Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review
Abstract
:1. Introduction
2. Data Acquisition
2.1. GPR
2.2. Resistivity
3. Data Processing
3.1. GPR
3.2. Resistivity
4. Data Interpretation
4.1. GPR
4.2. Resistivity
5. Application to Grave Detection
5.1. GPR
5.2. Resistivity
6. Discussion
6.1. GPR Versus Resistivity
6.2. Forensic Versus Archaeological Burials
6.3. Uses in Forensic Investigations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, J.D.; Pringle, J.K.; Goodwin, J. GPR and bulk ground resistivity surveys in graveyards: Locating unmarked burials in contrasting soil types. Forensic Sci. Int. 2014, 237, e14–e29. [Google Scholar] [CrossRef] [Green Version]
- Pringle, J.K.; Cassella, J.P.; Jervis, J.R.; Williams, A.; Cross, P.; Cassidy, N.J. Soilwater conductivity analysis to date and locate clandestine graves of homicide victims. J. Forensic Sci. 2015, 60, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Powell, K. Grave Concerns: Locating and Unearthing Human Bodies; Australian Academic Press: Queensland, Australia, 2010. [Google Scholar]
- Ruffell, A.; McKinley, J. Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations. Earth-Sci. Rev. 2005, 69, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Moffat, I. Locating Graves with Geophysics; Archaeopress Publishing Ltd.: Oxford, UK, 2015. [Google Scholar]
- Larson, D.O.; Vass, A.A.; Wise, M. Advanced scientific methods and procedures in the forensic investigation of clandestine graves. J. Contemp. Crim. Justice 2011, 27, 149–182. [Google Scholar] [CrossRef]
- Watson, C.J.; Ueland, M.; Schotsmans, E.M.; Sterenberg, J.; Forbes, S.L.; Blau, S. Detecting grave sites from surface anomalies: A longitudinal study in an Australian woodland. J. Forensic Sci. 2020, 66, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Lenferink, L.I.; de Keijser, J.; Wessel, I.; de Vries, D.; Boelen, P.A. Toward a better understanding of psychological symptoms in people confronted with the disappearance of a loved one: A systematic review. Trauma Violence Abus. 2019, 20, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.; Pooley, K. Australian no-body homicides: Exploring common features of solved cases. J. Forensic Leg. Med. 2019, 66, 70–78. [Google Scholar] [CrossRef]
- Pringle, J.K.; Stimpson, I.G.; Wisniewski, K.D.; Heaton, V.; Davenward, B.; Mirosch, N.; Spencer, F.; Jervis, J.R. Geophysical monitoring of simulated homicide burials for forensic investigations. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Isuru, A.; Hewage, S.; Bandumithra, P.; Williams, S. Unconfirmed death as a predictor of psychological morbidity in family members of disappeared persons. Psychol. Med. 2019, 49, 2764–2771. [Google Scholar] [CrossRef]
- Lenferink, L.I.; de Keijser, J.; Wessel, I.; Boelen, P.A. Cognitive-behavioral correlates of psychological symptoms among relatives of missing persons. Int. J. Cogn. Ther. 2018, 11, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Heeke, C.; Stammel, N.; Knaevelsrud, C. When hope and grief intersect: Rates and risks of prolonged grief disorder among bereaved individuals and relatives of disappeared persons in Colombia. J. Affect. Disord. 2015, 173, 59–64. [Google Scholar] [CrossRef]
- Kennedy, C.; Deane, F.P.; Chan, A.Y. “What Might Have Been…”: Counterfactual Thinking, Psychological Symptoms and Posttraumatic Growth When a Loved One is Missing. Cogn. Ther. Res. 2021, 45, 322–332. [Google Scholar] [CrossRef]
- DiBiase, T.A.T. No-Body Homicide Cases: A Practical Guide to Investigating, Prosecuting, and Winning Cases When the Victim is Missing; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ferguson, C.; Pooley, K. Comparing solved and unsolved no-body homicides in Australia: An exploratory analysis. Homicide Stud. 2019, 23, 381–403. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2011. [Google Scholar]
