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Abstract: Soil moisture plays a key role in the Earth’s water and carbon cycles, but acquisition of
continuous (i.e., gap-free) soil moisture measurements across large regions is a challenging task due
to limitations of currently available point measurements. Satellites offer critical information for soil
moisture over large areas on a regular basis (e.g., European Space Agency Climate Change Initiative
(ESA CCI), National Aeronautics and Space Administration Soil Moisture Active Passive (NASA
SMAP)); however, there are regions where satellite-derived soil moisture cannot be estimated because
of certain conditions such as high canopy density, frozen soil, or extremely dry soil. We compared and
tested three approaches, ordinary kriging (OK), regression kriging (RK), and generalized linear models
(GLMs), to model soil moisture and fill spatial data gaps from the ESA CCI product version 4.5 from
January 2000 to September 2012, over a region of 465,777 km2 across the Midwest of the USA. We tested
our proposed methods to fill gaps in the original ESA CCI product and two data subsets, removing
25% and 50% of the initially available valid pixels. We found a significant correlation (r = 0.558, RMSE
= 0.069 m3m−3) between the original satellite-derived soil moisture product with ground-truth data
from the North American Soil Moisture Database (NASMD). Predicted soil moisture using OK also
had significant correlation with NASMD data when using 100% (r = 0.579, RMSE = 0.067 m3m−3),
75% (r = 0.575, RMSE = 0.067 m3m−3), and 50% (r = 0.569, RMSE = 0.067 m3m−3) of available valid
pixels for each month of the study period. RK showed comparable values to OK when using different
percentages of available valid pixels, 100% (r = 0.582, RMSE = 0.067 m3m−3), 75% (r = 0.582, RMSE =

0.067 m3m−3), and 50% (r = 0.571, RMSE = 0.067 m3m−3). GLM had slightly lower correlation with
NASMD data (average r = 0.475, RMSE = 0.070 m3m−3) when using the same subsets of available
data (i.e., 100%, 75%, 50%). Our results provide support for using geostatistical approaches (OK and
RK) as alternative techniques to gap-fill missing spatial values of satellite-derived soil moisture.
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1. Introduction

Addressing global environmental challenges requires knowledge and information derived from
the most accurate and complete available datasets. Soil moisture has an important role in the water and
energy cycles and is regarded as one of the essential terrestrial climate variables [1] due to its influence
on soil and atmosphere feedbacks. Furthermore, soil moisture is a critical input variable for applications
such as climate modeling [2–4], agricultural planning [5,6], and carbon budget analyses [7,8]. Because
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of the importance of soil moisture, there are many in situ monitoring networks, organized at the
global [9], regional [10,11], or national-scale [12–15]. Despite these national to global efforts, there is
still a challenge to represent spatially explicit soil moisture information across large regions related to
spatial limitations of in situ ground measurements.

Soil moisture can be estimated using remote sensors (e.g., spaceborne radiometers and radar
sensors) to provide coarse-scale estimates on a regular basis [9,16]. Examples of remote sensing soil
moisture monitoring systems include NASA’s Soil Moisture Active Passive (SMAP) [16], ESA’s Soil
Moisture and Ocean Salinity (SMOS) [17], and the European Space Agency Climate Change Initiative
(ESA CCI) [11,18] that deliver publicly available data for a wide range of applications. Despite advances
in remote sensing technology, there are still large areas where soil moisture information is not regularly
acquired, yielding information gaps in time and space across the world. Missing information arises
from certain circumstances such as high canopy density, snow and ice cover, extremely dry surface
conditions, or frozen soil [11]. These factors hinder radiometers or radar sensors in measuring the
dielectric constant in the top layer of soil in order to estimate the water content [19].

Consequently, there is a need to develop gap-filling strategies to provide spatially complete
satellite-derived soil moisture data across the world. In the most recent version of the ESA CCI product
(version 4.5), soil moisture values are derived from the combination of active and passive sensors
based on a weighted mean, proportional to the signal-to-noise ratios (SNRs) [20]. In areas where
soil moisture information cannot be derived using SNRs, values are estimated using a polynomial
regression between the signal-to-noise ratios [20]. Version 4.5 masks areas of dense vegetation using
vegetation optical depth layers and flags measurements under frozen conditions [21]; consequently the
product has multiple gaps across the world [22].

Other statistical methods (e.g., discrete cosine transformations and singular spectrum analysis)
have been applied to fill spatial gaps for satellite-derived geophysical datasets, as well as soil moisture
from field measurements [23–25]. These approaches are focused either on the statistical distribution
of the data or three-dimension information, which includes both space and time. We postulate that
alternative gap-filling methods could take advantage of the information contained in the spatial
distribution of soil moisture or its spatial and linear relationships with key geophysical variables, such
as temperature and precipitation [3,9,26].

In this research, we test the performance of three methods to gap-fill satellite-derived soil moisture
in ESA CCI product version 4.5. Although version 4.5 includes a gap-filling strategy (as described
above), this version still contains gaps across many regions of the world [22]. Our research aims to
offer alternative strategies to provide spatially complete soil moisture estimates to complement the
methods applied in the ESA CCI product, version 4.5 [21].

