
remote sensing  

Article

Estimation of the Potential Achievable Solar Energy of the
Buildings Using Photogrammetric Mesh Models

Yunsheng Zhang 1 , Zhisheng Dai 1, Weixi Wang 2, Xiaoming Li 2, Siyang Chen 3 and Li Chen 1,*

����������
�������

Citation: Zhang, Y.; Dai, Z.; Wang,

W.; Li, X.; Chen, S.; Chen, L.

Estimation of the Potential

Achievable Solar Energy of the

Buildings Using Photogrammetric

Mesh Models. Remote Sens. 2021, 13,

2484. https://doi.org/10.3390/

rs13132484

Academic Editor: Gregory Dobler

Received: 7 May 2021

Accepted: 20 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geoscience and Info-Physics, Central South University, Changsha 410083, China;
zhangys@csu.edu.cn (Y.Z.); 185011012@csu.edu.cn (Z.D.)

2 Research Institute of Smart Cities, School of Architecture and Urban Planning, Shenzhen University,
Shenzhen 516080, China; wangwx@szu.edu.cn (W.W.); lixming@szu.edu.cn (X.L.)

3 Department of Earth Observation Science, Faculty of Geo-Information and Earth Observation (ITC),
University of Twente, 7514 AE Enschede, The Netherlands; s.chen-3@utwente.nl

* Correspondence: vchenli@csu.edu.cn

Abstract: Estimating the potential achievable solar energy in urban buildings is significantly impor-
tant for the long-term planning and development of environmental protection strategies. Neverthe-
less, conventional methods based on LiDAR data are often costly and require more than one platform
to obtain complete building surface information. The development of oblique photogrammetry
technology enables fast and accurate acquiring of the 3D information of the surface. In this paper, we
propose an efficient method to estimate the potential achievable solar energy of building surfaces
based on photogrammetric mesh models. In this method, we use photogrammetric mesh models as
the input data and then propose a hierarchical algorithm for shadow analysis. Combined with the
solar radiation model, we then obtain the potential achievable solar energy of the building surface.
We further investigate the performance of the proposed method and it is shown that this method
outperforms the multi-source LiDAR data.

Keywords: photogrammetric mesh models; urban building; hierarchical shading analysis; solar energy

1. Introduction

The population growth expands the urban areas resulting in increased energy con-
sumption. The proven reserves of coal, oil, and natural gas are however unable to meet
the needs of human development hence there is an immediate need for further production
of renewable energy. Solar energy is clean and pollution-free renewable energy and is
considered one of the main alternatives to traditional energy sources. Solar energy is
widely produced through solar cells installed on the roof of buildings especially in areas
with abundant sunlight [1]. Nevertheless, the urban buildings in densely populated areas
are often extended vertically. This results in shielding of the building surfaces resulting in
uneven distribution of potential achievable solar energy. Estimating the potential achiev-
able solar energy of the buildings can effectively reduce the cost of solar energy production
and further extend the scale of solar energy utilization.

In recent years, light detection and ranging (LiDAR) data have been widely applied
in assessing the potential achievable solar energy due to their robustness in identifying
the buildings’ orientations and the slope of their roof planes [2]. In 2005, Voegtle et al.
proposed using airborne laser scanning (ALS) data for the determination of suitable areas
for installing photovoltaic cells [3]. Their research suggests that the ALS data can be used to
estimate the area and slope of the roofs and help to select suitable areas for installing pho-
tovoltaic cells. Their method is however unable to estimate the actual potential achievable
solar energy. Soon after, Yu et al. (2009) attempted using LiDAR data to produce a digital
surface model (DSM) to analyze the variations of solar radiation in urban environments [4].
Hofierka et al. also proposed a method for the assessment of photovoltaic potential in
urban areas using open-source solar radiation tools [5].
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The above-mentioned earlier research works proposed techniques to estimate the
potential achievable solar energy of the roof surfaces, however, they did not incorporate
the impact of other objects on solar energy production. In 2013, Redweik et al. developed a
shading algorithm to consider the influence of shadows on the potential achievable solar
energy of buildings [6]. However, the reduction from a 3D point cloud into a 2.5D raster-
based model will reduce the details and accuracy for further analysis. In many subsequent
studies, LiDAR data were used as the primary data to select suitable photovoltaic areas, and
then the shadow was added to improve the accuracy of the corresponding estimations. For
instance, [2,7–11] modeled each roof structure separately and focused on the potential solar
energy of the building roof without considering the potential solar energy of the facades.