- Telford, W.; Geldart, L.; Sheriff, R. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Damiata, B.N.; Steinberg, J.M.; Bolender, D.J.; Zoëga, G. Imaging skeletal remains with ground-penetrating radar: Comparative results over two graves from Viking Age and Medieval churchyards on the Stóra-Seyla farm, northern Iceland. J. Archaeol. Sci. 2013, 40, 268–278. [Google Scholar] [CrossRef]
- Schultz, J.J.; Dupras, T.L. The contribution of forensic archaeology to homicide investigations. Homicide Stud. 2008, 12, 399–413. [Google Scholar] [CrossRef]
- King, J.A.; Bevan, B.W.; Hurry, R.J. The reliability of geophysical surveys at historic-period cemeteries: An example from the Plains Cemetery, Mechanicsville, Maryland. Hist. Archaeol. 1993, 27, 4–16. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating radar techniques to discover and map historic graves. Hist. Archaeol. 2006, 40, 64–73. [Google Scholar] [CrossRef]
- Ruffell, A.; McCabe, A.; Donnelly, C.; Sloan, B. Location and assessment of an historic (150–160 years old) mass grave using geographic and ground penetrating radar investigation, NW Ireland. J. Forensic Sci. 2009, 54, 382–394. [Google Scholar] [CrossRef]
- Schultz, J.J. Using ground-penetrating radar to locate clandestine graves of homicide victims: Forming forensic archaeology partnerships with law enforcement. Homicide Stud. 2007, 11, 15–29. [Google Scholar] [CrossRef]
- Schultz, J.J.; Collins, M.E.; Falsetti, A.B. Sequential monitoring of burials containing large pig cadavers using ground-penetrating radar. J. Forensic Sci. 2006, 51, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Powell, K. Detecting buried human remains using near-surface geophysical instruments. Explor. Geophys. 2004, 35, 88–92. [Google Scholar] [CrossRef]
- Hammon III, W.S.; McMechan, G.A.; Zeng, X. Forensic GPR: Finite-difference simulations of responses from buried human remains. J. Appl. Geophys. 2000, 45, 171–186. [Google Scholar] [CrossRef]
- Nobes, D.C. Geophysical surveys of burial sites: A case study of the Oaro urupa. Geophysics 1999, 64, 357–367. [Google Scholar] [CrossRef]
- Barone, P.M.; Ruffell, A.; Tsokas, G.N.; Rizzo, E. Geophysical Surveys for Archaeology and Cultural Heritage Preservation. Heritage 2019, 2, 174. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L. Ground-Penetrating Radar for Archaeology; AltaMira Press: Lanham, MD, USA, 2013; Volume 4. [Google Scholar]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar: Theory and Applications, 1st ed.; Jol, H.M., Ed.; Elsevier Science: Oxford, UK, 2009; pp. 3–40. [Google Scholar]
- Miller, P.S. Disturbances in the soil: Finding buried bodies and other evidence using ground penetrating radar. J. Forensic Sci. 1996, 41, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, A.; McKinley, J. Geoforensics; John Wiley & Sons: West Sussex, UK, 2008. [Google Scholar]
- Giannopoulos, A. Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 2005, 19, 755–762. [Google Scholar] [CrossRef]
- Aziz, A.S.; Stewart, R.R.; Green, S.L.; Flores, J.B. Locating and characterizing burials using 3D ground-penetrating radar (GPR) and terrestrial laser scanning (TLS) at the historic Mueschke Cemetery, Houston, Texas. J. Archaeol. Sci. Rep. 2016, 8, 392–405. [Google Scholar] [CrossRef]
- Schmidt, A. Earth resistance for archaeologists; AltaMira Press: Lanham, MD, USA, 2013; Volume 3. [Google Scholar]
- Pringle, J.; Ruffell, A.; Jervis, J.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M. The use of geoscience methods for terrestrial forensic searches. Earth-Sci. Rev. 2012, 114, 108–123. [Google Scholar] [CrossRef]
- Cassidy, N.J. Electrical and Magnetic Properties of Rocks, Soils and Fluids. In Ground Penetrating Radar: Theory and Applications, 1st ed.; Jol, H.M., Ed.; Elsevier Science: Oxford, UK, 2009; pp. 41–72. [Google Scholar]
