An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering
Abstract
:1. Introduction
2. Background
2.1. The Use of Ontology Engineering in Materials Science
2.2. Ontologies: Definition and Types
2.3. Principles of 1H Nuclear Magnetic Resonance Relaxometry
2.4. Framework: Digital Workflow in Mat-O-Lab
3. Methodology. Application of Mat-O-Lab Methodology to 1H NMR Relaxation Test
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- US Infrastructure Scores C Minus Grade from American Society of Civil Engineers. Available online: httpss://www.equities.com/news/us-infrastructure-scores-c-minus-grade-from-american-society-of-civil-engineers (accessed on 19 April 2021).
- PricewaterhouseCoopers Global Transport Infrastructure Market: Outlook to 2025. Available online: https://www.pwc.rs/en/publications/global-transport-infrastructure-market-outlook-2025.html (accessed on 19 April 2021).
- Opinion | Making the Concrete and Steel We Need Doesn’t Have to Bake the Planet—The New York Times. Available online: https://www.nytimes.com/2021/03/04/opinion/climate-change-infrastructure.html (accessed on 16 April 2021).
- Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Nagel, S.M.; Strangfeld, C.; Kruschwitz, S. Application of 1H Proton NMR Relaxometry to Building Materials—A Review. J. Magn. Reson. Open 2021, 6–7, 100012. [Google Scholar] [CrossRef]
- Suh, C.; Fare, C.; Warren, J.A.; Pyzer-Knapp, E.O. Evolving the Materials Genome: How Machine Learning Is Fueling the Next Generation of Materials Discovery. Annu. Rev. Mater. Res. 2020, 50, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Pasquetto, I.V.; Borgman, C.L.; Wofford, M.F. Uses and Reuses of Scientific Data: The Data Creators’ Advantage. Harv. Data Sci. Rev. 2019, 1. [Google Scholar] [CrossRef]
- Data Science and Big Data: An Environment of Computational Intelligence; Pedrycz, W.; Chen, S.-M. (Eds.) Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2017; Volume 24, ISBN 978-3-319-53473-2. [Google Scholar]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef] [PubMed]
- Berners-Lee, T.; Fischetti, M. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor; Paw Prints: Paradise, CA, USA, 2008; ISBN 978-1-4395-0036-1. [Google Scholar]
- Platform MaterialDigital. Available online: https://materialdigital.de/ (accessed on 15 April 2021).
- Fraunhofer Group MATERIALS. Available online: https://www.materials.fraunhofer.de/en.html (accessed on 15 April 2021).
- Materials Genome Initiative | WWW.MGI.GOV. Available online: https://www.mgi.gov/ (accessed on 15 April 2021).
- Aflow—Automatic—FLOW for Materials Discovery. Available online: http://aflowlib.org/ (accessed on 15 April 2021).
- NIMS Materials Database(MatNavi)—DICE: National Institute for Materials Science. Available online: https://mits.nims.go.jp/en/ (accessed on 15 April 2021).
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Open Materials Database. Available online: http://openmaterialsdb.se/ (accessed on 15 April 2021).
- Citrine Informatics. Available online: http://citrine.io/ (accessed on 15 April 2021).
- MaX | Materials Design at the Exascale a European Centre of Excellence. Available online: http://www.max-centre.eu/ (accessed on 15 April 2021).
- Draxl, C.; Scheffler, M. NOMAD: The FAIR Concept for Big Data-Driven Materials Science. MRS Bull. 2018, 43, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I. The Materials Data Facility: Data Services to Advance Materials Science Research. JOM 2016, 68, 2045–2052. [Google Scholar] [CrossRef]
- Materials Zone. Available online: https://www.materials.zone/ (accessed on 15 April 2021).
- Materially. Available online: https://www.materially.eu/en/ (accessed on 15 April 2021).
- Find Materials & Suppliers—Matmatch. Available online: https://matmatch.com/ (accessed on 15 April 2021).
- CMCL Innovations. Available online: https://cmclinnovations.com/ (accessed on 15 April 2021).