With the continuous vertical extension of the urban areas, the height of the buildings
is also increased. This enables the deployment of photovoltaic cells on the building facade.
Several previous works also proposed techniques to assess the potential achievable solar
energy of the vertical walls. For example, Lee et al. (2009) used LiDAR and GIS data to
interpolate the city’s DSM and estimate the solar radiation availability on the roofs and
facades [12]. Redweik et al. (2013) also estimated the solar potential of building facades
by using DSM data [6]. There are also similar research works in [13–16]. Using DSM to
analyze the solar potential of facades, however, is based on extruding the roof outlines to
the ground for obtaining an abstract faced model. Such models however ignore the details
of the building’s facade hence there may be discrepancies between the estimated results
and actual measurements.

Note that terrestrial laser scanning (TLS) can obtain more details from the vertical
walls than the ALS data. Therefore, TLS data are often employed to assess the potential
achievable solar energy of the vertical walls. For example, Jochem et al. (2011) proposed
a method for automatic solar radiation modeling of the facades acquired by mobile laser
scanning (MLS) data [17]. They extracted facades from the MLS data and obtained the
details of the building facades. In 2017, Huang et al. (2017) also used TLS data to extract the
regions of interest and simulated solar radiation of the targeted scene for a given period [18].
Liang et al. (2018) proposed a method based on multi-source point clouds, taking into
account the shading of surrounding buildings for solar energy potential estimation of
building facades [19]. Although TLS and MLS can accurately obtain detailed information
of the buildings’ facades and retain high-resolution geometric information, it is difficult to
obtain building roof information at the same time [20,21]. This limits their applicability in
assessing the potential achievable solar energy of buildings.

It is also concluded in [22] that in assessing potential achievable solar energy there is an
immediate need and emerging trend for shifting away from simple 2D visualization to more
complex 3D representation and analysis. Both LiDAR data and photogrammetric mesh
models (three-dimensional models generated from airborne oblique photogrammetry)
can obtain 3D information of the urban areas. However, obtaining complete facade and
roof information from LiDAR data requires the fusion of ground-based and airborne
LiDAR which is rather time-consuming and expensive. Along with the development of the
multi-view stereo matching method and aerial oblique photogrammetric system, oblique
photogrammetry has emerged as a popular method to obtain building models [23–25]. It
can obtain detailed information of the buildings’ roofs and facades and is less expensive
than LiDAR data. The accuracy of the 3D model obtained from oblique photogrammetry
can also reach within 5 cm [26,27]. These motivate the exploration of the photogrammetric
mesh models to estimate potential achievable solar energy of the urban buildings [28].

Shadow analysis is essential for estimating potential achievable solar energy of the
buildings based on the DSM of the 3D regular model. Shadow projection algorithms
are often used for shadow analysis in assessing the potential achievable solar energy
using DSM data [14,29]. These algorithms determine whether a given point is located in
the shadow by checking whether there is an occlusion between the surface points and
the light source. The current shadow analysis methods are developed for regular DSM
data derived from LiDAR or photogrammetry, hence they cannot be directly adapted to
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the photogrammetric mesh models. In addition to the above approaches, some shadow
analysis algorithms are directly performed on the point clouds. The shadow analysis
method in Jochem’s work takes the detection point as the center and then subdivides the
horizontal plane into fan-shaped areas with given intervals. The part that contains the
current azimuth of the sun is then recognized and the highest point of this part is obtained
to determine whether it is higher than the sun’s elevation angle [17,30]. Further, in Vo’s
work, a new shadow analysis method is developed that rotates the original coordinate
axis Z of the area of interest to make it parallel to the sun’s ray direction vector. Then
the rotating point cloud is discretized into areas of the same size on the XY plane. The
point cloud in each cell is then classified into different clusters using Density-Based Spatial
Clustering of Applications with Noise (BSCAN) clustering algorithm and the top-most
point cloud is assigned as the illuminated point [31]. Nevertheless, this method has strict
requirements for the even distribution of the point cloud data hence cannot be directly used
on photogrammetric mesh models. The efficiency of the DBSCAN clustering algorithm is
also not easy to control.

Inspired by the work of Vo, we propose a hierarchical shadow analysis method for
the photogrammetric mesh models, which is presented in Section 2. In Section 3 we then
present the experimental results. We then compare the solar irradiance results calculated by
the proposed method with those obtained by the ArcGIS and LiDAR data. The solar energy
distributions on the facade and roof are also analyzed for different time scales. Finally, in
Section 4, we summarize this work and draw our research conclusions.

2. Method

This paper aims to estimate the potential solar energy of facades and roofs based on
the photogrammetric mesh models. The proposed method is comprised of two main steps
as shown in Figure 1. The details of these steps are presented as follows.

Figure 1. The flowchart of the proposed method.
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2.1. Point Cloud Feature Computing

The original data used in this paper include photogrammetric mesh models estab-
lished from the oblique images collected through a UAV. The camera mounted on the UAV
can obtain both the top and side information of the ground objects. Consequently, the 3D
models created by oblique images were truly reflective of the object’s appearance, location,
height, and other attributes. It can provide reliable data for the solar energy potential
assessment process.