We tested three approaches. The first one is based on ordinary kriging (OK) spatial interpolation
[27–29] to take advantage of the spatial autocorrelation of satellite-derived soil moisture on gridded
surfaces. The second one performs regression kriging, which combines the principles of kriging
interpolation and linear regression with covariates [27,30] that are used to solve kriging weights [31].
In this work, RK relies on the relation between soil moisture (response variable) with precipitation
and minimum air temperature (explanatory variables). Our last approach is based on the application
of generalized linear models (GLMs) to explore the relationship between soil moisture and the same
explanatory variables integrated in our RK analyses. We tested these three methods because: (a) OK
has the advantage of requiring solely spatial soil moisture information; (b) GLM has the advantage of
benefiting from the inclusion of geophysical covariates (i.e., independent explanatory variables); and
(c) RK incorporates both linear relationships and geospatial distribution of explanatory variables.

We focused our study over a region in the Midwestern United States (with abundant satellite-data
estimates and in situ measurements) between 2000 and 2012. We evaluated the outcome of our
gap-filling approaches with ground-truth information using in situ measurements from the North
American Soil Moisture Database (NASMD) [15]. Our results show that the overall correlations
between OK or RK with field data (i.e., NASMD) were slightly higher than those using GLM.
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These results provide support for alternative techniques to complement other approaches aimed to
gap-fill satellite-derived geophysical datasets [23,24] and highlight the potential of using geostatistical
techniques. Furthermore, methods based on the spatial distribution of soil moisture, such as OK, which
does not require information from geophysical covariates, are useful when covariate information (e.g.,
precipitation and air temperature) is missing in different regions across the world.

Section 2 provides a description of the region of interest as well as the parameters to select our time
frame. Data acquisition, preprocessing, selection of the geophysical covariates, application of proposed
gap-filling approaches, and the validation strategy are also described in Section 2. Section 3 describes
the performance of OK, RK, and GLM techniques, as well as the results of cross-validation for the three
models. Validation using reference correlation between original satellite data and ground-truth soil
moisture information is also described in Section 3 and is compared with model outputs. Section 3
additionally shows the capability of our methods to reproduce the spatial soil moisture patterns shown
by the original ESA CCI product. Section 4 proceeds with the discussion of our findings and their
implications in providing spatially complete soil moisture information derived from ESA CCI satellite
estimates from version 4.5. Section 5 summarizes the remarks of our work and their implications in
providing soil moisture information for specific applications.

2. Materials and Methods

2.1. Region of Interest

The selected region of interest was an area of 465,777 km2 (Figure 1a) centered in the state of
Oklahoma (180,986 km2) and covering some areas of surrounding states within Midwestern USA:
Texas (159,489 km2), Colorado (11,210 km2), Kansas (61,343 km2), Missouri (10,844 km2), New Mexico
(18,550 km2), and Arkansas (23,356 km2). The region of interest shows a variety of environmental
conditions, both natural and human-driven, that allowed us to test the spatial performance of
our gap-filling frameworks. This diversity mitigates bias due to specific environmental conditions
(e.g., homogenous land cover, uniform topographic features), which are not the attention of this present
study. The region of interest for this study was selected in response to the availability of ground-truth
data in that area, mainly over Oklahoma, where mesonet [15] provides a robust set of historical soil
moisture records [32]. Additionally, soil moisture data availability in northern Texas and the remaining
areas in the region of interest are consistently represented by the NASMD. We highlight that the
NASMD integrates data from several monitoring networks including mesonet [15].
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Figure 1. (a) Region of interest in the Midwestern USA, where soil moisture gap-filling methods were
performed; (b) Land cover types over the region of interest (30 m), level 1 NALCMS classification [33].

The region of interest (Figure 1a) includes a wide variety of land cover types (Figure 1b) dominated
by grassland (35.5%), cropland (31.9%), and shrubland (11.0%) in the central and western areas, whereas
forested areas are mostly located in the eastern portion, distributed across needleleaf (2.2%), broadleaf
(10.9%), and mixed forests (0.6%) [33].
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2.2. Data

2.2.1. Satellite-Derived Soil Moisture

For this study, we used the ESA CCI soil moisture product version 4.5 (Table 1) that has gathered
historical records from active and passive remote sensors [11,18,20]. This product provides soil moisture
estimates at 0.25 degrees of spatial resolution on a daily basis, from November 1978 to December
2018 [20]. Active and passive sensors are combined by means of a weighted mean, being proportional
to the signal-to-noise ratio (SNR) [20]. These ratios are estimated using triple collocation analysis,
which is a method that estimates random error variances of three collocated datasets of soil moisture
estimates [21]. In areas where no triple collocation analysis estimates are available, soil moisture values
are estimated using a polynomial regression between the signal-to-noise ratios [20].

Table 1. Main characteristics of ESA CCI soil moisture version 4.5 [20].

Title ESA CCI Soil Moisture Version 4.5

Release date October 2019

Available products
Active
Passive

Combined

Scatterometer sensors used

SMMR
SSM/I
TMI

AMI WS
ASCAT

Radiometer sensors used

Windsat
AMSR-E
AMSR2
SMOS

Available time span November 1978 to December 2018 (Combined product)
August 1991 to December 2018 (Active product)

The ESA CCI product was developed in collaboration with Vienna University of Technology
(TU Wien) and focuses on the use of data derived from C-band scatterometers, such as European
Remote Sensing Satellites (ERS-1/2) and METOP, as well as the use of data from multi-frequency
radiometers such as the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor
Microwave Imager (SSM/I), Microwave Imager (TMI), Advanced Microwave Scanning Radiometer
(AMSR-E), and Windsat [3]. These sensors are characterized for the suitability for soil moisture
retrieval [3].