- Kalidindi, S.R. Data Science and Cyberinfrastructure: Critical Enablers for Accelerated Development of Hierarchical Materials. Int. Mater. Rev. 2015, 60, 150–168. [Google Scholar] [CrossRef]
- Kalidindi, S.R.; Medford, A.J.; McDowell, D.L. Vision for Data and Informatics in the Future Materials Innovation Ecosystem. JOM 2016, 68, 2126–2137. [Google Scholar] [CrossRef]
- Kalidindi, S.R. Data Infrastructure Elements in Support of Accelerated Materials Innovation: ELA, PyMKS, and MATIN. Integr. Mater. Manuf. Innov. 2019, 14, 441–454. [Google Scholar] [CrossRef]
- Morgado, J.F.; Ghedini, E.; Goldbeck, G.; Schmitz, G.J.; Friis, J.; de Baas, A.F. Mechanical Testing Ontology for Digital-Twins: A Roadmap Based on EMMO. In Proceedings of the Conference: International Workshop on Semantic Digital Twins (SeDiT 2020), Crete, Greece, 31 May–4 June 2020. [Google Scholar]
- Furini, F.; Rai, R.; Smith, B.; Colombo, G.; Krovi, V. Development of a Manufacturing Ontology for Functionally Graded Materials. In Proceedings of the 36th Computers and Information in Engineering Conference; American Society of Mechanical Engineers, Charlotte, NC, USA, 21–24 August 2016; Volume 1B, p. V01BT02A030. [Google Scholar]
- Li, H.; Armiento, R.; Lambrix, P. A Method for Extending Ontologies with Application to the Materials Science Domain. Data Sci. J. 2019, 18, 50. [Google Scholar] [CrossRef]
- Ashino, T.; Fujita, M. Definition of a Web Ontology for Design-Oriented Material Selection. Data Sci. J. 2006, 5, 52–63. [Google Scholar] [CrossRef]
- Benjamin, J.; Borst, P.; Akkermans, H.; Wielinga, B. Ontology construction for technical domains. In Advances in Knowledge Acquisition; Shadbolt, N., O’Hara, K., Schreiber, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1076, pp. 98–114. ISBN 978-3-540-61273-5. [Google Scholar]
- Zhang, X.; Hu, C.; Zhao, Q.; Zhao, C. Semantic Data Integration in Materials Science Based on Semantic Model. In Proceedings of the Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007), Bangalore, India, 10–13 December 2007; pp. 320–327. [Google Scholar]
- Lin, W.; Hu, C.; Li, Y.; Cheng, X. Similarity-Based Ontology Mapping in Material Science Domain. In Proceedings of the 9th International Conference on Web Information Systems and Technologies, Aachen, Germany, 8–10 May 2013; SciTePress—Science and and Technology Publications: Aachen, Germany, 2013; pp. 265–269. [Google Scholar]
- Ghiringhelli, L.M.; Carbogno, C.; Levchenko, S.; Mohamed, F.; Huhs, G.; Lueders, M.; Oliveira, M.; Scheffler, M. Towards a Common Format for Computational Material Science Data. arXiv 2016, arXiv:1607.04738. [Google Scholar]
- Li, H.; Armiento, R.; Lambrix, P. An Ontology for the Materials Design Domain. arXiv 2020, arXiv:2006.07712. [Google Scholar]
- Zhao, S.; Qian, Q. Ontology Based Heterogeneous Materials Database Integration and Semantic Query. AIP Adv. 2017, 7, 105325. [Google Scholar] [CrossRef]
- Pigazzi, R.; Confalonieri, C.; Rossoni, M.; Gariboldi, E.; Colombo, G. Ontologies as a Tool for Design and Material Engineers; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2021. [Google Scholar]
- Takahashi, L.; Miyazato, I.; Takahashi, K. Redesigning the Materials and Catalysts Database Construction Process Using Ontologies. J. Chem. Inf. Model. 2018, 58, 1742–1754. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, L.; Takahashi, K. Visualizing Scientists’ Cognitive Representation of Materials Data through the Application of Ontology. J. Phys. Chem. Lett. 2019, 10, 7482–7491. [Google Scholar] [CrossRef] [PubMed]
- Uschold, M.; King, M. Towards a Methodology for Building Ontologies. In Proceedings of the Conjunction with IJCAI-95, Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, QC, Canada, 19–21 August 1995. [Google Scholar]
- Uschold, M.; Gruninger, M. Ontologies: Principles, Methods and Applications. Knowl. Eng. Rev. 1996, 11, 93–136. [Google Scholar] [CrossRef] [Green Version]