As illustrated in Figure 2, θ is the angle between the solar irradiance on the inclined
plane and the instantaneous beam irradiance. To quantify the solar irradiance received on
an inclined plane along the normal, the normal vector of the local surface at the illuminated
point must be calculated. We used the Hough transform method to calculate the normal
vectors at the vertices of the 3D model. This is because the method of calculating the
normal vectors at the vertices of the 3D model based on the Hough transform method
is robust in dealing with the noise points and outliers [32]. For each vertex, several
nearby points was used to fit a plane, then the normal of the plane was set to each vertex
for convenient subsequent processing. This method has been also integrated into the
open-source software CloudCompare, and its calculation details are available at https:
//github.com/cloudcompare/cloudcompare (accessed on 1 May 2021).

Figure 2. Relationship between the normal of the face and the instantaneous beam irradiance.

2.2. Solar Potential Estimation

The total solar radiation GTh received on the surface of the building can be divided into
direct radiation BTh and diffuse radiation DTh as in Equation (1) adopted from Brito [33].
Direct radiation is the received energy upon the direct impact of the sun’s rays on the
surface of an object which accounts for the main part of the total solar radiation. Most
of the existing solar radiation models accurately calculate the direct component per hour.
The calculation of the scattering component is however a complex task. It is more difficult
to calculate diffuse radiation compared with direct radiation. This is because diffuse
radiation has many forms, including isotropic diffuse, circumsolar diffuse, and horizon
brightening [34,35]. Different solar radiation models are chosen to calculate the solar
irradiance of the buildings’ surfaces, and there may be some deviation in the results. By
comparing different solar radiation models, Mghouchi found that the solar irradiance
calculated by the Ghouard model is the closest to the actual measured value [36]. Therefore,

https://github.com/cloudcompare/cloudcompare
https://github.com/cloudcompare/cloudcompare
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in this paper, the Ghouard solar radiation model was chosen to calculate the solar irradiance
on the building surface.

GTh = BTh×vis + DTh × SVF (1)

where BTh and DTh represent the instantaneous direct and diffuse irradiance on the inclined
plane, vis denotes the shadow analysis result (which is either 0 or 1), and SVF denotes the
sky view factor result. In the following, we elaborate on the calculation of these four values.

2.2.1. Direct Irradiance

As seen in Equation (1), we need to obtain the direct and diffuse radiation components.
The cumulative direct radiation on the inclined surface was obtained using Equation (2).
The cumulative direct radiation received on the inclined surface in a day is the integral
of the instantaneous direct radiation from sunrise to sunset. To simplify the calculation
process of this definite integral, the idea of partition was adopted in the actual calculation
process, that is, the product of the average value of instantaneous direct radiation in a
period and the length of the period. Kumar et al. suggested using 30 min as an appropriate
time interval to ensure computational efficiency and accuracy [37].

BTh =
∫ tss

trs
Gbh ×

cos θ

sin β
dt (2)

where trs and tss denote sunrise and sunset times, respectively. θ is the angle between
the sun’s rays and the normal of the inclined plane, β is the sun elevation angle, which
is determined by local latitude and time [37]. In Equation (2), Gbh is the instantaneous
beam irradiance on the horizontal plane, which is only affected by the sun elevation angle
β, atmospheric transmittance, and altitude [36]. The value of Gbh is obtained using the
Ghouard model [6]:

Gbh = Gsc × Ct × a1 × e−(
a2

sin β ) × sin β (3)

where Gsc = 1367 W/m2, Ct = 1 + 0.034× cos(n− 2), n represents the day of the year,
ranging from 1 in January to 365 or 366 on the 31 December, a1 and a2 are the coefficients
of the turbidity factor as given in Table 1:

Table 1. The turbidity factors.

Climatic Sky Very Pure Normal Conditions Sky Very Polluted

a1 0.87 0.88 0.91
a2 0.17 0.26 0.43

Due to the obstruction of the surrounding environment and the change of the incident
angle of the sun’s rays, some locations might not be able to receive direct sunlight. There-
fore, the actual direct radiation received on the inclined surface needs to be multiplied by
the shadow analysis result, vis.

2.2.2. Diffuse Irradiance

In the existing research works, several models have been provided for diffuse radiation
on inclined surfaces. Noorian et al. conducted a detailed comparison and precision analysis
of these models [38] and showed that the diffuse radiation value calculated by the Perez
model is the closest to the actual measured value. However, compared to other models, the
calculation parameters in the Perez model are not easy to set, and the corresponding model
universality is poor. To balance the calculation efficiency and accuracy, in this paper, we
adopted the Liu and Jordan model for which it is more convenient to calculate the diffuse
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radiation received on the building surface. According to the Liu and Jordan model, the
diffuse radiation DTh received on the inclined surface is calculated by Equation (4) [39].