- Bristow, C.S.; Jol, H.M. Ground Penetrating Radar in Sediments; Geological Society of London: London, UK, 2003. [Google Scholar]
- Pringle, J.K.; Jervis, J.; Cassella, J.P.; Cassidy, N.J. Time-lapse geophysical investigations over a simulated urban clandestine grave. J. Forensic Sci. 2008, 53, 1405–1416. [Google Scholar] [CrossRef]
- Abate, D.; Sturdy Colls, C.; Moyssi, N.; Karsili, D.; Faka, M.; Anilir, A.; Manolis, S. Optimizing search strategies in mass grave location through the combination of digital technologies. Forensic Sci. Int. Synerg. 2019, 1, 95–107. [Google Scholar] [CrossRef]
- Goodman, D.; Nishimura, Y.; Rogers, J.D. GPR time slices in archaeological prospection. Archaeol. Prospect. 1995, 2, 85–89. [Google Scholar]
- Bloemenkamp, R.; Slob, E. The effect of the elevation of GPR antennas on data quality. In Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, Delft, The Netherlands, 14–16 May 2003; pp. 201–206. [Google Scholar]
- Millard, S.G.; Shaari, A.; Bungey, J. Field pattern characteristics of GPR antennas. NDT E Int. 2002, 35, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Millard, S.G.; Shaari, A.; Bungey, J. Resolution of GPR bow-tie antennas. In Proceedings of the Ninth International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 29 April–2 May 2002; pp. 724–730. [Google Scholar]
- Schultz, J.J.; Martin, M.M. Controlled GPR grave research: Comparison of reflection profiles between 500 and 250 MHz antennae. Forensic Sci. Int. 2011, 209, 64–69. [Google Scholar] [CrossRef]
- Buck, S. Searching for graves using geophysical technology: Field tests with ground penetrating radar, magnetometry, and electrical resistivity. J. Forensic Sci. 2003, 48, 1–7. [Google Scholar] [CrossRef]
- Feigin, J.; Cist, D. Evaluating the effectiveness of hyperstacking for GPR surveys. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Denver, CO, USA, 20–24 March 2016; pp. 265–270. [Google Scholar]
- Davenport, G.C. Remote sensing applications in forensic investigations. Hist. Archaeol. 2001, 35, 87–100. [Google Scholar] [CrossRef]
- Schneidhofer, P.; Nau, E.; Leigh McGraw, J.; Tonning, C.; Draganits, E.; Gustavsen, L.; Trinks, I.; Filzwieser, R.; Aldrian, L.; Gansum, T.; et al. Geoarchaeological evaluation of ground penetrating radar and magnetometry surveys at the Iron Age burial mound Rom in Norway. Archaeol. Prospect. 2017, 24, 425–443. [Google Scholar] [CrossRef]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzwieser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Loke, M.; Chambers, J.; Rucker, D.; Kuras, O.; Wilkinson, P. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Jervis, J.R.; Pringle, J.K.; Tuckwell, G.W. Time-lapse resistivity surveys over simulated clandestine graves. Forensic Sci. Int. 2009, 192, 7–13. [Google Scholar] [CrossRef]
- Wadsworth, W.T.; Bank, C.-G.; Patton, K.; Doroszenko, D. Forgotten Souls of the Dawn Settlement: A Multicomponent Geophysical Survey of Unmarked Graves at the British American Institute Cemetery. Hist. Archaeol. 2020, 54, 624–646. [Google Scholar] [CrossRef]
- Cassidy, N.J. Ground penetrating radar data processing, modelling and analysis. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Oxford, UK, 2009; pp. 141–176. [Google Scholar]
- Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution. J. Appl. Geophys. 2003, 54, 15–33. [Google Scholar] [CrossRef]
- Pujari, P.R.; Pardhi, P.; Muduli, P.; Harkare, P.; Nanoti, M.V. Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environ. Monit. Assess. 2007, 131, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Sandmeier, G.R. Reflexw—GPR and Seismic Processing Software. Available online: https://www.sandmeier-geo.de/reflexw.html (accessed on 9 December 2020).