- Shanthi Rani, M.; John, S.; Shah, N. Proposal of an Hybrid Methodology for Ontology Development by Extending the Process Models of Software Engineering. IJITCS 2016, 6, 37–44. [Google Scholar] [CrossRef]
- John, S.; Shah, N.; Stewart, C.; Samlov, L. Software Centric Innovative Methodology for Ontology Development. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Funchal, Madeira, Portugal, 1–3 November 2017; SCITEPRESS—Science and Technology Publications: Funchal, Madeira, Portugal, 2017; pp. 139–146. [Google Scholar]
- Abdelghany, A.; Darwish, N.; Hefni, H. An Agile Methodology for Ontology Development. IJIES 2019, 12, 170–181. [Google Scholar] [CrossRef]
- Copeland, M.; Brown, A.; Parkinson, H.; Stevens, R. The SWO Project: A Case Study of Applying Agile Ontology Engineering Methods in Community Driven Ontologies. 6. In Proceedings of the International Conference on Biomedical Ontology (ICBO), Graz, Austria, 21–25 July 2012. [Google Scholar]
- Kotis, K.; Vouros, G.A. Human-Centered Ontology Engineering: The HCOME Methodology. Knowl. Inf. Syst. 2006, 10, 109–131. [Google Scholar] [CrossRef]
- Baonza, M. NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2010. [Google Scholar]
- Sure, Y.; Staab, S.; Studer, R. On-To-Knowledge Methodology (OTKM). In Handbook on Ontologies; Staab, S., Studer, R., Eds.; International Handbooks on Information, Systems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 117–132. ISBN 978-3-540-24750-0. [Google Scholar]
- Yadav, U.; Singh Narula, G.; Duhan, N.; Jain, V. Ontology Engineering and Development Aspects: A Survey. IJEME 2016, 6, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Simperl, E.; Luczak-Rösch, M. Collaborative Ontology Engineering: A Survey. Knowl. Eng. Rev. 2014, 29, 101–131. [Google Scholar] [CrossRef] [Green Version]
- Stadlhofer, B.; Salhofer, P.; Durlacher, A. An Overview of Ontology Engineering Methodologies in the Context of Public Administration. In Proceedings of the Seventh International Conference on Advances in Semantic Processing, Porto, Portugal, 29 September–3 October 2013; pp. 36–42. [Google Scholar]
- Keet, M. An Introduction to Ontology Engineering; University of Cape Town: Cape Town, South Africa, 2020. [Google Scholar]
- Kotis, K.I.; Vouros, G.A.; Spiliotopoulos, D. Ontology Engineering Methodologies for the Evolution of Living and Reused Ontologies: Status, Trends, Findings and Recommendations. Knowl. Eng. Rev. 2020, 35, e4. [Google Scholar] [CrossRef]
- Rudnicki, R.; Smith, B.; Malyuta, T.; Mandrick, W. White Paper; Best Practices of Ontology Development; National Institute of Standards and Technolog: Gaithersburg, MD, USA, 2016. [Google Scholar]
- What Is an Ontology and Why We Need It. Available online: https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html (accessed on 15 April 2021).
- Bergman, M.K. A Reference Guide to Ontology Best Practices. Available online: http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/ (accessed on 15 April 2021).
- BMBF-Internetredaktion Bekanntmachung zur Förderung von Zuwendungen von Vorhaben im Rahmen der Initiative zur Digitalisierung der Materialforschung in Deutschland (MaterialDigital)—BMBF. Available online: https://www.bmbf.de/foerderungen/bekanntmachung-2627.html (accessed on 15 April 2021). (In German).
- Fraunhofer Group for Materials and Components. Available online: https://www.fraunhofer.de/en/institutes/institutes-and-research-establishments-in-germany/fraunhofer-groups/materials-components.html (accessed on 15 April 2021).
- Bundesanstalt Für Materialforschung Und-Prüfung. Available online: https://www.bam.de/Navigation/EN/Home/home.html (accessed on 15 April 2021).
- Digital Workflow Steps Using the Graph Designer Tool—Wiki—Iwm-Hub/Mdbw_rdf. Available online: https://gitlab.cc-asp.fraunhofer.de/iwm-hub/mdbw_rdf/-/wikis/DIGITAL-WORKFLOW-STEPS-USING-THE-GRAPH-DESIGNER-TOOL (accessed on 15 April 2021).