Daily soil moisture global records from the ESA CCI product were acquired and then cropped to
the region of interest. Daily estimates were merged into monthly soil moisture spatial layers using
mean and median values; in this way, we tackled the lack of daily coverage in areas out of the satellites’
swath. Monthly mean values initially reduced the number of gaps in daily products but still provided
reliable information to identify spatial patterns and trends in our study period. These values then were
used to explore their relationship with different geophysical covariates (Supplementary Material S1).
Monthly values can describe soil moisture variability over a few weeks due to soil moisture memory
effects, as water content derived from sudden excessive rainfall or lack of water onset can generate
wetness or dryness conditions that might last for a couple of weeks [2].

An important step in preparing the soil moisture data for analysis is identifying the most relevant
summary statistics, such as the mean or median. The median value is more useful when data are
concentrated on a brief period of the month (because of long data gaps) with an uneven distribution of
data [34]. However, mean monthly soil moisture values showed higher correlation with the tested set
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of geophysical covariates (Supplementary Material S1). For our region of interest, Figure 2 shows the
spatial distribution and number of soil moisture gaps (ESA CCI soil moisture version 4.5) during the
study period (January 2000 to September 2012) where no mean values were calculated due to a lack of
valid pixels. A pixel is considered valid when soil moisture estimates are available from the ESA CCI
product over the region of interest. Figure 3 shows the number of gaps per monthly layer, regarding
741 pixels of 0.25 × 0.25 degrees in our region of interest.
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2.2.2. Soil Moisture Covariates

For RK and GLM gap-filling approaches, we explored the relationships between soil moisture and
some geophysical variables. Monthly layers were generated for precipitation, atmospheric temperature,
and static values of soil texture and the topographic wetness index (TWI). These selected variables are
known to work as drivers for water input in soil [2,3].

Meteorological data were acquired at 1-km spatial resolution monthly layers produced by the
Daily Surface Weather and Climatological Summaries (DAYMET) [35]. Total monthly precipitation
and monthly averages of minimum and maximum air temperature raster layers from January 2000 to
September 2012 were cropped to the region of interest, projected to the WGS84 Lat.–Long. coordinate
system, and resampled to 0.25 degrees by means of the nearest neighbor method (ngb) [36].

Soil texture was obtained from the US soil survey geographic database [37], and we classified all
classes into four general categories based on the texture triangle from the US Department of Agriculture
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(USDA) [38]: coarse, medium, medium fine, and fine. Soil texture then was resampled to 0.25 degrees
resolution using ngb [36]. We calculated TWI using SAGA GIS [39] with a digital elevation model
at 250 meters resolution [27] and then resampled the output to 0.25 degrees using ngb [36]. Detailed
information on the definition of geophysical variables for this work and their further processing are
given in the Supplementary Material S1.

2.2.3. Validation Data

In order to establish a reference value that describes the spatial distribution pattern of soil
moisture over our region of interest, we acquired records from the North American Soil Moisture
Database (NASMD). NASMD provides the densest possible soil moisture network that integrates
field measurements across North America [15]. By 2015, the NASMD had integrated 33 observation
networks and two short-term soil moisture campaigns, providing ground-truth data for over 1800
observation sites in the USA, Canada, and Mexico [15]. Some of the densest regional networks
integrated by NASMD offer soil moisture data in our region of interest (e.g., MESONET), and records at
5-cm depth, where the soil layer closely interacts with the atmosphere and it is sensed by satellites [40].
We extracted all information available from the NASMD over our region of interest that comprised
records at 5-cm depth, from January 2000 to September 2012. Finally, we transformed these data to
georeferenced point layers to be integrated in our ground-truth validation approach.

2.3. Gap-Filling Methods

Our first two gap-filling approaches were based on kriging interpolation (OK and RK). These
techniques lead to high uncertainty over areas with very large continuous spatial gaps because they
rely on the spatial autocorrelation of available data. Consequently, we also tested a third approach
based on GLM to test the relationship between soil moisture and geophysical covariates. We clarify
that the GLM approach does not depend on the spatial autocorrelation of available data.

The OK interpolation strategy depends solely on the separation distance between sampled
locations and not on an absolute position [29]. This offers a feasible strategy to fill spatial gaps in
areas where no other information is available to be included in similar interpolation methods such as
cokriging or regression kriging. This is the most popular among all kriging methods, as it works in
almost any situation and its assumptions are easily filled [29].

Regression kriging also depends on the spatial location of soil moisture values but incorporates the
location of information from covariates as well [27]. Regression kriging yields to a better representation
of the spatial patterns depicted by the covariates known as be correlated with the response variable [30].

Generalized linear models (GLMs), as an alternative approach, represent multivariate regression
models [41]. In this approach, we assume linear relationships between the dependent variable (soil
moisture) and the predefined covariates (precipitation, minimum air temperature) before considering
relationships that are more complex. These relationships have also been explored in previous studies
of soil moisture derived from field measurements, integrating predictors such as vegetation indices,
precipitation, and temperature [42,43]. However, GLM represents an approach that can be applied to
satellite-derived soil moisture estimates to fill spatial gaps over large areas.

Soil moisture spatial-gaps in the region of interest are not always sufficient to test interpolation
methods, as in some months there are no gaps over the region of interest. Thus, we decided to randomly
remove valid data from each soil moisture monthly layer as well as their correspondent locations on
the geophysical covariates layers. Therefore, OK, RK, and GLM were performed on 100%, 75%, and
50% of available valid pixels in each month, similar to gap-filling analyses in previous studies [23].

The overall process for soil moisture prediction (Figure 4), derived from the proposed modeling
techniques, was evaluated using cross-validation and ground-truth data from the NASMD available
from January 2000 to September 2012. An extensive description of the workflow and a sample process
for one month are provided in the Supplementary Material S2.
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ground-truth validation is also described.