- Conyers, L.B. Interpreting Ground-Penetrating Radar for Archaeology; Routledge: London, UK, 2012. [Google Scholar]
- Sarris, A.; Kalayci, T.; Moffat, I.; Manataki, M. An introduction to Geophysical and Geochemical Methods in Digital Geoarchaeology. In Digital Geoarchaeology; Siart, C., Forbriger, M., Bubenzer, O., Wagner, G., Miller, C.E., Schutkowski, H., Eds.; Natural Science in Archaeology; Springer: Cham, Switzerland, 2018; pp. 215–236. [Google Scholar]
- Loke, M.; Barker, R. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.; Binley, A. ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- Bourgeois, J.M.; Smith, G.S. A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Trans. Geosci. Remote Sens. 1996, 34, 36–44. [Google Scholar] [CrossRef]
- Novo, A.; Lorenzo, H.; Rial, F.I.; Solla, M. 3D GPR in forensics: Finding a clandestine grave in a mountainous environment. Forensic Sci. Int. 2011, 204, 134–138. [Google Scholar] [CrossRef]
- Özkap, K.; Pekşen, E.; Kaplanvural, İ.; Çaka, D. 3D scanner technology implementation to numerical modeling of GPR. J. Appl. Geophys. 2020, 179, 1–8. [Google Scholar] [CrossRef]
- Booth, A.D.; Pringle, J.K. Semblance analysis to assess GPR data from a five-year forensic study of simulated clandestine graves. J. Appl. Geophys. 2016, 125, 37–44. [Google Scholar] [CrossRef]
- Kelly, T.; Angel, M.; O’Connor, D.; Huff, C.; Morris, L.; Wach, G. A novel approach to 3D modelling ground-penetrating radar (GPR) data—A case study of a cemetery and applications for criminal investigation. Forensic Sci. Int. 2021, 1–15. [Google Scholar] [CrossRef]
- Lu, D.-B.; Zhou, Q.-Y.; Junejo, S.; Xiao, A.-L. A systematic study of topography effect of ERT based on 3-D modeling and inversion. Pure Appl. Geophys. 2015, 172, 1531–1546. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Publications, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Panisova, J.; Fraštia, M.; Wunderlich, T.; Pašteka, R.; Kušnirák, D. Microgravity and Ground-penetrating Radar Investigations of Subsurface Features at the St Catherine’s Monastery, Slovakia. Archaeol. Prospect. 2013, 20, 163–174. [Google Scholar] [CrossRef]
- Ambos, E.L.; Larson, D.O. Verification of virtual excavation using multiple geophysical methods. SAA Archaeol. Rec. 2002, 2, 32–38. [Google Scholar]
- Bevan, B.W. The search for graves. Geophysics 1991, 56, 1310–1319. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Bellantoni, N.F. The search for graves with ground-penetrating radar in Connecticut. J. Archaeol. Sci. 2010, 37, 941–949. [Google Scholar] [CrossRef]
- Polymenakos, L. Searching for prehistoric small-sized graves in complex geoarchaeological conditions: Ayios Vasilios North Cemetery (Peloponnese, Greece). J. Archaeol. Sci. Rep. 2019, 24, 1–15. [Google Scholar] [CrossRef]
- Moffat, I.; Garnaut, J.; Jordan, C.; Vella, A.; Bailey, M. Ground penetrating radar investigations at the Lake Condah Mission Cemetery: Locating unmarked graves in areas with extensive subsurface disturbance. Artefact J. Archaeol. Anthropol. Soc. Vic. 2018, 39, 8–14. [Google Scholar] [CrossRef]
- Marshallsay, J.; Moffat, I.; Beale, A. Geophysical Investigations of the Tabernacle (Yilki) Cemetery, Encounter Bay, South Australia. J. Anthropol. Soc. South Aust. 2012, 35, 91–103. [Google Scholar]