- Gruber, T.R. A Translation Approach to Portable Ontology Specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Borst, W.N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse; Centre for Telematics and Information Technology: Enschede, The Netherlands, 1997; ISBN 978-90-365-0988-6. [Google Scholar]
- Lemaignan, S.; Siadat, A.; Dantan, J.-Y.; Semenenko, A. MASON: A Proposal for an Ontology of Manufacturing Domain. In Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), Prague, Czech Republic, 15–16 June 2006; pp. 195–200. [Google Scholar]
- RDF—Semantic Web Standards. Available online: https://www.w3.org/RDF/ (accessed on 15 April 2021).
- World Wide Web Consortium (W3C). Available online: https://www.w3.org/ (accessed on 15 April 2021).
- RDF Schema 1.1. Available online: https://www.w3.org/TR/rdf-schema/ (accessed on 15 April 2021).
- OWL 2 Web Ontology Language Document Overview (Second Edition). Available online: https://www.w3.org/TR/owl2-overview/ (accessed on 15 April 2021).
- Lassila, O.; McGuinness, D. The Role of Frame-Based Representation on the Semantic Web. Commun. ACM 1985, 28, 904–920. [Google Scholar]
- Garbacz, P.; Kutz, O. Formal Ontology in Information Systems: Proceedings of the Eighth International Conference (FOIS 2014); IOS Press: Amsterdam, Switzerland, 2014; ISBN 978-1-61499-438-1. [Google Scholar]
- Basic Formal Ontology (BFO) | Home. Available online: https://basic-formal-ontology.org/ (accessed on 15 April 2021).
- Laboratory for Applied Ontology—DOLCE. Available online: http://www.loa.istc.cnr.it/dolce/overview.html (accessed on 15 April 2021).
- The Suggested Upper Merged Ontology (SUMO)—Ontology Portal. Available online: https://www.ontologyportal.org/ (accessed on 15 April 2021).
- General Formal Ontology (GFO) | Onto-Med Research Group. Available online: https://www.onto-med.de/ontologies/gfo (accessed on 15 April 2021).
- Partridge, C.; Mitchell, A.; Cook, A.; Sullivan, J.; West, M. A Survey of Top-Level Ontologies—To Inform the Ontological Choices for a Foundation Data Model. CDBB 2020. [Google Scholar] [CrossRef]
- Rudnicki, R. An Overview of the Common Core Ontologies; CUBRC, Inc.: Buffalo, NY, USA, 2019. [Google Scholar]
- Hagedorn, T.J.; Smith, B.; Krishnamurty, S.; Grosse, I. Interoperability of Disparate Engineering Domain Ontologies Using Basic Formal Ontology. J. Eng. Des. 2019, 30, 625–654. [Google Scholar] [CrossRef] [Green Version]
- EMMO—The European Materials Modelling Council. Available online: https://emmc.info/emmo-info/ (accessed on 15 April 2021).
- Chemical Entities of Biological Interest (ChEBI). Available online: https://www.ebi.ac.uk/chebi/ (accessed on 15 April 2021).
- NCOR-US/CHAMP; NCOR-US: Buffalo, NY, USA, 2020.