2.3.1. Ordinary Kriging

OK was performed using the AutoMap package developed for the R statistical platform [44]. By
means of the autofit-variogram tool, the best-fitted variogram model was automatically selected to
generate independent predictions over each month. Five different variogram models (i.e., spherical,
exponential, Gaussian, Matern and Stein’s parameterization) were evaluated, and the one with the
smallest residual sum of the squares was selected [44]. The prediction of values at unsampled locations
is the linear combination of N variables, as expressed in Equation (1):

Z(u) =
N∑

i=1

λi Z(ui) (1)

where λi represents the original weighted values. Weights are calculated as a function of the distance
between sampled and unsampled locations to be predicted. The weight sum must be equal to 1, thus
estimations fulfill the unbiasedness requirement [45].

Derived from OK spatial interpolation, predicted values as well as their standard errors were
obtained for each month, derived in three different cases from 100%, 75%, and 50% of available valid
pixels. We applied 10-fold cross-validation [44] to OK outputs for the above-mentioned percentages
of valid pixels using autoKrige.cv [44]. Finally, we assessed the spatial dependence found in each
monthly layer using the nugget–sill ratio. Ratios of at most 0.25 represented strong spatial dependence;
between 0.25 and 0.75, moderate spatial dependence; and at least 0.75, weak spatial dependence, as
previously reported [46].
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2.3.2. Regression Kriging

RK was performed with the R package GSIF [47], using the function fit.regModel. Individual
regression models were fitted to each monthly layer, incorporating monthly precipitation and minimum
temperature data from DAYMET [35]. We combined regression on soil moisture data and the preselected
geophysical covariates with simple kriging of the regression residuals [31]. GSIF tools allowed us
to select different regression techniques (e.g., random forest, GLM, quantile regression forest). We
selected GLM to make RK a hybrid approach between our two other proposed methods (i.e., OK and
GLM). In RK, a spatial trend is assumed instead of stationarity across the region of interest. Based
on the residuals of the identified trend in regression analysis, spatial interpolation is applied through
OK. Prediction over unsampled locations is equal to the estimated trend plus the error prediction as
expressed in Equation (2):

Z(x) = m(x) + ε(x) (2)

where Z(x) is the target variable to be predicted, m(x) is the trend (explanatory power) identified from
the relationship with geophysical covariates, and ε(x) represents the stochastic residuals. Unlike OK,
in RK, the trend is no longer constant, but is a function of the explanatory variables [48].

As we did for OK, we derived predicted values and associated error based on 153 months, using
100% of available data, as well as 75% and 50%; this yielded 459 predicted soil moisture layers. Then,
10-fold cross-validation was performed, and nugget–sill ratios were calculated as in the OK approach
to identify the level of spatial dependence [46] depicted in each monthly layer.

2.3.3. Generalized Linear Models

For GLM, we first tested the overall correlation between soil moisture (monthly mean and median
values) and each one of the geophysical covariates (monthly precipitation, monthly maximum and
minimum air temperature, soil texture, and TWI). Secondly, we extracted a time series for each valid
pixel along the 153 monthly soil moisture layers and tested the pixel-individual correlation with each
one of the covariates. Finally, we calculated the correlation coefficients of all valid pixels available for
each monthly layer with the corresponding temporal layer for each one of the covariates. Based on
these analyses, we established that the spatial values of mean monthly precipitation and minimum air
temperature were the variables with the highest absolute correlation coefficient with mean monthly
soil moisture (Supplementary Material S1). These geophysical covariates were used to predict soil
moisture based on GLM, as shown in Equation (3):

Yi = β0 + β1Xi1 + β2Xi2 + εi (3)

where Yi represents the response variable, Xi1 and Xi2 represent the predictor variables, β0, β1 and β2

are the parameters of the model, and εi is the error term [41].
Predictions were also performed for the three predefined subsets (100%, 75%, and 50%) of available

valid data over the region of interest in each month of the study period. We used the GLM tool from the
caret statistical package in R [49] to generate independent models for each month, as well as a 10-fold
cross-validation process. For this purpose, we used 75% of the data in each independent monthly
dataset as training data and 25% as test data.

2.4. Ground-Truth Validation

2.4.1. Reference Correlation between NASMD and Satellite-Derived Soil Moisture

First, we established a reference correlation value between original satellite-derived soil moisture
and data from the NASMD. We extracted all available data from NASMD over the region of interest
for each month during the study period and calculated the mean monthly value of soil moisture at
5-cm depth for each field station, thus capturing as much variation as possible from the upper soil
layers sensed by the satellites. We tested the correlation between satellite-derived values over each
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spatially correspondent pixel with soil moisture information derived from the NASMD. This process
was performed over the layers using 100%, 75%, and 50% of available valid pixels. When there was
more than one NASMD station within one corresponding pixel of satellite-derived soil moisture,
every station value from within the pixel area was accounted for in the correlation analysis with the
satellite data. Overall, we used data from 157 stations in the months with the highest availability of
field soil moisture records. The use of all NASMD available stations allowed us to retain the overall
observation-estimation pairs. Figure 5 shows the distribution of available NASMD stations over the
region of interest for the entire study period. Figure 6 shows the number of NASMD stations used in
each month to validate the outputs of our models. Across the entire study period, all available stations
provided 19,007 points to compare satellite-derived soil moisture estimates and ground-truth data.
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2.4.2. Correlation between Predicted Soil Moisture and NASMD

In order to validate our soil moisture predicted values, we looked for the closest similar correlation
coefficient from our outputs and the NASMD to the correlation coefficient between the original ESA
CCI estimates with NASMD, thus repeating the same value of a satellite estimate or predicted value
for each field station that is located within the same cell. In this way, we take advantage of as much
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validation information as possible over our region of interest. We followed the same approach as
in Section 2.4.1 to evaluate the soil moisture values derived from the modeling approaches with
the NASMD. This allowed us to evaluate 19,411 pixels where we calculated the overall correlation
coefficient (all months) and monthly correlation coefficients.