DTh = Gdh ×
[

1 + cos S
2

]
(4)

where S is the inclined angle of the inclined plane, which is the angle between the normal
vector at the point and the zenith direction. The parameter Gdh is the diffuse irradiance
received on the horizontal plane calculated according to the Ghouard model.

Gdh = Gsc × Ct × [0.271− 0.2939× a1 × e−(
a2

sin β )]× sin β (5)

where the parameters in Equation (5) have the same meaning as those in Equation (3).

2.2.3. Hierarchical Shading Analysis

Shading analysis is essential to assess the solar potential of building surfaces. Before
calculating the direct irradiance, shading analysis needs to be performed within each
period. Here, we assumed that all models are opaque and buildings do not receive direct
radiation when they are in the shadow of their surrounding objects. Therefore, the shading
analysis process was simplified to determine whether the building points are in the shadow
of the model. The main challenges in the shadow analysis based on the photogrammetric
mesh models include low computational efficiency caused by a large number of triangles
and their irregularity. To address these challenges we proposed a hierarchical shadow
analysis method inspired by the work in [31].

As shown in Figure 3b, objects that block the building’s light are in the direction
of the sun’s rays and closer to the sun. Also, as the sun’s position is far away from the
building objects, the sun’s rays can be considered parallel. Therefore, in the process of
analyzing the shadow of the building, the entire model was rotated at a certain angle so
that the elevation direction of the original coordinate axis of the model was parallel to the
direction of the sun’s rays. The objects with higher altitudes thus occlude those with lower
altitudes. Therefore, the shadow simulation based on photogrammetric mesh models can
improve the calculation efficiency by judging the elevation threshold. The flowchart of the
proposed hierarchical shading analysis is presented in Figure 4 and its details are described
in the following.

Figure 3. Illumination point identification and axis transform operations.
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Figure 4. The flowchart of the hierarchical shading analysis.

The input of the hierarchical shading analysis method consisted of the photogrammet-
ric mesh models, local longitude, and latitude. The date of the shadow simulation needed
to be determined. According to the date, the local latitude and longitude, local sun altitude
angle, and azimuth angle were then calculated [37]. To speed up the subsequent triangle
processing, we pre-calculated the coordinate (u, t) of the circumscribed circle center of each
triangle in the photogrammetric mesh models and used it to represent the triangle. The
maximum radius of the circumferential circle Rmax was also stored.

An axis transformation was then applied to the input models so that one of the axes
of the transformed coordinate system was directed towards the sun. The transformation is
described by Equation (6). As shown in Figure 3a,b, the rotation was performed in two
stages. The first step was to rotate about the z-axis, changing the coordinate system from
o-xyz to o-uvz. The second step was to rotate about the u-axis, changing the coordinate
system o-uvz to o-utp. The axis p was therefore parallel to the direction vector of the
sun’s rays.

u = x cos(α− ε)− y sin(α− ε)v = x sin(α− ε) + y cos(α− ε)t = v cos β + z sin βp = −v sin β + z cos β (6)

where α is the solar azimuth, β is the solar elevation angle, ε is the angle between the
northing direction of the projected coordinate system and the true North direction.

The next step was to create a KD-Tree for the coordinates (u, t) of the triangle circum-
scribed center. The purpose of establishing a KD-Tree is to facilitate the quick query of the
surrounding points. To ensure that the occlusion analysis process does not miss triangles
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that may cause occlusion, Rmax was used as the search radius. As illustrated in Figure 5a,
the adjacent triangle cluster S1 of point P was searched in the two-dimensional space. The
triangles below point P were filtered based on the elevation value, as the red triangles in
Figure 5b were below the current point P. The remaining triangles, as shown by the blue
color in Figure 5b, were those that might occlude point P. It was then determined whether
P was in the shadow by determining whether the P point was inside the remained triangles.
If any triangle contains P, then P was occluded, and it was illuminated otherwise. The
process was ended after processing all the points.

Figure 5. Illustration of occlusion analysis.

2.2.4. Sky Viewshed Analysis

Buildings also receive scattering irradiance in addition to the total radiation in the
atmosphere. The received scattering irradiance of the buildings is related to their visual
range in the sky. The sky view of a building and hence its diffused radiation is reduced if it
is obstructed by nearby buildings, trees, or other objects. To calculate the solar scattering
radiation received by a building, the sky-visible range of that building point needs to be
analyzed. The sky view factor (SVF) is commonly used to analyze the obstacles caused
by “self-shadows” or adjacent objects. The SVF is time-independent and depends on the
environment [40]. Since the changes in the urban scene often happen in longer time scales, it
is reasonable to assume a fixed environment while estimating the potential achievable solar
energy for the buildings in shorter time scales, for example, on a daily or monthly basis.