- Moffat, I.; Wallis, L.A.; Hounslow, M.W.; Niland, K.; Domett, K.; Trevorrow, G. Geophysical prospection for late Holocene burials in coastal environments: Possibilities and problems from a pilot study in South Australia. Geoarchaeology 2010, 25, 645–665. [Google Scholar] [CrossRef]
- Wallis, L.A.; Moffat, I.; Trevorrow, G.; Massey, T. Locating places for repatriated burial: A case study from Ngarrindjeri ruwe, South Australia. Antiquity 2008, 82, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Killam, E.W. The Detection of Human Remains, 2nd ed.; Charles C Thomas Publisher, Ltd.: Springfield, MO, USA, 2004. [Google Scholar]
- Dick, H.C.; Pringle, J.K.; Wisniewski, K.D.; Goodwin, J.; van der Putten, R.; Evans, G.T.; Francis, J.D.; Cassella, J.P.; Hansen, J.D. Determining geophysical responses from burials in graveyards and cemeteries. Geophysics 2017, 82, B245–B255. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.J.; Martin, M.M. Monitoring controlled graves representing common burial scenarios with ground penetrating radar. J. Appl. Geophys. 2012, 83, 74–89. [Google Scholar] [CrossRef]
- Goodman, D.; Piro, S.; Nishimura, Y.; Schneider, K.; Hongo, H.; Higashi, N.; Steinberg, J.; Damiata, B. GPR Archaeometry. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Oxford, UK, 2008; pp. 479–508. [Google Scholar]
- Schultz, J.J. Sequential monitoring of burials containing small pig cadavers using ground penetrating radar. J. Forensic Sci. 2008, 53, 279–287. [Google Scholar] [CrossRef]
- Persson, K.; Olofsson, B. Inside a mound: Applied geophysics in archaeological prospecting at the Kings’ Mounds, Gamla Uppsala, Sweden. J. Archaeol. Sci. 2004, 31, 551–562. [Google Scholar] [CrossRef]
- Dick, H.C.; Pringle, J.K.; Sloane, B.; Carver, J.; Wisniewski, K.D.; Haffenden, A.; Porter, S.; Roberts, D.; Cassidy, N.J. Detection and characterisation of Black Death burials by multi-proxy geophysical methods. J. Archaeol. Sci. 2015, 59, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Bladon, P.; Moffat, I.; Guilfoyle, D.; Beale, A.; Milani, J. Mapping anthropogenic fill with GPR for unmarked grave detection: A case study from a possible location of Mokare’s grave, Albany, Western Australia. Explor. Geophys. 2011, 42, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Moffat, I.; Linsell, J.; Vella, A.; Duke, B.; Kowlessar, J.; Griffith, J.G.; Down, A. Mapping unmarked graves with Ground Penetrating Radar at the Walkerville Wesleyan Cemetery, Adelaide. Aust. Archaeol. 2020, 86, 57–62. [Google Scholar] [CrossRef]
- Barone, P.; Swanger, K.; Stanley-Price, N.; Thursfield, A. Finding graves in a cemetery: Preliminary forensic GPR investigations in the non-Catholic cemetery in Rome (Italy). Measurement 2016, 80, 53–57. [Google Scholar] [CrossRef]
- Ruffell, A. Searching for the IRA” disappeared”: Ground-penetrating radar investigation of a churchyard burial site, Northern Ireland. J. Forensic Sci. 2005, 50, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nero, C.; Aning, A.A.; Danuor, S.K.; Noye, R.M. Delineation of graves using electrical resistivity tomography. J. Appl. Geophys. 2016, 126, 138–147. [Google Scholar] [CrossRef]
- Jervis, J.R.; Pringle, J.K.; Cassella, J.P.; Tuckwell, G. Using soil and groundwater data to understand resistivity surveys over a simulated clandestine grave. In Criminal and Environmental Soil Forensics; Ritz, K., Dawson, L., Miller, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 271–284. [Google Scholar]
