AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tietê River Basin
2.2. Sentinel-2 MSI Imagery Processing
2.3. Chl-a In Situ Data
2.4. Calibration and Validation
2.4.1. Algorithm for Chl-a
2.4.2. Decision Tree for TSI and Algae Bloom Classification
2.5. GEE App
3. Results
3.1. Chl-a Algorithm
3.2. TSI Classification Tree
3.3. App Interface and Functionalities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Days (+ −) | # of Samples | Chl-a Range (µg/L) | R2 | MAPE | a | b |
---|---|---|---|---|---|---|
0 | 27 | 0.56–87.6 | 0.65 | 0.25 | 29.81 | 4.54 |
1 | 91 | 0.56–486.1 | 0.86 | 0.57 | 19.23 | 8.68 |
2 * | 136 | 0.56–486.1 | 0.86 | 0.89 | 23.44 | 7.95 |
3 | 175 | 0.56–486.1 | 0.81 | 1.00 | 24.49 | 7.48 |
TSI | AB | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days (+ −) | # of Samples | Chl-a Range (µg/L) | T-Test (reject H0) | Accuracy | Node1-Meso | Node2-Eutro | Node3-Super | Node4-Hyper | Accuracy | |||
0 | 27 | 0.56–87.6 | FALSE | |||||||||
1 | 91 | 0.56–486.1 | TRUE | 0.714 | −0.150 | −0.060 | 0.025 | 0.124 | 0.89 | |||
2 * | 136 | 0.56–486.1 | TRUE | 0.705 | −0.131 | −0.093 | 0.025 | 0.127 | 0.9 | |||
3 | 175 | 0.56–486.1 | TRUE | 0.640 | −0.131 | −0.099 | 0.025 | 0.127 | 0.89 |
References
- Branche, E. The multipurpose water uses of hydropower reservoir: The SHARE concept. C. R. Phys. 2017, 18, 469–478. [Google Scholar] [CrossRef]
- Teurlincx, S.; Kuiper, J.J.; Hoevenaar, E.C.M.; Lurling, M.; Brederveld, R.J.; Veraart, A.J.; Janssen, A.B.G.; Mooij, W.M.; de Senerpont Domis, L.N. Towards restoring urban waters: Understanding the main pressures. Curr. Opin. Environ. Sustain. 2019, 36, 49–58. [Google Scholar] [CrossRef]
- Kunz, M.J.; Wüest, A.; Wehrli, B.; Landert, J.; Senn, D.B. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Sanseverino, I.; Conduto, D.; Pozzoli, L.; Dobricic, S.; Lettieri, T. Algal Bloom and Its Economic Impact; Joint Research Center, European Comission (JRC), Institute for Environment and Sustainability: Ispra, Italy, 2016. [Google Scholar]
- Hamada, N.; Thorp, J.H.; Rogers, D.C. (Eds.) Thorp and Covich’s Freshwater Invertebrates; Academic Press: Cambridge, MA, USA, 2019; p. ii. ISBN 978-0-12-804223-6. [Google Scholar]
- Istvánovics, V. Eutrophication of Lakes and Reservoirs. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2009; pp. 157–165. ISBN 9780123706263. [Google Scholar]
- Watanabe, F.; Alcântara, E.; Rodrigues, T.; Rotta, L.; Bernardo, N.; Imai, N.; Sayuri, F.; Watanabe, Y. Remote Sensing of the Chlorophyll-a Based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Acad. Bras. Cienc Annals Braz. Acad. Sci. 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci. Rep. 2020, 10, 8743. [Google Scholar] [CrossRef] [PubMed]
- Aubriot, L.; Zabaleta, B.; Bordet, F.; Sienra, D.; Risso, J.; Achkar, M.; Somma, A. Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): Towards an early warning system. Water Res. 2020, 181, 115944. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Benito, C.V.; Navarro, G.; Caballero, I. Using Copernicus Sentinel-2 and Sentinel-3 data to monitor harmful algal blooms in Southern Chile during the COVID-19 lockdown. Mar. Pollut. Bull. 2020, 161, 111722. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Bonansea, M.; Bazán, R.; Germán, A.; Ferral, A.; Beltramone, G.; Cossavella, A.; Pinotti, L. Assessing land use and land cover change in Los Molinos reservoir watershed and the effect on the reservoir water quality. J. S. Am. Earth Sci. 2021, 108. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Zhang, X.; Dong, R. Long-Term Spatial and Temporal Monitoring of Cyanobacteria Blooms Using MODIS on Google Earth Engine: A Case Study in Taihu Lake. Remote Sens. 2019, 11, 2269. [Google Scholar] [CrossRef] [Green Version]