The SVF was calculated using Equation (7). Because the sky hemisphere is a continu-
ous space, it is difficult to calculate the scope of the sky horizon. For calculating the sky
view for a point in space, the first step was to find all the points within 100 m around that
point. The candidate points were then converted into spherical coordinates (r, ϕ′, θ′) with
the origin set as that point. Then, as also shown in Figure 6, the hemispheres of the sky
were horizontally divided into discrete areas at 10◦ intervals to calculate the maximum
occlusion angle δmax in each direction. In choosing a suitable angular interval, we noted
that a rather small angular interval affects the calculation efficiency, whereas selecting a
too-large angular interval reduces the accuracy of the calculation. To keep the balance
between calculation accuracy and efficiency, we chose a 10-degree angle to divide the sky
hemisphere. To see other classification methods see, for example, [22].

SVF =
1
π

∫ 2π

0

∫ π
2

δmax
sin ρ cos ρdρdϕ (7)
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where ϕ represents azimuth, ρ is the zenith angle, and δmax is the maximum occlusion
angle in the azimuth direction.

Figure 6. An illustration of the calculation of the SVF (k: azimuth angle (the angle between k and the north being k× 10◦);
δ: is the maximum shading angle). (a) Division of the sky hemisphere at equal intervals of 10◦. (b) Calculation of the
maximum occlusion angle in the k direction.

3. Experimental Results
3.1. Study Area

In this paper, we considered the campus of Central South University in Changsha,
Hunan Province, China. As seen in Figure 7a, the considered area is approximately 1.2 km2

and consists of various types of buildings. This area mainly includes low raise single
buildings with a large area. There is also a densely built residential district in the eastern
part of the study area. The tallest building in the study area is 37 m which is located in the
southwest corner of the campus. The buildings in this area have large surface areas for the
development and utilization of solar energy. Therefore, assessing the potential achievable
solar energy of this area can effectively explore the solar energy utilization of buildings.

As shown in Table 2, the oblique images of this area were obtained on 16 April 2019,
and the spatial resolution of the image was 3.5 cm. The resolution of the photogrammetric
mesh models established by the oblique image is larger than 10 cm. To verify the effective-
ness and reliability of the solar irradiance calculations based on photogrammetric mesh
models, we collected the UAV laser scanning (ULS) data and TLS data of area A (see
Figure 7b,c). The vertical and horizontal accuracies of the ULS data and TLS data were
within 5 cm, and 5 mm, respectively.

3.2. Experimental Results

As shown in Figure 8, the shadow area on the surface of the buildings continuously
changes throughout the day. The black color indicates that the area is in the shadow, and
the white color indicates that the area is illuminated by the sun. Note that the change in
the shadow area on the roof is not obvious. This is because most of the time the roof is
exposed to direct sunlight. It can also be seen in Figure 8a–d that variations of the shadow
area on the building’s facade are more significant, as it is affected by the surrounding trees
and the building itself.
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Figure 7. Experimental data.

Table 2. System parameters of the oblique photogrammetry system.

Parameters The Research Area of the Central
South University

Flying altitude of the UAV 198 m
GPS precision 5 mm ± 1 ppm
Coverage area 1.2 km2

Camera focal length 35 mm
Pixel size 0.006 mm

Orthophoto resolution <5 cm
Number of images 8549
Number of cameras 2

Sensor size 35.8 × 23.9 mm
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Figure 8. The shadows of the buildings during the winter solstice in 2019.

The SVF calculation result is shown in Figure 9. In Figure 9, the lighter the color, the
larger the visible sky field, while the darker the color, the smaller the visible sky field. An
SVF value of 0 indicates that the sky is completely obstructed at that location, whereas
an SVF value of 1 indicates that a total view of the sky hemisphere above the horizon is
available at that location. Figure 9b shows that the SVF value on the facade is generally
lower than that on the roof because at least half of the sky view on the facade is blocked.

Figure 10 shows the global solar irradiance received at the surface on 21 December
and 22 July 2019. The left pictures are oblique views and the right ones are orthogonal
views. The solar potential of the building surface is not evenly distributed due to the
shadow of the surrounding environment. The color of each point in Figure 8 indicates
the received value of solar irradiance throughout the day. Since the calculation results
are displayed in a point cloud, they can provide the solar energy in the building for each
of the point elements. The maximum cumulative solar irradiance at winter solstice and
summer solstice are 5.671 kWh/m2 and 7.542 kWh/m2, respectively. The minimum values
are 0.149 kWh/m2 and 0.134 kWh/m2, respectively.
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Figure 9. The calculated results of SVF.