- Jervis, J.R.; Pringle, J.K. A study of the effect of seasonal climatic factors on the electrical resistivity response of three experimental graves. J. Appl. Geophys. 2014, 108, 53–60. [Google Scholar] [CrossRef]
- Rubio-Melendi, D.; Gonzalez-Quirós, A.; Roberts, D.; García, M.d.C.G.; Domínguez, A.C.; Pringle, J.K.; Fernández-Álvarez, J.-P. GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain. Forensic Sci. Int. 2018, 287, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Matias, H.C.; Santos, F.M.; Ferreira, F.R.; Machado, C.; Luzio, R. Detection of graves using the micro-resistivity method. Ann. Geophys. 2006, 49, 1235–1244. [Google Scholar] [CrossRef]
- Simyrdanis, K.; Papadopoulos, N.; Kim, J.H.; Tsourlos, P.; Moffat, I. Archaeological investigations in the shallow seawater environment with electrical resistivity tomography. Near Surf. Geophys. 2015, 13, 601–611. [Google Scholar] [CrossRef]
- Tsokas, G.; Tsourlos, P.; Vargemezis, G.; Novack, M. Non-destructive electrical resistivity tomography for indoor investigation: The case of Kapnikarea Church in Athens. Archaeol. Prospect. 2008, 15, 47–61. [Google Scholar] [CrossRef]
- Tsokas, G.; Tsourlos, P.; Vargemezis, G.; Pazaras, N.T. Using surface and cross-hole resistivity tomography in an urban environment: An example of imaging the foundations of the ancient wall in Thessaloniki, North Greece. Phys. Chem. Earth Parts A/B/C 2011, 36, 1310–1317. [Google Scholar] [CrossRef]
- Tsourlos, P.; Tsokas, G. Non-destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeol. Prospect. 2011, 18, 173–186. [Google Scholar] [CrossRef]
- Getaneh, A.; Haile, T. Optimized electrical resistivity tomography investigation established in identifying pit tombs of Mogareb, a cemetery area in a Pre-Aksumite archaeological site of Seglamen, northern Ethiopia. Measurement 2018, 129, 558–564. [Google Scholar] [CrossRef]
- Fiedler, S.; Illich, B.; Berger, J.; Graw, M. The effectiveness of ground-penetrating radar surveys in the location of unmarked burial sites in modern cemeteries. J. Appl. Geophys. 2009, 68, 380–385. [Google Scholar] [CrossRef]
- Vaughan, C. Ground-penetrating radar surveys used in archaeological investigations. Geophysics 1986, 51, 595–604. [Google Scholar] [CrossRef]
- Ruffell, A.; Pringle, J.; Cassella, J.; Morgan, R.; Ferguson, M.; Heaton, V.; Hope, C.; McKinley, J. The use of geoscience methods for aquatic forensic searches. Earth-Sci. Rev. 2017, 171, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Annan, A.; Davis, J. Impulse radar sounding in permafrost. Radio Sci. 1976, 11, 383–394. [Google Scholar] [CrossRef]
- Annan, A.; Davis, J. Impulse radar and time-domain reflectometry experiments in permafrost terrain during 1976. Geol. Surv. Can.: Rep. Act. Part B 1977, 77-1B, 67. [Google Scholar] [CrossRef]
- Haeni, F.; Buursink, M.L.; Costa, J.E.; Melcher, N.B.; Cheng, R.T.; Plant, W.J. Ground penetrating radar methods used in surface-water discharge measurements. In Proceedings of the Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia, 23–26 May 2000; pp. 494–500. [Google Scholar]
- Spicer, K.R.; Costa, J.E.; Placzek, G. Measuring flood discharge in unstable stream channels using ground-penetrating radar. Geology 1997, 25, 423–426. [Google Scholar] [CrossRef]
- Haeni, F.; McKeegan, D.K.; Capron, D.R. Ground-Penetrating Radar Study of the Thickness and Extent of Sediments Beneath Silver Lake, Berlin and Meriden, Connecticut; US Department of the Interior, Geological Survey: Connecticut, UK, 1987.
