Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Gap-Filling Methods
2.3. Evaluation Methods
2.4. Materials and Preprocessing
2.4.1. ESA CCI SM
2.4.2. Ancillary Materials
- (1)
- Normalized Difference Vegetation Index
- (2)
- Precipitation and Temperature of China
- (3)
- GTOPO30 Global Digital Elevation Model (DEM)
- (4)
- Harmonized World Soil Database (HWSD)
2.4.3. International Soil Moisture Network (ISMN) Data
3. Results and Discussion
3.1. Evaluating the Gap-Filling Methods over the Whole Area of China
3.2. Evaluating the Gap-Filling Methods over Simulated SM Gaps
3.3. Evaluating the Gap-Filling Methods at In Situ Stations
3.4. Three Strategies for Gap-Filling Based on RF
4. Conclusions
- (1)
- The data gap of CCI SM is frequent in China, which is not only found in cold seasons and areas but also in warm seasons and areas. The maximum gap ratios can be greater than 80%, and the average gap ratio is around 40%.
- (2)
- ML methods had a stronger gap-filling ability than the geostatistical OK method. ML methods can fill the gaps of CCI SM all up, whereas the OK method cannot. Among the evaluated ML methods, RF had the best performance in fitting the relationship between SM and biophysical variables with R of 0.965 and RMSE of 0.022 cm3/cm3.
- (3)
- Over five simulated gap areas, RF had comparable performance with OK, and it outperformed the FNN and GLM methods greatly. The average R values are 0.224, 0.229, 0.792, and 0.765 for FNN, GLM, OK, and RF, respectively. The average ubRMSE values for them are 0.062 cm3/cm3, 0.057 cm3/cm3, 0.029 cm3/cm3, and 0.029 cm3/cm3, respectively.
- (4)
- As compared with in situ SM from ISMN networks, RF achieved better performance than the OK method. The median R values at all in situ stations are 0.773 and 0.724 for RF and OK methods, respectively. The median ubRMSE at all in situ stations are 0.056 cm3/cm3 and 0.060 cm3/cm3 for RF and OK methods, respectively.
- (5)
- We also explored three strategies for gap-filling CCI SM based on the RF method, where Strategy 1 is creating monthly RF model for data each month, Strategy 2 is creating a big RF for all data, and Strategy 3 is also constructing monthly model but with one RF for simulating monthly average SM and another RF model for simulating monthly SM disturbance. Results indicated that Strategy 3 achieved the best performance, which is suggested for filling the CCI SM gaps in the whole area of China.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collow, T.W.; Robock, A.; Wu, W. Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains. J. Geophys. Res. Atmos. 2014, 119, 9338–9358. [Google Scholar] [CrossRef]
- Sadeghi, M.; Tuller, M.; Warrick, A.W.; Babaeian, E.; Parajuli, K.; Gohardoust, M.R.; Jones, S.B. An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. J. Hydrol. 2019, 570, 26–37. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; et al. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 131–145. [Google Scholar] [CrossRef]
- Brocca, L.; Ponziani, F.; Moramarco, T.; Melone, F.; Berni, N.; Wagner, W. Improving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy. Remote Sens. 2012, 4, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, Y.; Sun, H. Comparisons and classification system of typical remote sensing indexes for agricultural drought. Trans. Chin. Soc. Agric. Eng. 2012, 28, 147–154. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, X.; Chen, Y.; Gong, A.; Yang, J. A new agricultural drought monitoring index combining MODIS NDWI and day–night land surface temperatures: A case study in China. Int. J. Remote Sens. 2013, 34, 8986–9001. Available online: https://doi.org/10.1080/01431161.2013.860659 (accessed on 20 July 2021). [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Colliander, A.; Fisher, J.B.; Halverson, G.; Merlin, O.; Misra, S.; Bindlish, R.; Jackson, T.J.; Yueh, S. Spatial Downscaling of SMAP Soil Moisture Using MODIS Land Surface Temperature and NDVI during SMAPVEX15. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2107–2111. [Google Scholar] [CrossRef]