Figure 10. The cumulative solar irradiance received by the surface of the study area.
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3.3. Validation by Comparison Analysis
3.3.1. Comparison with the Shadow in the Photo

The available experimental data do not fully cover the experimental area. Therefore,
we focused on area A and used real UAV images to verify the reliability and effectiveness of
the proposed method in this paper. The shadow of the object in the image can be regarded
as ground truth data of the shadow area. The assessment of our simulated shadow was
carried out by comparing the simulated shadow with the corresponding picture taken by
the UAV. Figure 11a is the image taken at 11: 25 am on 31 October 2019, in area A, and
Figure 11b is the shadow calculated at the time of capturing the image using the proposed
method. The agreement between the simulated result and the ground truth image is
highlighted at six marked locations. The shaded areas in Figure 11(1)–(6) are caused by the
building itself. Beyond the six marked shadow areas, the calculated shadows formed by
the trees are also very close to the real shadows.

Figure 11. Shadow simulation against orthoimage (time: 11:25 on 31 October 2019).

3.3.2. Comparing with Other Method Calculation Results

In order to verify the efficiency of the hierarchical shadow analysis method, the
shadow simulation calculation time of the hierarchical shadow analysis method in the same
region was compared with that of the method proposed by Vo (hereinafter referred to as
APM) [31]. The APM method can directly calculate the point cloud data, which is similar to
the hierarchical shadow analysis. Both methods were implemented in Python without GPU-
accelerated parallel computation. The average computing time of one shadow simulation
in the APM method was 35 min, while the hereinafter shadow analysis method was 9 min.
The average calculation time difference between the two methods was nearly four times.
The two methods were calculated on the same computer, the computer configuration was
CPUInter®CoreTM i7-8700, 32GB RAM.

The calculation results of the two methods are shown in Figure 12. It can be seen from
the comparison results that the shadow simulation results of the two methods are generally
similar, but there are slight differences in particular locations. As shown in Figure 12a,
there are some shadow noise points in the calculation results of the APM method on the
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roof of the building, and the shadow of the building facade simulated by the APM method
in Figure 12c appears jagged. The main reason is that the DBSCAN algorithm was used in
the APM method for clustering. The clustering parameters of the algorithm are difficult to
control, so there is a small number of shadow noise points. However, this situation does
not exist in the calculation results of the hierarchical shadow analysis method, and the
calculation time of the hierarchical shadow analysis method was much shorter.

Figure 12. Comparison of shadow simulation results with other methods.

3.3.3. Comparison with the Solar Irradiance Calculated by ArcGIS

Here, the rooftop solar irradiance results calculated by ArcGIS were used to verify the
proposed method. The Solar Analysis Tool (SAT) within the ArcGIS software suite is often
used to study the irradiance based on DSM calculations [41]. However, the ArcGIS SAT
method cannot analyze the solar radiation on the buildings’ facades, and it is also difficult
to perform solar irradiance calculations in ArcGIS SAT on buildings across a large area.
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Here, we randomly sampled 303 points on the roof of area A and compared them with the
results of ArcGIS STA to verify the reliability of the proposed method.

The monthly average of the irradiance calculated in 2019 by the proposed method
and ArcGIS SAT are presented in Figure 13, the standard deviation of the estimated solar
irradiance is also presented. The monthly average of direct radiation and diffuse radiation
irradiance calculated using the proposed method was slightly higher than that of the
ArcGIS SAT method, but they showed similar trends. For instance, the maximum solar
irradiance received on the rooftops by both methods was in July at 223.10 kWh/m2 and
192.945 kWh/m2, respectively. From January to July, the solar irradiance on the rooftops
shows an increasing trend and then declines until December, which is the month with
the lowest solar irradiance in the year. The global irradiance calculated by the proposed
method and ArcGIS in December was 95.139 kWh/m2 and 56.691 kWh/m2, respectively.
The reason for the difference between the obtained results of the two methods is that the
selected models are different. As mentioned in the introduction of the solar radiation
model, there are several types of solar radiation models, and the results calculated based
on different models tend to be different. To see comparisons between different models see
Mghouchi’s work in [36].

Figure 13. Comparison of monthly solar irradiance calculated by the proposed method and ArcGIS methods in area A.

To analyze the difference between the two methods, we also compared the diffuse
radiation, direct radiation, and global radiation at different times of the day during the
spring equinox, summer solstice, autumn equinox. and winter solstice, as shown in
Figure 14. The reason for choosing these four particular days was that the position of the
sun is typical during these days. The simulations were performed every hour from sunrise
to sunset. We also assumed these four days to have sunny weather.
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Figure 14. Comparison of diffuse radiation, direct radiation, and global radiation on four specific days.

