Estimation of the Potential Achievable Solar Energy of the Buildings Using Photogrammetric Mesh Models
Abstract
:1. Introduction
2. Method
2.1. Point Cloud Feature Computing
2.2. Solar Potential Estimation
2.2.1. Direct Irradiance
2.2.2. Diffuse Irradiance
2.2.3. Hierarchical Shading Analysis
2.2.4. Sky Viewshed Analysis
3. Experimental Results
3.1. Study Area
3.2. Experimental Results
3.3. Validation by Comparison Analysis
3.3.1. Comparison with the Shadow in the Photo
3.3.2. Comparing with Other Method Calculation Results
3.3.3. Comparison with the Solar Irradiance Calculated by ArcGIS
3.3.4. Comparison with the Results Using LiDAR Data
3.4. Application and Analysis
3.4.1. Hourly Solar Irradiance Analysis
3.4.2. Daily Solar Irradiance Analysis
3.4.3. Monthly and Annual Average Solar Irradiance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, L.; Zhang, F.; Li, S.; Mao, J.; Xu, H.; Ju, W.; Liu, X.; Wu, J.; Min, K.; Zhang, X.; et al. Solar energy potential of urban buildings in 10 cities of China. Energy 2020, 196, 117038. [Google Scholar] [CrossRef]
- Lingfors, D.; Bright, J.; Engerer, N.; Ahlberg, J.; Killinger, S.; Widén, J. Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 2017, 205, 1216–1230. [Google Scholar] [CrossRef]
- Voegtle, T.; Steinle, E.; Tóvári, D. Airborne laserscanning data for determination of suitable areas for photovoltaics. ISPRS-J. Photogramm. Remote Sens. 2012, 36, 215–220. [Google Scholar]
- Yu, B.; Liu, H.; Wu, J.; Lin, W.-M. Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LiDAR data and a solar flux model: A case study of downtown Houston. Int. J. Remote Sens. 2009, 30, 4359–4385. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214. [Google Scholar] [CrossRef]
- Redweik, P.; Catita, C.; Brito, M. Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 2013, 97, 332–341. [Google Scholar] [CrossRef]
- Jakubiec, J.; Reinhart, C. A method for predicting city-wide electric production from photovoltaic panels based on LiDAR and GIS data combined with hourly DAYSIM simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Bayrakci, M.; Calvert, K.; Brownson, J. An automated model for rooftop PV systems assessment in ArcGIS using LiDAR. AIMS Energy 2015, 3, 401–420. [Google Scholar] [CrossRef]
- Lukac, N.; Seme, S.; Dežan, K.; Zalik, B.; Stumberger, G. Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data. Energy 2016, 107, 854–865. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating roof solar energy potential in the downtown area using a GPU-accelerated solar radiation model and airborne LiDAR data. Remote Sens. 2015, 7, 17212–17233. [Google Scholar] [CrossRef] [Green Version]
- Mansouri Kouhestani, F.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, M. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. IJEEE 2018, 10, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Zlatanova, S. Solar radiation over the urban texture: LiDAR data and image processing techniques for environmental analysis at city scale. In 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography; Springer: Heidelberg/Berlin, Germany, 2009; pp. 319–340. [Google Scholar]
- Catita, C.; Redweik, P.; Pereira, J.; Brito, M.C. Extending solar potential analysis in buildings to vertical facades. Comput. Geosci. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar energy potential assessment on rooftops and facades in large built environments based on LiDAR data, image processing, and cloud computing. Methodological background, application, and validation in geneva (Solar cadaster). Front. Environ. Sci. 2018, 4, 14. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Davey, K. Estimating geographical PV potential using LiDAR data for buildings in downtown San Francisco. Trans. GIS 2015, 19, 930–963. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, Y.; Tian, J.; Pan, Y. An Integrative approach for solar energy potential estimation through 3D modeling of buildings and trees. Can. J. Remote Sens. 2015, 41, 126–134. [Google Scholar] [CrossRef]
- Jochem, A.; Höfle, B.; Rutzinger, M. Extraction of vertical walls from mobile laser scanning data for solar potential assessment. Remote Sens. 2011, 3, 650–667. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Cheng, M.; Chen, Y.; Zai, D.; Wang, C.; Li, J. Solar potential analysis method using terrestrial laser scanning point clouds. IEEE J. Sel. Top. Appl. Earth Observ. 2017, 10, 1221–1233. [Google Scholar] [CrossRef]
- Liang, F.; Yang, B. Multilevel solar potential analysis of building based on ubiquitous point clouds. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–4. [Google Scholar]
- Qin, R.; Gruen, A. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images. ISPRS-J. Photogramm. Remote Sens. 2014, 90, 23–35. [Google Scholar] [CrossRef]
- Xiao, W.; Vallet, B.; Schindler, K.; Paparoditis, N. Street-side vehicle detection, classification and change detection using mobile laser scanning data. ISPRS-J. Photogramm. Remote Sens. 2016, 114, 166–178. [Google Scholar] [CrossRef]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sust. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Zhao, P. A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection. ISPRS-J. Photogramm. Remote Sens. 2019, 159, 198–219. [Google Scholar]