- Kitamura, Y.; Takafuji, S.; Mizoguchi, R. Towards a Reference Ontology for Functional Knowledge Interoperability. In Proceedings of the 33rd Design Automation Conference, Parts A and B, ASMEDC, Las Vegas, NV, USA, 4–7 September 2007; Volume 6, pp. 111–120. [Google Scholar]
- Elmhadhbi, L.; Karray, M.H.; Archimède, B. Toward the Use of Upper Level Ontologies for Semantically Interoperable Systems: An Emergency Management Use Case; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar]
- Vetere, G. Formal Ontology in a Relativistic Setting. In Proceedings of the Metadata and Semantic Research; Garoufallou, E., Fallucchi, F., William De Luca, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 379–384. [Google Scholar]
- Mascardi, V.; Locoro, A.; Rosso, P. Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation. IEEE Trans. Knowl. Data Eng. 2010, 22, 609–623. [Google Scholar] [CrossRef]
- Euzenat, J.; Shvaiko, P. Ontology Matching; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-38720-3. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, G.M.; Logging, N.; Xi, F. NMR Logging Principles & Applications; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Kimmich, R. NMR Tomography Diffusometry Relaxometry; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Blümich, B.; Haber-Pohlmeier, S.; Zia, W. Compact NMR; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, M.G. NMR Logging—Principles and Applications; Halliburton Energy Services: Houston, TX, USA, 1999. [Google Scholar]
- Stelzner, L.; Powierza, B.; Oesch, T.; Dlugosch, R.; Weise, F. Thermally-Induced Moisture Transport in High-Performance Concrete Studied by X-Ray-CT and 1H-NMR. Constr. Build. Mater. 2019, 224, 600–609. [Google Scholar] [CrossRef]
- Brizi, L.; Camaiti, M.; Bortolotti, V.; Fantazzini, P.; Blümich, B.; Haber-Pohlmeier, S. One and Two-Dimensional NMR to Evaluate the Performance of Consolidants in Porous Media with a Wide Range of Pore Sizes: Applications to Cultural Heritage. Microporous Mesoporous Mater. 2018, 269, 186–190. [Google Scholar] [CrossRef]
- Gussoni, M.; Greco, F.; Bonazzi, F.; Vezzoli, A.; Botta, D.; Dotelli, G.; Sora, I.N.; Pelosato, R.; Zetta, L. 1H NMR Spin-Spin Relaxation and Imaging in Porous Systems: An Application to the Morphological Study of White Portland Cement during Hydration in the Presence of Organics. Magn. Reson. Imaging 2004, 22, 877–889. [Google Scholar] [CrossRef]
- Bede, A.; Scurtu, A.; Ardelean, I. NMR Relaxation of Molecules Confined inside the Cement Paste Pores under Partially Saturated Conditions. Cem. Concr. Res. 2016, 89, 56–62. [Google Scholar] [CrossRef]
- Bligh, M.W.; d’Eurydice, M.N.; Lloyd, R.R.; Arns, C.H.; Waite, T.D. Investigation of Early Hydration Dynamics and Microstructural Development in Ordinary Portland Cement Using 1H NMR Relaxometry and Isothermal Calorimetry. Cem. Concr. Res. 2016, 83, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Naber, C.; Kleiner, F.; Becker, F.; Nguyen-Tuan, L.; Rößler, C.; Etzold, M.A.; Neubauer, J. C-S-H Pore Size Characterization Via a Combined Nuclear Magnetic Resonance (NMR)–Scanning Electron Microscopy (SEM) Surface Relaxivity Calibration. Materials 2020, 13, 1779. [Google Scholar] [CrossRef]
- Kruschwitz, S.; Halisch, M.; Dlugosch, R.; Prinz, C. Toward a Better Understanding of Low-Frequency Electrical Relaxation—An Enhanced Pore Space Characterization. Geophysics 2020, 85, MR257–MR270. [Google Scholar] [CrossRef]
- Rifai, H.; Staude, A.; Meinel, D.; Illerhaus, B.; Bruno, G. In-Situ Pore Size Investigations of Loaded Porous Concrete with Non-Destructive Methods. Cem. Concr. Res. 2018, 111, 72–80. [Google Scholar] [CrossRef]
- Sharma, S.; Casanova, F.; Wache, W.; Segre, A.; Blümich, B. Analysis of Historical Porous Building Materials by the NMR-MOUSE. Magn. Reson. Imaging 2003, 21, 249–255. [Google Scholar] [CrossRef]
- Weise, F.; Kind, T.; Stelzner, L.; Wieland, M. Dunkelfärbung Der Betonfahrbahndecke Im AKR-Kontext. Beton-und Stahlbetonbau 2018, 113, 647–655. [Google Scholar] [CrossRef]
- BWMD Mid Level Ontology—Summary | Materials Open Laboratory MatPortal.Org. Available online: https://matportal.org/ontologies/BWMD-MID (accessed on 15 April 2021).
- BWMD Domain Ontology—Summary | Materials Open Laboratory MatPortal.Org. Available online: https://matportal.org/ontologies/BWMD-DOMAIN (accessed on 15 April 2021).
- English—Fraunhofer IWM. Available online: https://www.iwm.fraunhofer.de/en.html (accessed on 15 April 2021).
- Arp, R.; Smith, B.; Spear, A.D. Principles of Best Practice I: Domain Ontology Design; The MIT Press: Cambridge, MA, USA, 2015; ISBN 978-0-262-32958-3. [Google Scholar]
- BWMD_Ontology_mid.Owl · Master · EMI_Datamanagement/BWMD_Ontology. Available online: https://gitlab.cc-asp.fraunhofer.de/EMI_datamanagement/bwmd_ontology/-/blob/master/BWMD_ontology_mid.owl (accessed on 26 April 2021).