It was seen that the direct radiation and diffuse radiation calculated by the proposed
method during the summer solstice were the closest to the calculation results of ArcGIS.
The difference in the winter solstice was also greater than that of the summer solstice.
The difference in the global solar radiation calculated by the two methods on the summer
solstice was 0.66 kWh/m2, whereas the difference of diffuse radiation was 0.307 kWh/m2

and the difference of direct radiation was 0.293 kWh/m2. The global irradiance received at
the roof on the summer solstice was significantly higher than that of other days, which is
indicated as a larger peak in Figure 14. This result corresponds to the previous monthly
average solar irradiance result. Furthermore, the solar irradiance received at the roof of the
spring equinox and the autumnal equinox was approximately the same. This is explainable
because at the spring equinox or at the autumn equinox, the solar altitude angles are
approximately equal at the corresponding moments of the day.

Table 3 presents the data for the total diffuse, direct, and global radiation received
at the rooftop point within four particular days. The maximum values of direct and
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diffuse radiation are both occurring at the noon. It is worth noting that although the
diffuse radiation value is small, the cumulative difference within a day is not ignorable. In
summary, the proposed method and ArcGIS SAT method closely follow the same trends in
estimating the solar irradiance on the roofs.

Table 3. Irradiation result comparison within a day.

Date
ArcGIS Simulated Irradiation

(kWh/m2)
Proposed Simulated Irradiation

(kWh/m2)

Diffuse Direct Global Diffuse Direct Global

20-Mar 0.870 3.668 4.538 1.235 4.247 5.482
21-Jun 1.106 5.243 6.349 1.413 5.686 7.099
22-Sep 0.873 3.685 4.558 1.225 4.224 5.449
21-Dec 0.524 1.609 2.133 0.954 2.081 3.035

3.3.4. Comparison with the Results Using LiDAR Data

As it was mentioned before, LiDAR data can be also used to estimate the achievable
potential solar energy of the buildings due to their high accuracy. Here, we adopted the
ULS and TLS data as shown in Figure 7 to verify the reliability of the calculation results
based on the photogrammetric mesh models. The ULS and TLS data were registered well
by manual work and refined using the ICP algorithm. A TIN model was constructed from
the fused point cloud using the Poisson surface reconstruction method [42]. The irradiance
on the winter solstice for both models was also calculated using the proposed method.

To compare the difference between the two calculation results, we sampled 525 and
592 corresponding location points on the facade and roof of the photogrammetric mesh
and the LiDAR models, respectively. The correlation between the two calculation results
is shown in Figure 15. As can be seen, the solar irradiance results calculated by the two
data sources were highly correlated, and the correlation coefficients (R2) of the calculation
results of the facade and roof were 0.9164 and 0.9022.

Figure 15. Correlation analysis.

The comparison result is illustrated in Table 4. Three statistical indicators were
adopted to make a quantitative comparison between the results of the photogrammetric
mesh models and the LiDAR reference results. The LiDAR and photogrammetric mesh
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models showed minor differences in both their maximum and minimum values. The Mean
Bias Error (MBE) of all points was also obtained using Equation (8).

MBE =
1
n

n

∑
i=1

(
Ei

pho − Ei
LiDAR

)
(8)

Table 4. Comparison of the solar irradiance for LiDAR and photogrammetric mesh models.

Data Source Maximum
(Wh/m2)

Minimum
(Wh/m2)

MBE
(Wh/m2)

Correlation
Coefficient

Roof
LiDAR 5531.10 360.41

180.08 0.9022Photography 5465.59 363.19

Facade
LiDAR 4214.04 417.86 −27.19 0.9164Photography 4198.72 425.64

Where n is the number of point clouds, Ei
pho represents the calculation result of

photogrammetric mesh models, Ei
LiDAR represents the calculation result of LiDAR.

The MBE values on the roof and facade were 180.08 and −27.19 Wh/m2, respec-
tively. The comparison results also showed that despite the lower accuracy of oblique
photogrammetry compared with LiDAR data, the difference in accuracy had no significant
impact on the estimated solar potential of buildings. Overall, the solar irradiance calculated
based on the photogrammetric mesh models and the model established from LiDAR data
showed similar trends. Therefore, it is reasonable to use photogrammetric mesh models
for estimating the achievable potential solar power on the roof and facade.

3.4. Application and Analysis

Having demonstrated the effectiveness and reliability of the proposed method, this
section analyzes the changes of irradiance on the roof and facade over various time scales
including hourly, daily, monthly and yearly changes on the roof and facade.

The following results were obtained by taking the library of the new campus of Central
South University as the research object. Since there is no shelter around this building by
other objects, only the effect of its own shadow was taken into consideration. Note that, for
buildings with complex surroundings, it is necessary to analyze them in combination with
the actual environment.