3. Results

3.1. OK and RK Models Selected for Soil Moisture Predictions

Variograms using Stein’s parameterization [50] were the most common in OK across the 459
monthly layers (n = 402). Exponential (n = 53), spherical (n = 3), and Gaussian (n = 1) were used in a
substantially lower number of predicted soil moisture layers. RK was based on exponential variogram
models in all cases (459 monthly layers), regardless the percentage of valid data used (100%, 75%,
or 50%). We found strong spatial dependence in 416 of the monthly layers (nugget–sill < 0.25) and
moderate spatial dependence in the remaining 43 layers (0.25 < nugget–sill < 0.75) when using OK
(Figure 7a). On the other hand, we found strong spatial dependence in 253 monthly layers out of 459
and moderate spatial dependence in 206 when using RK. The RMSE for predicted soil moisture layers
with OK showed that Stein’s parameterization [50] and spherical models had smaller minimum values.
However, we found that the RMSE values were more distributed in Stein’s parameterization than
in spherical models. RK with exponential models had a higher RMSE value than OK, but the error
distribution was less spread, with just a few extreme values (Figure 7b).
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Figure 7. (a) Most fitted variogram models used to predict soil moisture; 459 models generated for
both OK and RK in 153 monthly layers derived from all percentages (100%, 75%, and 50%) of valid
pixels; (b) Boxplots of the RMSE for each predicted layer using the selected variograms.

3.2. Cross-Validation of Predicted Values

Overall, the three models had good cross-validation results, but OK and RK had consistently
higher correlation coefficients and lower RMSE (Table 2). However, OK had slightly better performance
than RK when a different percentage of available data was used.

Table 2. Cross-validation outputs for OK, RK, and GLM, and all predicted and observed values along
the 153 monthly layers.

Method Percentage of Data Correlation RMSE

OK
100% 0.886 0.029 m3m−3

75% 0.886 0.029 m3m−3

50% 0.886 0.029 m3m−3

RK
100% 0.886 0.029 m3m−3

75% 0.878 0.030 m3m−3

50% 0.869 0.031 m3m−3

GLM
100% 0.711 0.044 m3m−3

75% 0.709 0.044 m3m−3

50% 0.709 0.044 m3m−3
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Additional cross-validation between predicted and observed values by month (January to
December) was reported using Taylor diagrams (Figure 8), which simultaneously report the correlation
coefficient, normalized standard deviation, and centered root mean squared error [51]. The Taylor
diagrams [52] consistently showed that OK and RK had a higher correlation coefficient and lower
centered RMSE and standard deviations, and consequently, were closer to the observations. These
results were consistent regardless of the percentage of available data used. Overall, OK had a consistent
correlation coefficient of 0.886, whereas RK ranged from 0.869 to 0.886 as the percentage of data to
model values was lower. Finally, GLM values ranged between 0.711 to 0.709 with a lower percentage of
valid data. Centered RMSE values between observed and predicted values with OK were consistently
0.029, RK ranged between 0.029 and 0.031, and GLM values were 0.044 m3m−3 in all cases.
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3.3. Ground-Truth Validation with NASMD

We found an overall correlation coefficient of r = 0.523 and an RMSE of 0.093 m3m−3 between the
original ESA CCI data and the available NASMD stations across the study period (153 months). These
values served as a baseline and showed that values generated using OK with 100% and 75% of valid
data were closer to the reference than those using RK and GLM (Table 3).

Table 3. Overall correlation coefficients between all ground-truth validation points and the CCI soil
moisture product, as well as gap-filled outputs. Percentages show the data subset used to predict soil
moisture values over the region of interest.

Method Percentage of Data Correlation RMSE

CCI 100% 0.558 0.069 m3m−3

OK
100% 0.579 0.067 m3m−3

75% 0.575 0.067 m3m−3

50% 0.569 0.067 m3m−3

RK
100% 0.582 0.067 m3m−3

75% 0.582 0.067 m3m−3

50% 0.571 0.067 m3m−3

GLM
100% 0.475 0.070 m3m−3

75% 0.475 0.070 m3m−3

50% 0.475 0.070 m3m−3

We explored the temporal dynamics of the correlation coefficients and RMSEs by month throughout
the study period. Figure 9 shows the R-squared values between the monthly correlation coefficients
from ground-truth data and CCI products and the coefficients from ground-truth data and predicted
values by our proposed methods (OK, RK, GLM). RMSE is reported in the same manner (Figure 9). OK
correlation coefficients using 100% of available valid data with ground-truth data are the closest to the
correlation coefficients used as a reference between validation data and the CCI product (Figure 9a).
However, RK correlation coefficients show higher consistency when compared with the reference
correlation coefficients across different percentages of available valid data (Figure 9b). In contrast,
GLM outputs show lower general R-squared values between the outputs and the reference and are
loosely fitted to the regression line (Figure 9c). In a similar way, R-squared values between RMSE from
the CCI product and ground-truth data, as well RMSE from model outputs and ground-truth data,
show closer relation for OK (Figure 9a) and RK (Figure 9b) outputs rather than for GLM (Figure 9c).
Nevertheless, OK shows slightly better results than RK.
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CCI soil moisture product shows that OK and RK approaches better reproduce the spatial pattern 
captured by satellite estimates. Figure 10a shows the mean soil moisture estimates from the ESA CCI 
product version 4.5 derived from 153 monthly layers in our region of interest, without any gap-filling 
technique. In comparison to the original spatial distribution of soil moisture, OK visually shows more 
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Figure 9. R-squared values showing the concordance between the reference validation (CCI-NASMD)
and the validation of proposed gap-filling methods with NASMD. Each point represents one month,
using 100%, 70%, or 50% of the available data, with the percentage indicated by the shape used. (a)
Validation of ordinary kriging with NASMD, with correlation on the left and RMSE on the right; (b)
Validation of regression kriging with NASMD, with correlation on the left and RMSE on the right; (c)
Validation of GLM with NASMD, with correlation on the left and RMSE on the right. Regression lines
between correlated datasets are shown in each plot.

