Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
Abstract
:1. Introduction
2. Methodology
- (1)
- Initialization: the initial population consists of a random generation of N number of X individuals. Each individual (also called a chromosome) encodes the variables of the problem:
- (2)
- Assessment: formulate the objective function to calculate the fitness values of the population in the current generation.
- (3)
- Termination: end up at termination conditions.
- (4)
- Genetic manipulation:
- -
- Selection;
- -
- Crossover operator;
- -
- Mutation operator.
- (5)
- Replacement: replace the worst individuals with the new children.
- (6)
- Go back to step (2), and count G = G + 1.
3. Results
3.1. Case Study I: Multi-Frequency GPR Data Fusion to Characterize Rammed Layers within an Ancient Wall
3.2. Case Study II: Multi-Frequency GPR Data Fusion to Characterize Archaeological Features within a Natural Stratigraphic Sequence
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Forte, E.; Levi, S.T.; Pipan, M.; Tian, G. Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. J. Archaeol. Sci. 2015, 54, 77–85. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M. Texture attribute analysis of GPR data for archaeological prospection. Pure Appl. Geophys. 2016, 173, 2737–2751. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar] [CrossRef]
- Leucci, G.; De Giorgi, L.; Ditaranto, I.; Miccoli, I.; Scardozzi, G. Ground-Penetrating Radar Prospections in Lecce Cathedral: New Data about the Crypt and the Structures under the Church. Remote Sens. 2021, 13, 1692. [Google Scholar] [CrossRef]
- Malagodi, S.; Orlando, L.; Piro, S.; Rosso, F. Location of archaeological structures using GPR method: Three-dimensional data acquisition and radar signal processing. Archaeol. Prospect. 1996, 3, 13–23. [Google Scholar] [CrossRef]
- Masini, N.; Capozzoli, L.; Romano, G.; Sieczkowska, D.; Sileo, M.; Bastante, J.; Victoria, F.A.; Ziolkowski, M.; Lasaponara, R. Archaeogeophysical-based approach for inca archaeology: Overview and one operational application. Surv. Geophys. 2018, 39, 1239–1262. [Google Scholar] [CrossRef]
- Soldovieri, F.; Orlando, L. Novel tomographic based approach and processing strategies for GPR measurements using multifrequency antennas. J. Cult. Herit. 2009, 10, e83–e92. [Google Scholar] [CrossRef]
- Udphuay, S.; Paul, V.L.; Everett, M.E.; Warden, R.B. Ground-penetrating radar imaging of twelfth century Romanesque foundations beneath the thirteenth century Gothic abbey church of Valmagne, France. Archaeol. Prospect. 2010, 17, 199–212. [Google Scholar] [CrossRef]
- Utsi, E.C.; Colls, K.S. The GPR investigation of the Shakespeare family graves. Archaeol. Prospect. 2017, 24, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Tian, G.; Forte, E.; Pipan, M.; Wang, Y.; Li, X.; Shi, Z.; Liu, H. Advances in GPR data acquisition and analysis for archaeology. Geophys. J. Int. 2015, 202, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L.B.; Daniels, J.M.; Haws, J.A.; Benedetti, M.M. An Upper Palaeolithic landscape analysis of coastal Portugal using ground-penetrating radar. Archaeol. Prospect. 2013, 20, 45–51. [Google Scholar] [CrossRef]
- Ruffell, A.; Geraghty, L.; Brown, C.; Barton, K. Ground-penetrating radar facies as an aid to sequence stratigraphic analysis: Application to the archaeology of Clonmacnoise Castle, Ireland. Archaeol. Prospect. 2004, 11, 247–262. [Google Scholar] [CrossRef]
- Goodman, D.; Novo, A.; Morelli, G.; Piro, S.; Kutrubes, D.; Lorenzo, H. Advances in GPR imaging with multi-channel radar systems from engineering to archaeology. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Charleston, SC, USA, 10–14 April 2011; pp. 405–411. [Google Scholar]
- Gustavsen, L.; Stamnes, A.A.; Fretheim, S.E.; Gjerpe, L.E.; Nau, E. The Effectiveness of Large-Scale, High-Resolution Ground-Penetrating Radar Surveys and Trial Trenching for Archaeological Site Evaluations—A Comparative Study from Two Sites in Norway. Remote Sens. 2020, 12, 1408. [Google Scholar] [CrossRef]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzweiser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Trinks, I.; Johansson, B.; Gustafsson, J.; Emilsson, J.; Friborg, J.; Gustafsson, C.; Nissen, J.; Hinterleitner, A. Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeol. Prospect. 2010, 17, 175–186. [Google Scholar] [CrossRef]
- Bi, W.; Zhao, Y.; Shen, R.; Li, B.; Hu, S.; Ge, S. Multi-frequency GPR data fusion and its application in NDT. NDT&E Int. 2020, 115, 102289. [Google Scholar]
- Booth, A.D.; Endres, A.L.; Murray, T. Spectral bandwidth enhancement of GPR profiling data using multiple-frequency compositing. J. Appl. Geophys. 2009, 67, 88–97. [Google Scholar] [CrossRef]
- De Coster, A.; Lambot, S. Fusion of multifrequency GPR data freed from antenna effects. IEEE J. 2018, 11, 664–674. [Google Scholar] [CrossRef]
- Kohl, C.; Krause, M.; Maierhofer, C.; Wöstmann, J. 2D- and 3D-visualisation of NDT-data using data fusion technique. Mater. Struct. 2005, 38, 817–826. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, W.; Forte, E.; Tian, G.; Li, Y.; Pipan, M. Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform. Measurement 2020, 166, 108243. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, L. Permafrost subgrade condition assessment using extrapolation by deterministic deconvolution on multifrequency GPR data acquired along the Qinghai-Tibet railway. IEEE J. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Yuan, L.; Forte, E.; Lu, G.; Tian, G.; Pipan, M. Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection. Remote Sens. 2021, 13, 2804. https://doi.org/10.3390/rs13142804
Zhao W, Yuan L, Forte E, Lu G, Tian G, Pipan M. Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection. Remote Sensing. 2021; 13(14):2804. https://doi.org/10.3390/rs13142804
Chicago/Turabian StyleZhao, Wenke, Lin Yuan, Emanuele Forte, Guoze Lu, Gang Tian, and Michele Pipan. 2021. "Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection" Remote Sensing 13, no. 14: 2804. https://doi.org/10.3390/rs13142804
APA StyleZhao, W., Yuan, L., Forte, E., Lu, G., Tian, G., & Pipan, M. (2021). Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection. Remote Sensing, 13(14), 2804. https://doi.org/10.3390/rs13142804