- Maeda, E.E.; Lisboa, F.; Kaikkonen, L.; Kallio, K.; Koponen, S.; Brotas, V.; Kuikka, S. Temporal patterns of phytoplankton phenology across high latitude lakes unveiled by long-term time series of satellite data. Remote Sens. Environ. 2019, 221, 609–620. [Google Scholar] [CrossRef]
- Zong, J.-M.; Wang, X.-X.; Zhong, Q.-Y.; Xiao, X.-M.; Ma, J.; Zhao, B. Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle–Lower Yangtze River Basin. Remote Sens. 2019, 11, 1754. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.J.; Mishra, D.R.; Wilde, S.B.; Kramer, E. Risks for cyanobacterial harmful algal blooms due to land management and climate interactions. Sci. Total Environ. 2020, 703, 134608. [Google Scholar] [CrossRef]
- GEO GEO and Google Earth Engine Announce Funding for 32 Projects to Improve Our Planet. Available online: https://www.earthobservations.org/article.php?id=447 (accessed on 5 May 2021).
- CETESB InfoAguas. Available online: https://sistemainfoaguas.cetesb.sp.gov.br/Home (accessed on 6 February 2020).
- Cunha, D.G.F.; Sabogal-Paz, L.P.; Dodds, W.K. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol. Eng. 2016, 94, 516–524. [Google Scholar] [CrossRef]
- Yin, F.; Lewis, P.; Gomez-Dans, J.; Wu, Q. A sensor-invariant atmospheric correction method: Application to Sentinel-2/MSI and Landsat 8/OLI. Earth ArXiv 2019, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Muller, J.P.; Kharbouche, S.; Yin, F.; Woodgate, W.; Kitchen, M.; Roland, M.; Arriga, N.; Meyer, W.; Koerber, G.; et al. Validation of space-based albedo products from upscaled tower-based measurements over heterogeneous and homogeneous landscapes. Remote Sens. 2020, 12, 833. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairo, C.T.; Barbosa, C.; Lobo, F.; Novo, E.; Carlos, F.; Maciel, D.; Jnior, R.F.; Silva, E.; Curtarelli, V. Hybrid chlorophyll-a algorithm for assessing trophic states of a tropical brazilian reservoir based on msi/sentinel-2 data. Remote Sens. 2020, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Curtarelli, V.P.; Barbosa, C.C.F.; Maciel, D.A.; Júnior, R.F.; Carlos, F.M.; Novo, E.M.L.D.M.; Curtarelli, M.; Silva, E.F.F. Diffuse Attenuation of Clear Water Tropical Reservoir: A Remote Sensing Semi-Analytical Approach. Remote Sens. 2020, 12, 2828. [Google Scholar] [CrossRef]
- Maciel, D.A.; Barbosa, C.C.F.; Novo, E.M.L.D.M.; Cherukuru, N.; Martins, V.S.; Flores Júnior, R.; Jorge, D.S.; Sander de Carvalho, L.A.; Carlos, F.M. Mapping of diffuse attenuation coefficient in optically complex waters of amazon floodplain lakes. ISPRS J. Photogramm. Remote Sens. 2020, 170, 72–87. [Google Scholar] [CrossRef]
- Lobo, F.L.; Costa, M.P.; Novo, E.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Cairo, C. Abordagem híbrida aplicada ao monitoramento sistemático do estado trófico da água por sensoriamento remoto em reservatórios: Reservatório da UHE Ibitinga/SP. Ph.D. Thesis, Remote Sensing Grad, National Institute for Space Research (INPE), São José dos Campos, Brazil, 1 April 2020. [Google Scholar]
- Maciel, D.A.; Novo, E.; Sander de Carvalho, L.; Barbosa, C.; Flores Júnior, R.; de Lucia Lobo, F.; de Carvalho, L.S.; Barbosa, C.; Júnior, R.F.; Lobo, F.L. Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor Approach. Remote Sens. 2019, 11, 1744. [Google Scholar] [CrossRef] [Green Version]
- Buma, W.G.; Lee, S.-I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 111604. [Google Scholar] [CrossRef]