3.4. Spatial Gap-Filling Performance of Modeling Methods

The comparison between the outputs of our modeling methods in contrast with the original ESA
CCI soil moisture product shows that OK and RK approaches better reproduce the spatial pattern
captured by satellite estimates. Figure 10a shows the mean soil moisture estimates from the ESA CCI
product version 4.5 derived from 153 monthly layers in our region of interest, without any gap-filling
technique. In comparison to the original spatial distribution of soil moisture, OK visually shows more
similar patterns, independent of the percentage of valid pixels used for modeling (Figure 10b–d).
RK visually shows very similar spatial patterns (Figure 10e–g) as OK. However, both methods, OK
and RK, are challenged by extreme low and high values included in the original satellite product.
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Conversely, GLM shows a lower performance in reproducing soil moisture spatial patterns, regardless
of the percentage of valid pixels included in the modeling process (Figure 10h–j).
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Figure 10. Mean soil moisture values during the study period (January 2000–September 2012) over the
region of interest. (a) Mean values of original ESA CCI soil moisture estimates; no gap-filling methods
applied; (b) Soil moisture mean values modeled using OK and 100% of available valid data; (c) Soil
moisture mean values modeled using OK and 75% of available valid data; (d) Soil moisture mean
values modeled using OK and 50% of available valid data; (e) Soil moisture mean values modeled
using RK and 100% of available valid data; (f) Soil moisture mean values modeled using RK and 75%
of available valid data; (g) Soil moisture mean values modeled using RK and 50% of available valid
data; (h) Soil moisture mean values modeled using GLM and 100% of available valid data; (i) Soil
moisture mean values modeled using GLM and 75% of available valid data; (j) Soil moisture mean
values modeled using GLM and 50% of available valid data.

Finally, we found that the density distribution describing the mean soil moisture values during
the study period in the original ESA CCI was better reproduced by the OK and RK approaches. The
performances of OK and RK were similar, either using 100%, 75%, or 50% of available valid data
(Figure 11a,b). In contrast, the GLM density distribution substantially deviated from the values of the
original ESA CCI product (Figure 11c).
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Figure 11. Density distribution of mean soil moisture values during the study period for 741 pixels
over the region interest. (a) ESA CCI and modeled data using OK with 100%, 75%, and 50% of available
valid data; (b) ESA CCI and modeled data using RK with 100%, 75%, and 50% of available valid data;
(c) ESA CCI and modeled data using GLM with 100%, 75%, and 50% of available valid data.

4. Discussion

Our results showed that the OK, RK, and GLM techniques could be used as alternative approaches
to gap-filling in soil moisture data derived from the ESA CCI product version 4.5. Our proposed
methods can be used either in conjunction with geophysical covariates such as precipitation and
temperature or using solely the spatial distribution of soil moisture estimates derived from the ESA
CCI product. Furthermore, our results show that spatial patterns and temporal relations between
satellite and ground-truth data are better preserved by using OK and RK, but we show the applicability
of the GLM approach. The benefit of using different approaches would depend on the spatial structure
of the missing data and the availability of covariates for applying OK, RK, or GLM approaches.

Precipitation and minimum air temperature were the strongest correlated environmental covariates
with soil moisture (Supplementary Material S1). These relationships are likely influenced by the grid
size (0.25 degrees), as the spatial influence of precipitation and air temperature represents regional
and mesoscale climatic patterns [53]. Previous research showed that increasing spatial resolution
yields more detail in the meteorological information but limited impacts on its forecasting skill [54].
It is known that from the plot to watershed scale, soil texture and topography are highly correlated
with soil moisture [2,3], but these relationships may change at the coarse scale of the ESA CCI soil
moisture product. Thus, these features were not included as geophysical covariates in our GLM or
RK approaches.

Overall, our results provide support for OK, RK, and GLM as techniques to gap-fill spatial missing
values of satellite-derived soil moisture products. However, overall performance indicates that OK and
RK represent more reliable methods for soil moisture gap-filling in comparison with GLM. Previous
studies have compared the advantages of OK and RK for interpolation of spatial soil moisture and
other soil properties [27,55–58] but most analyses have been performed for spatial interpolation of soil
properties based on field data [26,58–60]. OK has been regarded as an unbiased linear estimator [45],
and our results support it as a feasible approach due to the spatial scale of the original ESA CCI
estimates (0.25 degrees) under the gap scenarios tested in this work. At this coarse scale, soil moisture
values represent a quasi-continuous matrix that meets basic assumptions of kriging analysis such as
stationarity [45] and spatial dependence [58]. OK also incorporates spatial autocorrelation by using
the variogram and providing the error variance estimation from predicted values, offering some
advantages over deterministic methods such as inverse distance weighting (IDW), which may create
noisy fields in interpolation processes. Similar to other kriging methods, OK is an exact interpolator,
which ensures that values at sampled locations are exactly preserved. Thus, we aim to fill the spatial
gaps by modeling the entire region of interest, while preserving original values where data existed
previously. Additionally, OK performs value predictions based solely on spatial data distribution,
offering a suitable approach in cases where no well represented covariates datasets are available over
the region of interest, and it compensates for data clustering [61]. Additional evidence in support
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for OK is the fact that the nugget–sill ratio was less than 0.25 in 99% of the fitted variograms, which
implies strong spatial dependence as discussed elsewhere [46].