- MR-CAT || Core Analyzing Tomograph. Available online: https://www.pure-devices.com/index.php/products/products-mr-cat.html (accessed on 15 April 2021).
- IsAbout-Ontobee: IAO. Available online: http://www.ontobee.org/ontology/IAO?iri=http://purl.obolibrary.org/obo/IAO_0000136 (accessed on 15 April 2021).
- Information Content Entity—Ontobee: IAO. Available online: http://www.ontobee.org/ontology/IAO?iri=http://purl.obolibrary.org/obo/IAO_0000030 (accessed on 15 April 2021).
- Entity—Ontobee: BFO. Available online: http://www.ontobee.org/ontology/BFO?iri=http://purl.obolibrary.org/obo/BFO_0000001 (accessed on 15 April 2021).
Classes from BWMD Ontology | (*) | Properties from BWMD Ontology | (*) | Datatypes from BWMD Ontology | (*) |
---|---|---|---|---|---|
Angle (mid:BWMD_00098) | 3 | containsValuesOfType (mid:BWMD_00329) | 4 | ^^rdfs:Literal | 19 |
Column (mid:BWMD_00287) | 4 | hasAttachedDataSet (mid:BWMD_00326) | 1 | ^^xsd:decimal | 17 |
CSVFile (mid:BWMD_00213) | 1 | hasControlInfo (mid:BWMD_00339) | 1 | ^^xsd:string | 4 |
DataAcquisitionSoftware (mid:BWMD_00248) | 1 | hasDoubleLiteral (mid:BWMD_00314) | 16 | ^^xsd:integer | 5 |
DataSet (mid:BWMD_00024) | 4 | hasIdentifier (mid:BWMD_00319) | 3 | ^^xsd:boolean | 1 |
Description (mid:BWMD_00140) | 1 | hasIntegerLiteral (mid:BWMD_00316) | 4 | ||
Frequency (mid:BWMD_00146) | 1 | hasOutput (mid:BWMD_00331) | 2 | TOTAL | 46 |
Length (mid:BWMD_00127) | 7 | hasPart (mid:BWMD_00323) | 21 | ||
NMRCalibrationMeasurement | 1 | hasParticipant (mid:BWMD_00328) | 4 | ||
NonDestructiveTesting (domain:BWMD_00570) | 1 | hasStringLiteral (mid:BWMD_00313) | 4 | ||
ObjectID (domain:BWMD_00608) | 1 | hasTextualInfo (mid:BWMD_00334) | 1 | ||
ProcessDataSet (mid:BWMD_00068) | 2 | hasUnitSymbol (mid:BWMD_00312) | 18 | ||
ProcessParameterSet (mid:BWMD_00009) | 16 | hasValue (mid:BWMD_00315) | 14 | ||
Quantity (mid:BWMD_00010) | 3 | isDefinedBy (mid:BWMD_00332) | 11 | ||
SoftwareName (mid:BWMD_00241) | 1 | isInputFor (mid:BWMD_00337) | 1 | ||
Specimen (mid:BWMD_00048) | 2 | precedes (mid:BWMD_00335) | 1 | ||
SpecimenID (domain:BWMD_00607) | 1 | refersTo (mid:BWMD_00321) | 11 | ||
TechnologicalProduct (mid:BWMD_00036) | 1 | ||||
Time (mid:BWMD_00122) | 7 | TOTAL | 117 | ||
Velocity (mid:BWMD_00165) | 1 | ||||
TOTAL | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Torres, B.; Völker, C.; Nagel, S.M.; Hanke, T.; Kruschwitz, S. An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sens. 2021, 13, 2426. https://doi.org/10.3390/rs13122426
Moreno Torres B, Völker C, Nagel SM, Hanke T, Kruschwitz S. An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sensing. 2021; 13(12):2426. https://doi.org/10.3390/rs13122426
Chicago/Turabian StyleMoreno Torres, Benjamí, Christoph Völker, Sarah Mandy Nagel, Thomas Hanke, and Sabine Kruschwitz. 2021. "An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering" Remote Sensing 13, no. 12: 2426. https://doi.org/10.3390/rs13122426