- Sellmann, P.V.; Delaney, A.J.; Arcone, S.A. Sub-Bottom Surveying in Lakes with Ground-Penetrating Radar; US Army Cold Regions Research and Engineering Laboratory: Hanover, Germany, 1992. [Google Scholar]
- Ruffell, A. Under-water scene investigation using ground penetrating radar (GPR) in the search for a sunken jet ski, Northern Ireland. Sci. Justice 2006, 46, 221–230. [Google Scholar] [CrossRef]
- Parker, R.; Ruffell, A.; Hughes, D.; Pringle, J. Geophysics and the search of freshwater bodies: A review. Sci. Justice 2010, 50, 141–149. [Google Scholar] [CrossRef]
- Forde, M.; McCann, D.; Clark, M.; Broughton, K.; Fenning, P.; Brown, A. Radar measurement of bridge scour. Ndt E Int. 1999, 32, 481–492. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R.; Hansen, J.D.; Jones, G.M.; Cassidy, N.J.; Cassella, J.P. Geophysical Monitoring of Simulated Clandestine Graves Using Electrical and Ground-Penetrating Radar Methods: 0–3 Years After Burial. J. Forensic Sci. 2012, 57, 1467–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pringle, J.K.; Holland, C.; Szkornik, K.; Harrison, M. Establishing forensic search methodologies and geophysical surveying for the detection of clandestine graves in coastal beach environments. Forensic Sci. Int. 2012, 219, e29–e36. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.K.; Jervis, J.R.; Roberts, D.; Dick, H.C.; Wisniewski, K.D.; Cassidy, N.J.; Cassella, J.P. Long-term Geophysical Monitoring of Simulated Clandestine Graves using Electrical and Ground Penetrating Radar Methods: 4–6 Years After Burial. J. Forensic Sci. 2016, 61, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Groen, W.M.; Marquez-Grant, N.; Janaway, R.C. Forensic Archaeology: A Global Perspective; John Wiley & Sons: West Sussex, UK, 2015. [Google Scholar]
- Nobes, D.C. The search for “Yvonne”: A case example of the delineation of a grave using near-surface geophysical methods. J. Forensic Sci. 2000, 45, 715–721. [Google Scholar] [CrossRef]
- Barone, P.M.; Di Maggio, R.M. Forensic geophysics: Ground penetrating radar (GPR) techniques and missing persons investigations. Forensic Sci. Res. 2019, 4, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billinger, M.S. Utilizing ground penetrating radar for the location of a potential human burial under concrete. Can. Soc. Forensic Sci. J. 2009, 42, 200–209. [Google Scholar] [CrossRef]
- Fernández-Álvarez, J.-P.; Rubio-Melendi, D.; Martínez-Velasco, A.; Pringle, J.K.; Aguilera, H.-D. Discovery of a mass grave from the Spanish Civil War using Ground Penetrating Radar and forensic archaeology. Forensic Sci. Int. 2016, 267, e10–e17. [Google Scholar] [CrossRef] [PubMed]
- Moffat, I. How We’re Developing Underground Mapping Technologies—Lessons from the Beaumont Case. Available online: https://theconversation.com/how-were-developing-underground-mapping-technologies-lessons-from-the-beaumont-case-90687 (accessed on 30 April 2021).