- Wu, X.; Walker, J.P.; Das, N.N.; Panciera, R.; Rüdiger, C. Evaluation of the SMAP brightness temperature downscaling algorithm using active–passive microwave observations. Remote Sens. Environ. 2014, 155, 210–221. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). SMAP Handbook—Soil Moisture Active Passive; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2014. [Google Scholar]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Liu, S.; Lin, Z.; Hu, S. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 110–121. [Google Scholar] [CrossRef]
- Almendra-Martín, L.; Martínez-Fernández, J.; Piles, M.; González-Zamora, Á. Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe. Remote Sens. Environ. 2021, 258, 112377. [Google Scholar] [CrossRef]
- Llamas, R.M.; Guevara, M.; Rorabaugh, D.; Taufer, M.; Vargas, R. Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression. Remote Sens. 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, X.; Xiong, W.; He, L.; Lv, F.; Fan, W.; Luo, Z.; Hong, Y. A Soil Moisture Spatial and Temporal Resolution Improving Algorithm Based on Multi-Source Remote Sensing Data and GRNN Model. Remote Sens. 2020, 12, 455. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, R.; Li, X. Regression Kriging-Based Upscaling of Soil Moisture Measurements from a Wireless Sensor Network and Multiresource Remote Sensing Information Over Heterogeneous Cropland. IEEE Geosci. Remote Sens. Lett. 2015, 12, 92–96. [Google Scholar] [CrossRef]
- Wang, G.; Garcia, D.; Liu, Y.; De Jeu, R.; Dolman, A.J. A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environ. Model. Softw. 2012, 30, 139–142. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.T.; Kim, S.; Marshall, L.; Johnson, F. Using 3D robust smoothing to fill land surface temperature gaps at the continental scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101879. [Google Scholar] [CrossRef]
- Sun, H.; Cui, Y.J. Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based on Machine Learning Method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
Variable | Category | Unit | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
SM | CCI SM combined v4.5 | m3m−3 | 0.25 degrees | 1 day |
NDVI | GIMMS NDVI and MOD13C2 | - | 0.083 degrees /0.05 degrees | 15 days /monthly |
Precipitation | CMDC Grided Data | mm | 0.5 degrees | monthly |
Temperature | CMDC Grided Data | °C | 0.5 degrees | monthly |
DEM | GTOPO 30 | m | 0.0083 degrees | - |
Soil type | Harmonized World Soil Database | - | 0.0083 degrees | - |
In situ data | International Soil Moisture Network | m3m−3 | - | - |
Indicators | Method | Region 1 | Region 2 | Region 3 | Region 4 | Region 5 | Average |
---|---|---|---|---|---|---|---|
RMSE | FNN | 0.110 | 0.090 | 0.077 | 0.082 | 0.071 | 0.086 |
GLM | 0.057 | 0.065 | 0.068 | 0.073 | 0.080 | 0.069 | |
OK | 0.028 | 0.038 | 0.021 | 0.028 | 0.031 | 0.029 | |
RF | 0.031 | 0.040 | 0.026 | 0.027 | 0.033 | 0.031 | |
ubRMSE | FNN | 0.074 | 0.066 | 0.042 | 0.071 | 0.055 | 0.062 |
GLM | 0.049 | 0.059 | 0.051 | 0.050 | 0.075 | 0.057 | |
OK | 0.028 | 0.036 | 0.020 | 0.028 | 0.031 | 0.029 | |
RF | 0.031 | 0.037 | 0.022 | 0.025 | 0.033 | 0.029 | |
BIAS | FNN | −0.083 | −0.061 | 0.077 | −0.050 | 0.046 | −0.014 |
GLM | 0.030 | −0.007 | 0.033 | −0.048 | 0.027 | 0.007 | |
OK | 0.002 | −0.013 | 0.002 | 0.002 | 0.001 | −0.001 | |
RF | 5.05 × 10−5 | −0.006 | 0.007 | −0.003 | −0.001 | −0.001 | |
R | FNN | 0.203 | 0.197 | 0.210 | −0.024 | 0.533 | 0.224 |
GLM | 0.385 | 0.089 | 0.006 | 0.502 | 0.162 | 0.229 | |
OK | 0.797 | 0.633 | 0.794 | 0.874 | 0.863 | 0.792 | |
RF | 0.741 | 0.612 | 0.752 | 0.863 | 0.855 | 0.765 | |
R2 | FNN | 0.041 | 0.039 | 0.044 | 5.76 × 10−4 | 0.284 | 0.083 |
GLM | 0.148 | 0.008 | 3.6 × 10−5 | 0.252 | 0.026 | 0.087 | |
OK | 0.635 | 0.401 | 0.630 | 0.764 | 0.745 | 0.635 | |
RF | 0.549 | 0.375 | 0.566 | 0.745 | 0.731 | 0.593 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Xu, Q. Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China. Remote Sens. 2021, 13, 2848. https://doi.org/10.3390/rs13142848
Sun H, Xu Q. Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China. Remote Sensing. 2021; 13(14):2848. https://doi.org/10.3390/rs13142848
Chicago/Turabian StyleSun, Hao, and Qian Xu. 2021. "Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China" Remote Sensing 13, no. 14: 2848. https://doi.org/10.3390/rs13142848
APA StyleSun, H., & Xu, Q. (2021). Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China. Remote Sensing, 13(14), 2848. https://doi.org/10.3390/rs13142848