a function of fv; (b) Satellite-

based surface resistance (rs) as a function of fv. A mean of 850 pixels was used to produce 

the graphs. 
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In order to examine satellite observations for plant water stress, the theoretical upper and lower 

limits for Ts-Ta are plotted against fv, together with the Ts-Ta observations in Fig. 9a. It may be seen 

that the Ts-Ta range is fairly small for a given fv which represents homogeneous surface conditions. 

Generally, observed Ts-Ta exceeded the theoretical lower limit, symbolizing the increase of surface 

control on LE probably caused by a reduction in the soil water availability and increased plant water 

stress (Fig. 9b). In the case study, (Ts-Ta)lower and (Ts-Ta)upper resemble the well-defined borderlines of 

the (Ts-Ta)-fv scatter plot found in the literature [4, 54]. 

 

Table 4. Mean values of satellite-based vegetation indicators and the field measurements 

of LAI. 

Satellite-based indicators 

Mean values 

June 14th  July 22nd August 17th  September 8th 

M CV M CV M CV M CV

albedo () 0.18 0.08 0.16 0.05 0.17 0.04 0.12 0.07 

emissivity () 0.96 0.05 0.96 0.03 0.96 0.03 0.97 0.05 

Leaf area index (LAI) 1.68 0.17 1.79 0.21 1.55 0.15 1.38 0.15 

NDVI 0.50 0.07 0.55 0.09 0.60 0.08 0.45 0.06 

SAVI 0.23 0.06 0.23 0.08 0.23 0.05 0.19 0.07 

WDVI 0.17 0.11 0.20 0.07 0.24 0.14 0.17 0.10 

Field measurements of LAI 1.45 0.16 1.40 0.15 1.55 0.17 1.35 0.18 

* M: mean value; ** CV: coefficient of spatial variation from the mean value 

 

Figure 10a shows the strong relationship between the actual Ts-Ta observations plotted against rah. It 

also illustrates that atmospheric turbulence is pretty steady and atmospheric resistance averages 48.6 s 

m-1 which may affect the atmospheric coupling between surface and atmosphere which causes 

differences between Ts and Ta [8]. A certain reduction in Ts-Ta occurs when rah increases because of 

vertical air mixing.  
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Figure 9. (a) Difference between Ts and Ta as a function of fractional vegetation cover; (b) 

Difference between Ts and Ta as a function of surface resistance rs. A mean of 850 pixels 

was used to produce the graphs. 

 

0.0

6.0

12.0

18.0

24.0

0.0 0.2 0.4 0.6 0.8 1.0

fractional vegetation cover

T
s-

T
a 

(°
C

)

(Ts-Ta) observed (Ts-Ta)upper (Ts-Ta)lower

0.0

6.0

12.0

18.0

0.E+00 3.E+02 6.E+02

rs (s m-1)

T
s-

T
a 

(°
C

)

a b

 
 

Figure 10. (a) Actual observation of Ts-Ta in relation to the aerodynamic resistance; (b) 

CWSI compared to fractional vegetation cover. 
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Figure 10b reports the calculated values of CWSI versus fractional vegetation cover. The study 

revealed a mean CWSI from satellite data of 0.6 with a low variation (9%) for each value of fv. Energy 

flux data from the micrometeorological tower was also used to calculate the mean CWSI of 0.67 

during satellite acquisitions. Previous studies [35-36, 55-56] on CWSI for many crops in different 

parts of the world highlighted that CWSIs higher than 0.6 indicate soil moisture depletion requiring 

irrigation.  

Using the tower-based surface energy flux data, Figure 11 depicts the corresponding canopy-air 

temperature differential as a function of VPD for well-watered (Ts-Ta)lower and stressed plants (Ts-

Ta)upper which resulted from eqs. 17 and 18. The lower baseline shows an average decrease in canopy 

temperature of about 3°C for each 1kPa increase in VPD.  
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Figure 11. Relationship between Ts-Ta and VPD of the orange orchard at the experimental site. 
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4. Conclusions 

 

Determining evapotranspiration rates by remote sensing can help identify numerous factors such as 

droughts, sub-optimal irrigation and plant physiologies that are difficult to evaluate otherwise. Large-

scale crop water monitoring requires remote sensing systems such as Landsat which have high 

resolutions and short return times (16 days but only if the atmosphere is free of clouds). In this study, a 

one-layer resistance model was used for the spatial estimation of evapotranspiration rates, vegetation 

indices and features using Landsat TM and local agro-meteorological data. The model formulates the 

transfer of sensible and latent heat fluxes between the surface and atmosphere using the concept of 

aerodynamic resistance and surface resistance. In the proposed approach, the assumption of near-

equivalence between radiometric temperature measured by the thermal infrared radiometer and 

aerodynamic temperature was confirmed by the high values of fractional vegetation cover (mean of 

about 0.70) and percentage of ground cover by vegetation. Maps of atmospheric resistance, surface 

resistance, surface energy flux, evapotranspiration rates and CWSI were produced. The satellite-based 

estimates of ET rates compare well with the Surface Renewal data of evapotranspiration flux recorded 

at field level. However, the method should be tested thoroughly using an extended spatially distributed 

dataset. Crop coefficient values Kc as computed by the satellite reflectance-based approach had about 

the same range of variation of data on Kc derived by the one-layer energy balance method, with a mean 

of 0.8, slightly higher than the widely used FAO 56 data. The satellite-based estimate of surface 

resistance rs tended to be lowest for dense vegetation (fv0.88) and highest for bare soil or canopies 

with intermediate vegetation cover. The surface resistance approaches 145-160 s m-1 for dense 

vegetation highlighting water stressed canopy conditions. A tendency to quite steady atmospheric 

resistance is partially due to the effect of fully vegetated pixels and the low spatial resolution of 

surface temperature Ts.  

The results of the satellite surface energy balance were further used to compute the upper and lower 

theoretical limits of Ts-Ta for each image’s pixels. In particular, the dependency of Ts-Ta lower and 

upper limits on the fractional vegetation cover and surface resistance was demonstrated. Derived and 

measured CWSIs were in good accordance and had a mean of about 0.6 which indicates a certain soil 

moisture depletion. 
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Finally, estimation of ET within wide spatial scales by one-layer models and integration of ground-

based meteorological data with satellite observations is a useful tool for quantifying and controlling 

water consumption especially in areas of limited water supply.    
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