- Mallett, X. The Beaumont Children’s Disappearance—An End of Innocence. In Cold Case Investigations; Macmillan by Pan Macmillan Australia Pty Ltd.: Sydney, Australia, 2019; pp. 43–75. [Google Scholar]
- Molina, C.M.; Wisniewski, K.D.; Drake, J.; Baena, A.; Guatame, A.; Pringle, J.K. Testing Application of Geographical Information Systems, Forensic Geomorphology and Electrical Resistivity Tomography to Investigate Clandestine Grave Sites in Colombia, South America. J. Forensic Sci. 2020, 65, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellwood, B.B.; Owsley, D.W.; Ellwood, S.H.; Mercado-Allinger, P.A. Search for the grave of the hanged Texas gunfighter, William Preston Longley. Hist. Archaeol. 1994, 28, 94–112. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R. Electrical resistivity survey to search for a recent clandestine burial of a homicide victim, UK. Forensic Sci. Int. 2010, 202, e1–e7. [Google Scholar] [CrossRef]
- Christensen, A.M.; Passalacqua, N.V.; Bartelink, E.J. Forensic Anthropology: Current Methods and Practice, 2nd ed.; Academic Press: London, UK, 2019. [Google Scholar]
- Berezowski, V.; Keller, J.; Liscio, E. 3D Documentation of a Clandestine Grave: A Comparison Between Manual and 3D Digital Methods. J. Assoc. Crime Scene Reconstruction. 2018, 22, 23–37. [Google Scholar]
- Vannan, A. Forensic Archaeological Remote Sensing and Geospatial Analysis. In Multidisciplinary Approaches to Forensic Archaeology; Barone, P.M., Groen, W.M., Eds.; Soil Forensics Springer: Cham, Switzerland, 2018; pp. 19–40. [Google Scholar]
Processing Purposes and Approach | |
---|---|
Processing Purposes | Processing Approach |
Increase visibility of deeper features | AGC or time varying gain |
Remove noise | Background removal, high-pass and low-pass filters, frequency filtering |
Remove point source hyperbolas to their sources | Migration |
Correct the orientation of steep dipping layers | |
Change visibility of reflections of interest | Frequency filtering |
Processing Purposes and Approach | |
---|---|
Processing Purposes | Processing Approach |
Data improvement | |
Even out differences between data grids | Grid balancing |
Correct erroneous resistance measurements (from high contact resistance or impeded current flow) | Spike removal |
Remove stripy data (due to sensor balancing imperfections) | Line adjustment |
Data processing | |
Retain and emphasize small features and remove background variations | High-pass filtering |
Remove unwanted data of broad background changes and suppress variations that are smaller than the intended target | Low-pass filtering |
Create smoother appearance with finer resolution (for noisy data) | Interpolation |
Image processing | |
Convert data numbers into grayscale raster images * | Transfer function |
Optimal and Non-Optimal Areas to Search for Graves Using Gpr | |
---|---|
Optimal | Non-Optimal |
Dry, sandy soils | Clay rich and high saline soils |
Fresh water (see above) | Salt water (see above) |
Flat ground | Uneven ground/hills |
Areas void of large surface and subsurface objects (gravestones, rocks, gravel layers) | Areas with large surface and subsurface objects (gravestones, rocks, gravel layers) |
Areas with low and sparse vegetation | Areas with tall and dense vegetations |
Optimal and Non-Optimal Areas to Search for Graves Using Resistivity Methods | |
---|---|
Optimal | Non-Optimal |
High saline soils | Dry soil, lacking moisture |
Clay rich soils | After a metal detector survey |
Areas with large surface and subsurface objects (gravestones, fences, rocks, gravel layers) | |
Areas with tall and dense vegetation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezowski, V.; Mallett, X.; Ellis, J.; Moffat, I. Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review. Remote Sens. 2021, 13, 2880. https://doi.org/10.3390/rs13152880
Berezowski V, Mallett X, Ellis J, Moffat I. Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review. Remote Sensing. 2021; 13(15):2880. https://doi.org/10.3390/rs13152880
Chicago/Turabian StyleBerezowski, Victoria, Xanthé Mallett, Justin Ellis, and Ian Moffat. 2021. "Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review" Remote Sensing 13, no. 15: 2880. https://doi.org/10.3390/rs13152880
APA StyleBerezowski, V., Mallett, X., Ellis, J., & Moffat, I. (2021). Using Ground Penetrating Radar and Resistivity Methods to Locate Unmarked Graves: A Review. Remote Sensing, 13(15), 2880. https://doi.org/10.3390/rs13152880