- Watanabe, F.S.Y.; Alcântara, E.; Rodrigues, T.W.P.; Imai, N.N.; Barbosa, C.C.F.; Rotta, L.H.D.S. Estimation of chlorophyll-a concentration and the trophic state of the barra bonita hydroelectric reservoir using OLI/landsat-8 images. Int. J. Environ. Res. Public Health 2015, 12, 10391–10417. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Blaustein, J.; Gitelson, A.A.; Blaustein, J.; Gitelson, A.A.; Blaustein, J.; Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Dekker, A.G.; Malthus, T.J.; Hoogenboom, H.J. The remote sensing of inland water quality. In Advances in Environmental Remote Sensing; Danson, F.M., Plummer, S.E., Eds.; John Wiley & Sons: New York, NY, USA, 1993; pp. 123–142. [Google Scholar]
- Augusto-Silva, P.B.; Ogashawara, I.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.S.F.; Fornari, C.I.; Stech, J.L. Analysis of MERIS reflectance algorithms for estimating chlorophyll-a concentration in a Brazilian reservoir. Remote Sens. 2014, 6, 11689–11707. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.W.P.; Alcântara, E.; Imai, N.N.; Barbosa, C.C.F. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.F.R.; Brown, L.; Borstad, G.A. Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Can. J. Remote Sens. 2004, 30, 17–25. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Bernardo, N.; de Andrade, C.; Gomes, A.C.; do Carmo, A.; Rodrigues, T.; Rotta, L.H. Mapping the chlorophyll-a horizontal gradient in a cascading reservoirs system using MSI Sentinel-2A images. Adv. Sp. Res. 2019, 64, 581–590. [Google Scholar] [CrossRef]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R.; Martínez, J.M.; Motta-Marques, D. Atmospheric and sunglint correction for retrieving chlorophyll-a in a productive tropical estuarine-lagoon system using Sentinel-2 MSI imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Muduli, P.R.; Kumar, A.; Kanuri, V.V.; Mishra, D.R.; Acharya, P.; Saha, R.; Biswas, M.K.; Vidyarthi, A.K.; Sudhakar, A. Water quality assessment of the Ganges River during COVID-19 lockdown. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Mattar, C.; Franch, B. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. Remote Sens. Environ. 2010, 114, 2195–2210. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.S.; Soares, J.V.; Novo, E.M.L.M.; Barbosa, C.C.F.; Pinto, C.T.; Arcanjo, J.S.; Kaleita, A. Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations. Remote Sens. Environ. 2018, 218, 55–68. [Google Scholar] [CrossRef]
- Jorge, D.S.; Barbosa, C.C.; De Carvalho, L.A.; Affonso, A.G.; Lobo, F.D.L.; Novo, E.M.D.M. SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.Q.; Ha, N.T.; Pham, T.L. Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches. Environ. Sci. Pollut. Res. 2020, 27, 9135–9151. [Google Scholar] [CrossRef]
- Barbosa, C.C.F.; Novo, E.M.L.M.; Martinez, J.M. Remote sensing of the water properties of the Amazon floodplain lakes: The time delay effects between in-situ and satellite data acquisition on model accuracy. In Proceedings of the International Symposium on Remote Sensing of Environment: Sustaining the Millennium Development Goals, Stresa, Italy, 4–9 May 2009; Volume 33, pp. 1–4. [Google Scholar]
- Rotta, L.; Alcântara, E.; Park, E.; Bernardo, N.; Watanabe, F. A single semi-analytical algorithm to retrieve chlorophyll-a concentration in oligo-to-hypereutrophic waters of a tropical reservoir cascade. Ecol. Indic. 2021, 120, 106913. [Google Scholar] [CrossRef]
- EOMAP EO Mapping Services Water Quality Monitoring (WQ). Available online: https://www.eomap.com/services/water-quality/ (accessed on 5 May 2021).
