Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial Indicators of Urbanization
2.3. Large-Scale URF Identification through Clustering Methods
2.4. Analysis of URF Dynamics and Land Cover Change
2.5. Validation and Accuracy Assessment
3. Results
3.1. Identification of the URF at Urban Agglomeration Scale
3.2. Spatial-Temporal Variations of the URF
3.3. Land Cover Dynamics in the URF
4. Discussion
4.1. Insights for Typology of URF Development
4.2. Implications for Land Use Practices in URF
4.3. Limitation and Further Research Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piorr, A. Peri-Urbanisation in Europe: Towards European Policies to Sustain. Urban-Rural Futures: Synthesis Report; Forest & Landscape, University of Copenhagen: Copenhagen, Denmark, 2011. [Google Scholar]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954–2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy. Environ. Manag. 2015, 56, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Gant, R.L.; Robinson, G.M.; Fazal, S. Land-use change in the ‘edgelands’: Policies and pressures in London’s rural–urban fringe. Land Use Policy 2011, 28, 266–279. [Google Scholar] [CrossRef]
- Guo, L.; Di, L.; Tian, Q. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000–2015. J. Geogr. Sci. 2019, 29, 702–718. [Google Scholar] [CrossRef] [Green Version]
- Bauer, D.M.; Swallow, S.K. Conserving metapopulations in human-altered landscapes at the urban–rural fringe. Ecol. Econ. 2013, 95, 159–170. [Google Scholar] [CrossRef]
- Danielaini, T.T.; Maheshwari, B.; Hagare, D. Defining rural–urban interfaces for understanding ecohydrological processes in West Java, Indonesia: Part II. Its application to quantify rural–urban interface ecohydrology. Ecohydrol. Hydrobiol. 2018, 18, 37–51. [Google Scholar] [CrossRef]
- Scott, A.J.; Carter, C.; Reed, M.R.; Larkham, P.; Adams, D.; Morton, N.; Waters, R.; Collier, D.; Crean, C.; Curzon, R.; et al. Disintegrated development at the rural–urban fringe: Re-connecting spatial planning theory and practice. Prog. Plan. 2013, 83, 1–52. [Google Scholar] [CrossRef] [Green Version]
- López-Goyburu, P.; García-Montero, L.G. The urban–rural interface as an area with characteristics of its own in urban planning: A review. Sustain. Cities Soc. 2018, 43, 157–165. [Google Scholar] [CrossRef]
- Von der Dunk, A.; Grêt-Regamey, A.; Dalang, T.; Hersperger, A.M. Defining a typology of peri-urban land-use conflicts—A case study from Switzerland. Landsc. Urban Plan. 2011, 101, 149–156. [Google Scholar] [CrossRef]
- Parkinson, J.; Tayler, K. Decentralized wastewater management in peri-urban areas in low-income countries. Environ. Urban. 2003, 15, 75–90. [Google Scholar] [CrossRef]
- Hoffhine Wilson, E.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total Environ. 2018, 628-629, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Alexander Wandl, D.I.; Nadin, V.; Zonneveld, W.; Rooij, R. Beyond urban–rural classifications: Characterising and mapping territories-in-between across Europe. Landsc. Urban Plan. 2014, 130, 50–63. [Google Scholar] [CrossRef]
- Hedblom, M.; Andersson, E.; Borgström, S. Flexible land-use and undefined governance: From threats to potentials in peri-urban landscape planning. Land Use Policy 2017, 63, 523–527. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, Y.; Yuan, Q. The redevelopment of peri-urban villages in the context of path-dependent land institution change and its impact on Chinese inclusive urbanization: The case of Nanhai, China. Cities 2017, 60, 466–475. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Woods, M. Rural geography: Blurring boundaries and making connections. Prog. Hum. Geogr. 2009, 33, 849–858. [Google Scholar] [CrossRef]
- Shaw, B.J.; van Vliet, J.; Verburg, P.H. The peri-urbanization of Europe: A systematic review of a multifaceted process. Landsc. Urban Plan. 2020, 196, 103733. [Google Scholar] [CrossRef]