3.4.1. Hourly Solar Irradiance Analysis

Here, we analyzed the hourly variation of solar irradiance. Affected by solar elevation
angle and azimuth, the solar irradiance received on the surface of the buildings is different
every day. Therefore, we carried out statistical analysis on hourly variations in the irra-
diance on the facade. Figure 16 shows the hourly solar irradiance variations in different
facade directions from 8:00 am to 5:00 pm every day.

When the sun rises in the morning, the entire east-facing facade is illuminated. By
changing the position of the sun, the east-facing facade gradually loses sunlight (see,
Figure 16a). Most of the solar irradiance received from the east-facing facade is concen-
trated in the period of 8:00–12:00, the rest of the time only diffuse radiation exists. The
maximum instantaneous global solar irradiance received on the east-facing facade is
249 wh/m2, which is around 10:00. The west-facing facade is opposite to the east-facing
facade, the solar irradiance value received on the west-facing facade is also close to that of
the east-facing facade but the time is opposite, as illustrated in Figure 16c. The west-facing
facade receives direct sunlight from 13:00 to 17:00, the received irradiance is larger than
other periods and the maximum instantaneous global irradiance value is 254 wh/m2. Un-
like the east-facing and west-facing facade, the hourly global irradiance on the south-facing
facade has greater variations. Except in the summer, when the south-facing facade is illumi-
nated by sunlight during the period from 9:00 am to 4:00 pm. Therefore, the daily sunlight
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time on the south-facing facade is the largest amongst the four directions (see, Figure 16b).
The maximum instantaneous global irradiance value received on the south-facing facade is
268 kW/m2, which is slightly larger than that of the east and west. As the solar elevation
angle is larger in summer, the incidence angle of solar rays on the south-facing facade is
also larger although the solar irradiance received is smaller. The north-facing facade has
the smallest solar irradiance in four directions and as seen in Figure 16d, its illuminated
time is also very short.

Figure 16. Global irradiance per hour in different directions.

3.4.2. Daily Solar Irradiance Analysis

Figure 17 shows the variations of total solar irradiance for each day of a year. The
plotted curve is the result of interpolation based on the calculated values on certain dates.
Comparing the solar irradiance results on the roof (Figure 17a) and the facade (Figure 17b)
it is seen that only the south-facing facade receives solar irradiance greater than the roof on
a few days in a year. The other directions facades receive much less solar irradiance than
the roof.

3.4.3. Monthly and Annual Average Solar Irradiance

The monthly global irradiance variations on roofs and facades are also shown in
Figure 18. The global irradiance on the roof reached its maximum in July (223 kWh/m2)
and minimum in December (95 kWh/m2). From January to July, the monthly global
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solar irradiance on the roof increased on monthly basis and gradually decreased from
July to December. The global irradiance received on the library roof within a year was
1995 kWh/m2, of which direct irradiance was 1541 kWh/m2 and diffuse radiation was
454 kWh/m2, accounting for 77% and 23% of the global irradiance, respectively.

Figure 17. Polynomial interpolation of the daily total irradiation.

Figure 18. Variation of the monthly solar radiation on the roof and four facades.
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The east-facing and west-facing facades were also consistent with the roof, which
reached its maximum and minimum global irradiance in July and December, respectively.
The difference is that the global irradiance received on the east-facing and west-facing
facades was much smaller than that of the roof. The global irradiance received on the facade
of east-facing and west-facing in a year was 628 kWh/m2 and 674 kWh/m2, respectively.
The global irradiance of the north-facing facade was small for each month, and the global
irradiance in a year was only 127 kWh/m2, which is less than 1/10 of that of the roof. The
south-facing facade reached global irradiance maximum in January (106 kWh/m2) and
minimum in June (16 kWh/m2). The global irradiance received on the south-facing facade
in a year was 827 kWh/m2, which is the largest amongst the four directions.

4. Conclusions

In this paper, we proposed a method for the efficient assessment of solar irradiance on
a building in urban areas. The proposed method estimates the potential achievable solar
energy of the buildings based on photogrammetric mesh models, which provides new data
for estimating the solar energy potential of buildings. To improve the efficiency of shadow
simulation with photogrammetric mesh models, we also proposed a hierarchical shadow
analysis method to address the issue of low efficiency of shadow analysis caused by a
large number of triangular nets in photogrammetric mesh models. The proposed method
minimizes the judgment of redundant triangles and improves the calculation speed by
rotating the model and setting the height threshold. The shadow simulation results were
also verified on the real image. The solar irradiance calculated by the photogrammetric
mesh models was also compared with that calculated by LiDAR data, and it was shown
that the two calculated results are very similar. In conclusion, photogrammetric mesh
models can be used to comprehensively estimate the solar energy potential of the building.
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