- Schaeffer, B.A.; Bailey, S.W.; Conmy, R.N.; Galvin, M.; Ignatius, A.R.; Johnston, J.M.; Keith, D.J.; Lunetta, R.S.; Parmar, R.; Stumpf, R.P.; et al. Mobile device application for monitoring cyanobacteria harmful algal blooms using Sentinel-3 satellite Ocean and Land Colour Instruments. Environ. Model. Softw. 2018, 109, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M. Satellite technology keeping an eye on South Africa’s dams. Water Wheel 2016, 15, 24–26. [Google Scholar]
- ANA Hidrosat. Available online: http://hidrosat.ana.gov.br/ (accessed on 5 May 2021).
- ESA Sentinel-2: MultiSpectral Instrument (MSI) Overview. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument (accessed on 1 June 2021).
ID | Sample Station | Lat | Long | # of Samples | Min | Chl-a Mean | Max | Date Range |
---|---|---|---|---|---|---|---|---|
1 | TITR02800 | −51.147 | −20.660 | 7 | 1.1 | 3.4 | 9.6 | November 2016 and November 2019 |
2 | TITR02100 | −50.467 | −21.048 | 4 | 1.3 | 13.8 | 43.4 | May 2017 and November 2019 |
3 | TIPR02990 | −49.782 | −21.297 | 3 | 3.2 | 16.2 | 34.7 | November 2016 and May 2018 |
4 | TIPR02400 | −49.285 | −21.640 | 5 | 5.8 | 28.2 | 113.3 | July 2017 and November 2019 |
5 | TIET02600 | −48.994 | −21.759 | 3 | 0.8 | 14.8 | 36.8 | July 2017 and July 2018 |
6 | TIBB02700 | −48.447 | −22.544 | 3 | 28.6 | 33.0 | 39.8 | November 2015 and July 2019 |
7 | TIBB02100 | −48.348 | −22.613 | 4 | 7.2 | 26.7 | 35.8 | May 2018 and January 2020 |
8 | TIBT02500 | −48.252 | −22.678 | 6 | 13.4 | 31.3 | 60.6 | July 2017 and November 2019 |
9 | PCBP02500 | −48.174 | −22.629 | 5 | 2.9 | 14.6 | 40.1 | July 2017 and November 2019 |
10 | JARI00800 | −46.424 | −22.928 | 4 | 8.2 | 11.5 | 17.6 | July 2017 and July 2019 |
11 | JCRE00500 | −46.401 | −22.971 | 2 | 1.7 | 4.5 | 7.2 | July 2017 and July 2019 |
12 | CACH00500 | −46.289 | −23.033 | 1 | 7.4 | 5 July 2016 | ||
13 | JAGJ00900 | −46.027 | −23.193 | 3 | 1.0 | 1.3 | 1.5 | June 2016 and December 2019 |
14 | SANT00100 | −45.795 | −23.335 | 3 | 1.0 | 1.3 | 1.5 | June 2016 and December 2019 |
15 | INGA00850 | −45.612 | −23.366 | 4 | 1.0 | 1.4 | 1.5 | June 2016 and December 2019 |
16 | IUNA00950 | −45.571 | −23.418 | 4 | 1.0 | 1.4 | 1.6 | June 2016 and December 2019 |
17 | JQJU00900 | −46.662 | −23.340 | 6 | 1.8 | 5.2 | 13.3 | August 2015 and July 2019 |
18 | PEBA00900 | −46.278 | −23.579 | 9 | 2.1 | 5.8 | 14.7 | August 2015 and March 2020 |