- Zhu, Q.; Wang, Z.; Hu, H.; Linfu, X.; Ge, X.; Zhang, Y. Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction. ISPRS-J. Photogramm. Remote Sens. 2020, 166, 26–40. [Google Scholar] [CrossRef]
- Zhu, Q.; Shang, Q.; Hu, H.; Yu, H.; Zhong, R. Structure-aware completion of photogrammetric meshes in urban road environment. ISPRS-J. Photogramm. Remote Sens. 2021, 175, 56–70. [Google Scholar] [CrossRef]
- Ostrowski, W. Accuracy of measurements in oblique aerial images for urban environment. ISPRS—Int. Archives Photogrammetry Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, G.; Selcuk, O. 3D city modelling with oblique photogrammetry method. Phys. Procedia 2015, 19, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Ratti, C.; Sabatino, S.D.; Britter, R. Urban texture analysis with image processing techniques: Winds and dispersion. Theor. Appl. Climatol. 2006, 84, 77–90. [Google Scholar] [CrossRef]
- Jochem, A.; Höfle, B.; Rutzinger, M.; Pfeifer, N. Automatic roof plane detection and analysis in airborne Lidar point clouds for solar potential assessment. Sensors 2009, 9, 5241–5262. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.V.; Laefer, D.F.; Smolic, A.; Zolanvari, S.J.I.J.o.P.; Sensing, R. Per-point processing for detailed urban solar estimation with aerial laser scanning and distributed computing. ISPRS-J. Photogramm. Remote Sens. 2019, 155, 119–135. [Google Scholar] [CrossRef]
- Boulch, A.; Marlet, R. Fast and robust normal estimation for point clouds with sharp features. Comput. Graph. Forum 2012, 31, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.C.; Freitas, S.; Guimarães, S.; Catita, C.; Redweik, P. The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renew. Energy 2017, 111, 85–94. [Google Scholar] [CrossRef]
- Gueymard, C.A. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol. Energy 2012, 86, 2145–2169. [Google Scholar] [CrossRef]
- Yao, W.; Li, Z.; Zhao, Q.; Lu, Y.; Lu, R. A new anisotropic diffuse radiation model. Energy Convers. Manag. 2015, 95, 304–313. [Google Scholar] [CrossRef]
- El Mghouchi, Y.; El Bouardi, A.; Choulli, Z.; Ajzoul, T. Models for obtaining the daily direct, diffuse and global solar radiations. Renew. Sust. Energy Rev. 2015, 56, 87–99. [Google Scholar] [CrossRef]
- Kumar, L.; Skidmore, A.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Noorian, A.M.; Moradi, I.; Kamali, G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renew. Energy 2008, 33, 1406–1412. [Google Scholar] [CrossRef]
- Liu, B.; Jordan, R. Daily insolation on surfaces tilted towards equator. ASHRAE J. 1961, 3, 526–541. [Google Scholar]
- Littlefair, P. Passive solar urban design: Ensuring the penetration of solar energy into the city. Renew. Sust. Energy Rev. 1998, 2, 1998. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 29. [Google Scholar] [CrossRef] [Green Version]
Climatic | Sky Very Pure | Normal Conditions | Sky Very Polluted |
---|---|---|---|
0.87 | 0.88 | 0.91 | |
0.17 | 0.26 | 0.43 |
Parameters | The Research Area of the Central South University |
---|---|
Flying altitude of the UAV | 198 m |
GPS precision | 5 mm ± 1 ppm |
Coverage area | 1.2 km2 |
Camera focal length | 35 mm |
Pixel size | 0.006 mm |
Orthophoto resolution | <5 cm |
Number of images | 8549 |
Number of cameras | 2 |
Sensor size | 35.8 × 23.9 mm |
Date | ArcGIS Simulated Irradiation (kWh/m2) | Proposed Simulated Irradiation (kWh/m2) | ||||
---|---|---|---|---|---|---|
Diffuse | Direct | Global | Diffuse | Direct | Global | |
20-Mar | 0.870 | 3.668 | 4.538 | 1.235 | 4.247 | 5.482 |
21-Jun | 1.106 | 5.243 | 6.349 | 1.413 | 5.686 | 7.099 |
22-Sep | 0.873 | 3.685 | 4.558 | 1.225 | 4.224 | 5.449 |
21-Dec | 0.524 | 1.609 | 2.133 | 0.954 | 2.081 | 3.035 |
Data Source | Maximum (Wh/m2) | Minimum (Wh/m2) | MBE (Wh/m2) | Correlation Coefficient | |
---|---|---|---|---|---|
Roof | LiDAR | 5531.10 | 360.41 | 180.08 | 0.9022 |
Photography | 5465.59 | 363.19 | |||
Facade | LiDAR | 4214.04 | 417.86 | −27.19 | 0.9164 |
Photography | 4198.72 | 425.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dai, Z.; Wang, W.; Li, X.; Chen, S.; Chen, L. Estimation of the Potential Achievable Solar Energy of the Buildings Using Photogrammetric Mesh Models. Remote Sens. 2021, 13, 2484. https://doi.org/10.3390/rs13132484
Zhang Y, Dai Z, Wang W, Li X, Chen S, Chen L. Estimation of the Potential Achievable Solar Energy of the Buildings Using Photogrammetric Mesh Models. Remote Sensing. 2021; 13(13):2484. https://doi.org/10.3390/rs13132484
Chicago/Turabian StyleZhang, Yunsheng, Zhisheng Dai, Weixi Wang, Xiaoming Li, Siyang Chen, and Li Chen. 2021. "Estimation of the Potential Achievable Solar Energy of the Buildings Using Photogrammetric Mesh Models" Remote Sensing 13, no. 13: 2484. https://doi.org/10.3390/rs13132484
APA StyleZhang, Y., Dai, Z., Wang, W., Li, X., Chen, S., & Chen, L. (2021). Estimation of the Potential Achievable Solar Energy of the Buildings Using Photogrammetric Mesh Models. Remote Sensing, 13(13), 2484. https://doi.org/10.3390/rs13132484