RK on the other hand has been widely used to incorporate covariates to build a regression model
with soil properties [27,62–64]. Whereas some authors do not find a better performance of OK in
comparison with RK for the prediction of soil properties [27,62,63], our results support the use of RK,
as it performed similarly to OK in our region of interest. As a hybrid method, RK has the advantage of
incorporating spatially explicit information known to be correlated to the response variable [27,65].
The explicit correlation between soil properties and geophysical covariates provided good results when
using terrain parameters [62,66,67] or other variables such as bare soil from remotely sensed sources,
crop yield, temperature, and precipitation data [64,68] as predictors. Other authors highlight that
RK performance depends on the relationships between soil and environmental factors [63,65]. This
could explain the similar performance between OK and RK in our region of interest, as our selected
covariates seem to account for similar influence at the coarse spatial scale of the ESA CCI product.
Based on the spatial dependence depicted by the nugget–sill ratio in the fitted variograms using RK,
we postulate that regardless of the similar performance using OK, our selected covariates did not
have a consistent strong spatial dependence. Based on nugget–sill ratios, RK showed strong spatial
dependence in 55% of the fitted variograms, while 45% showed moderate dependence when using
the thresholds previously discussed [46]. Finally, it is possible that RK may not accurately describe
the spatial patterns of soil properties when using coarse resolution geophysical covariates, but these
covariates might help to improve prediction accuracy [30]. Thus, the incorporation of covariates may
depend on the actual spatial dependence observed when modeling variograms using both OK and
RK techniques.

The GLM approach allowed us to explore the most evident relationships between soil moisture
in the upper layer of soil and the geophysical covariates that we found to be better correlated
(Supplementary Material S1). We followed a parsimonious principle by means of the GLM technique,
applying the simplest model with the fewest assumptions before assuming relationships that are more
complex. This parsimonious reasoning and its applications to multivariate models have been explored
in other studies [69].

The evaluation of our three approaches (OK, RK, and GLM) by means of cross-validation regarding
their prediction capacity for actual satellite data shows similar correlation coefficients as those reported
by [59] in the spatial interpolation of soil moisture and similar RMSE as reported by [58] for other soil
properties. The cross-validation technique has been commonly used in other similar studies [58,59] and
offers initial insights into modeling techniques without considering ground-truth data for validation.
Our cross-validation strategy showed that OK and RK better predicted soil moisture values compared
with GLM, in spite of pixel removal at different percentages. Regarding cross-validation for monthly
grouped values, OK, RK, and GLM did not show an evident bias due to seasonality, as monthly
correlation coefficients and RMSE values systematically describe the same patterns found when using
data from the entire study period in a single dataset.

In spite of cross-validation results, ground-truth validation was performed to evaluate the
suitability of each method (OK, RK, and GLM) to predict missing values in the ESA CCI product. We
acknowledge the conceptual challenge of this data matching and the need of balancing ground-truth
information in order to be representative of satellite-derived estimates. Representativeness challenges
in validation of the ESA CCI product have been also acknowledged previously [40]. Two main problems
are identified [40]: (1) Satellite sensors retrieve ground information from the upper soil layer (0.5–5-cm
depth); this layer is directly exposed to the atmosphere; therefore, its physical characteristics may
differ from the information provided by soil moisture sensors placed at 5-cm depth or deeper. Thus,
satellite estimates represent a more variable soil layer, different from soil at deeper layers. (2) Even
a spatially extensive soil moisture network cannot cover any area widely enough to provide scaling
representativeness between point-scale measurements and satellite estimates. Field measurements
depict soil characteristics in the range of a few square decimeters, while satellite products commonly
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cover a few kilometers per pixel (~27 km pixel sizes in the ESA CCI product). Additionally, other
authors suggest the soil moisture representativeness, on a grid-scale domain, may be described based
on three different methods [30]: (1) empiric methods, averaging all points within each single grid-cell;
(2) upscaling methods based on time information; and (3) spatial interpolation by means of kriging
methods to assign individual values to each center point in the grid-cell domain. In this regard, our
work does not aim to provide strategies of accuracy assessment between field measurements and
satellite estimates as explored by [70]. We seek to reproduce the spatial soil moisture patterns expressed
by the satellite-derived soil moisture and its actual correlation with ground-truth data with the ultimate
goal to gap-fill missing information.

As proposed by [57], the selection of reliable ground-truth stations and the definition of core
validation sites (CSV) represent a step forward in the evaluation of remotely sensed soil moisture.
However, regarding the limited availability of ground stations providing soil moisture information,
we integrated all available ground-truth data for our region of interest instead of defining CSV. In this
way, we took advantage of all available field soil moisture records over the region of interest. This
approach might introduce uncertainty, as neighboring stations within the same 0.25 degrees pixels in
some cases could be affected by different moisture conditions in large areas. However, as our approach
aims to reproduce the spatial distribution of soil moisture showed by the satellite estimates based on
the correlation with ground-truth data, we aim to retain all the variation offered by NASMD stations.