19 | GUAR00900 | −46.728 | −23.674 | 5 | 35.8 | 40.9 | 46.6 | July 2017 and March 2020 |
20 | GUAR00100 | −46.727 | −23.754 | 4 | 43.2 | 86.4 | 128.3 | Jul 2017 and March 2020 |
21 | BILL02030 | −46.664 | −23.718 | 9 | 22.7 | 103.3 | 265.5 | August 2015 and July 2019 |
22 | BILL02100 | −46.648 | −23.749 | 11 | 23.7 | 83.4 | 273.3 | August 2015 and July 2020 |
23 | BILL02500 | −46.598 | −23.791 | 8 | 32.6 | 43.9 | 57.7 | August 2015 and March 2020 |
24 | BITQ00100 | −46.656 | −23.845 | 10 | 35.1 | 113.5 | 435.7 | August 2015 and July 2020 |
25 | RGDE02030 | −46.416 | −23.741 | 7 | 0.6 | 23.1 | 42.7 | August 2015 and March 2020 |
26 | Billings_1 | −46.671 | −23.706 | 1 | 486.2 | 8 November 2020 | ||
27 | Billings_2 | −46.639 | −23.763 | 1 | 155.7 | 8 November 2020 | ||
28 | Billings_3 | −46.653 | −23.721 | 1 | 270.5 | 8 November 2020 | ||
29 | Billings_4 | −46.612 | −23.792 | 1 | 120.8 | 9 November 2020 | ||
30 | Billings_5 | −46.627 | −23.816 | 1 | 98.3 | 9 November 2020 | ||
31 | Billings_6 | −46.637 | −23.836 | 1 | 81.7 | 9 November 2020 |
Trophic State | Chlorophyll-a (µg/L) |
---|---|
Ultra-oligotrophic * | Chl-a < 1.17 |
Oligotrophic | 1.17 < Chl-a < 3.24 |
Mesotrophic | 3.24 < Chl-a < 11.03 |
Eutrophic | 11.03 < Chl-a < 30.55 |
Super-eutrophic ** | 30.55 < Chl-a < 69.05 |
Hyper-eutrophic ** | 69.05 < Chl-a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, F.d.L.; Nagel, G.W.; Maciel, D.A.; Carvalho, L.A.S.d.; Martins, V.S.; Barbosa, C.C.F.; Novo, E.M.L.d.M. AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sens. 2021, 13, 2874. https://doi.org/10.3390/rs13152874
Lobo FdL, Nagel GW, Maciel DA, Carvalho LASd, Martins VS, Barbosa CCF, Novo EMLdM. AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sensing. 2021; 13(15):2874. https://doi.org/10.3390/rs13152874
Chicago/Turabian StyleLobo, Felipe de Lucia, Gustavo Willy Nagel, Daniel Andrade Maciel, Lino Augusto Sander de Carvalho, Vitor Souza Martins, Cláudio Clemente Faria Barbosa, and Evlyn Márcia Leão de Moraes Novo. 2021. "AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America" Remote Sensing 13, no. 15: 2874. https://doi.org/10.3390/rs13152874
APA StyleLobo, F. d. L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S. d., Martins, V. S., Barbosa, C. C. F., & Novo, E. M. L. d. M. (2021). AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sensing, 13(15), 2874. https://doi.org/10.3390/rs13152874