In order to define the best-tested soil moisture prediction model to fill the gaps in the ESA
CCI product, version 4.5, correlation found with ground-truth data was set as a reference for our
proposed models in every month of the study period. This yielded a more specific way to validate
our proposed methods regarding different soil moisture estimate conditions in every month of the
ESA CCI product. Given that our research aims to complete spatial information of ESA CCI, reference
correlation coefficients helped us to define which model best reproduces the spatial pattern of the
original product. OK and RK showed better results than GLM, as we found the higher the number of
valid pixels to shape the variogram parameters, the closer the correlation coefficient to the reference.
Furthermore, OK and RK performance does not significantly decrease even though valid pixels are
artificially removed. On the other hand, GLM correlation with ground-truth data showed less similar
values to the reference, independent of the percentage of valid pixels removed.

Given that the OK, RK, and GLM performance for our region of interest is not that different,
GLM can be an alternative approach in similar regions where satellite-derived soil moisture estimates
are spatially scarce or highly clustered, as GLM relies more on predictor availability than on spatial
distribution. Besides, when OK and RK do not meet the best requirements, GLM can use input data
from robust meteorological datasets [71,72] to obtain the geophysical covariates that we used in our
analysis. Based on the correlation coefficient between the ESA CCI soil moisture product and NASMD
ground-truth data, we found that OK and RK consistently better reproduce reference correlation
coefficients and RMSE values. Nevertheless, GLM correlation coefficients and RMSE values with
NASMD do not significantly decrease from the reference, which still makes this method an alternative
approach to gap-filling. Finally, the analysis of the mean soil moisture spatial patterns during the study
period showed that OK and RK outputs consistently better reproduced the spatial patterns in the
original ESA CCI product. This can be visually distinguished on the mean soil moisture maps, as well
as in the density distribution of the original product in comparison with OK, RK, and GLM outputs.

We acknowledge that OK and RK represent the best-tested methods for soil moisture prediction
and gap-filling of the ESA CCI product over our region of interest, based on the analysis of the monthly
mean values from January 2000 to September 2012. The application of these methods in other regions
and under different conditions should consider availability and distribution of soil moisture estimates
since in large discontinuous areas, stationary can be wrongly assumed, yielding high uncertainty in
predicted values. We recognize the need to explore RK models at finer spatial scales, where linear
relationships with geophysical covariates such as those explored in the Supplementary Material S1
might be stronger. In future research, it is necessary to explore ESA CCI gap-filling over larger areas
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such as the conterminous United States, where well spatially represented meteorological datasets
are available and different scenarios of gaps distribution can be tested. Daily data must be also
incorporated, as this is the temporal resolution in which original soil moisture estimates are delivered,
thus opening the possibility to operationally fill the gaps in the original soil moisture estimates provided
by the SA CCI soil moisture product (version 4.5). These implementations represent an upscaling
need in computational capacities; therefore, high-performance computing (HPC) techniques must
be considered.

5. Conclusions

For the region of interest, linear geostatistics techniques offer a suitable approach to fill the soil
moisture spatial gaps of the ESA CCI product (version 4.5). Although the current version of the product
follows different strategies to fill data gaps, our research highlights the incorporation of the spatial
distribution of soil moisture, as well as the use of geophysical covariates to model missing values.
Selected geophysical covariates to model soil moisture in this study, i.e., precipitation and minimum air
temperature, can be easily integrated due to their historical availability across larger regions, e.g., the
conterminous United States (CONUS). The selected region of interest provided a spatially extent set of
valid pixels from January 2000 to September 2012, which allowed us to test our proposed methods
under different scenarios of gap presence, due to natural conditions as well as artificial pixel removal.

The ordinary kriging method does not need to use any additional covariates, as it is built upon
the spatial distribution of soil moisture data; on the other hand, RK benefits from relationships with
geophysical covariates such as the ones explored in this work. However, these methods can be
inconclusive over areas where reference data are highly sparse or clustered (i.e., data scenarios where
we found weak spatial structure for satellite soil moisture). Generalized linear models, on the contrary,
might offer an alternative to spatially model soil moisture and fill the gaps in the ESA CCI product,
though their performance was lower than that of OK and RK in our region of interest. Soil moisture
at a coarse scale can be significantly correlated with covariates such as precipitation and minimum
air temperature, which can be easily inputted by predicting models over most of CONUS and other
regions around the world.

Derived from cross-validation for each method and specific percentage of available data, the three
proposed methods—ordinary kriging, regression kriging, and generalized linear models—showed
a significant prediction performance with respect to soil moisture data. However, as we intended
to reproduce the soil moisture spatial patterns of the ESA CCI product and its relationship with
ground-truth soil moisture data, we considered field validation as the best approach to find the most
suitable gap-filling method.

Besides offering information for a wide variety of applications by itself, spatially complete soil
moisture information covering large areas can also be related to point-based soil moisture networks to
jointly monitor ecological processes. Thus, gap-filled data can yield a better understanding of the role
of soil moisture in water and carbon cycles, with important implications in plant and soil respiration,
or plant growth, therefore influencing our capacity to predict climate change signals in soil moisture
estimates from the regional to the global scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/4/665/s1,
Supplementary Materials S1 and S2 are submitted with this manuscript. Monthly gap-filled soil moisture layers
derived from the approaches proposed in this work can be acquired at Hydroshare, https://bit.ly/31yxfQm,
https://www.hydroshare.org/resource/f0091cf90bcc4487bf401ca19783d1eb/.
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