- Simon, D. Urban environments: Issues on the peri-urban fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Zhu, Y. In Situ Urbanization in Rural China: Case Studies from Fujian Province. Dev. Chang. 2000, 31, 413–434. [Google Scholar] [CrossRef]
- Friedmann, J. China’s Urban Transition; University of Minnesota Press: Minneapolis, MN, USA, 2005; p. 378. [Google Scholar]
- Kontgis, C.; Schneider, A.; Fox, J.; Saksena, S.; Spencer, J.H.; Castrence, M. Monitoring peri-urbanization in the greater Ho Chi Minh City metropolitan area. Appl. Geogr. 2014, 53, 377–388. [Google Scholar] [CrossRef]
- Gonçalves, J.; Gomes, M.C.; Ezequiel, S.; Moreira, F.; Loupa-Ramos, I. Differentiating peri-urban areas: A transdisciplinary approach towards a typology. Land Use Policy 2017, 63, 331–341. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Wu, Z. Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China. ISPRS Int. J. Geo Inf. 2016, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban–rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.n.; Liu, Y.; Ma, J.; Zhao, S. A new approach for urban–rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Mortoja, M.G.; Yigitcanlar, T. How Does Peri-Urbanization Trigger Climate Change Vulnerabilities? An Investigation of the Dhaka Megacity in Bangladesh. Remote Sens. 2020, 12, 3938. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Mortoja, M.G.; Yigitcanlar, T.; Mayere, S. What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature. Land Use Policy 2020, 95, 104601. [Google Scholar] [CrossRef]
- Yu, M.; Guo, S.; Guan, Y.; Cai, D.; Zhang, C.; Fraedrich, K.; Liao, Z.; Zhang, X.; Tian, Z. Spatiotemporal Heterogeneity Analysis of Yangtze River Delta Urban Agglomeration: Evidence from Nighttime Light Data (2001–2019). Remote Sens. 2021, 13, 1235. [Google Scholar] [CrossRef]
- Schug, F.; Frantz, D.; Okujeni, A.; van der Linden, S.; Hostert, P. Mapping urban–rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data. Remote Sens. Environ. 2020, 246, 111810. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, Y.; Li, G.; Fang, X. Vegetation Response to Urban Landscape Spatial Pattern Change in the Yangtze River Delta, China. Sustainability 2020, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.n.; Wang, M.; Xu, Z.; Wu, J. Integrating land development size, pattern, and density to identify urban–rural fringe in a metropolitan region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Tan, C.; Li, W. Spatial Recognition of the Urban–Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 1141. [Google Scholar] [CrossRef] [Green Version]
- Mustak, S.; Baghmar, N.K.; Srivastava, P.K.; Singh, S.K.; Binolakar, R. Delineation and classification of rural–urban fringe using geospatial technique and onboard DMSP–Operational Linescan System. Geocarto Int. 2018, 33, 375–396. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Qiu, S.; Xu, H.; Xu, L.; Zhang, L. Polycentric urban development and urban thermal environment: A case of Hangzhou, China. Landsc. Urban Plan. 2019, 189, 58–70. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Deng, X.; Zhuang, D.; Zhang, Z.; Luo, D. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar]
- Cao, Y.; Li, G.; Cao, Y.; Wang, J.; Fang, X.; Zhou, L.; Liu, Y. Distinct types of restructuring scenarios for rural settlements in a heterogeneous rural landscape: Application of a clustering approach and ecological niche modeling. Habitat Int. 2020, 104, 102248. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual Acm-Siam Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009). Eur. Space Agency ESA Univ. Cathol. Louvain UCL 2012. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 12 March 2021).
- Blei, A.M.; Angel, S.; Civco, D.L.; Liu, Y.; Zhang, X. Accuracy Assessment and Map Comparisons for Monitoring Urban Expansion: The Atlas of Urban Expansion and The Global Human Settlement Layer; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2018. [Google Scholar]
- Wu, Z.; Chen, R.; Meadows, M.E.; Sengupta, D.; Xu, D. Changing urban green spaces in Shanghai: Trends, drivers and policy implications. Land Use Policy 2019, 87, 104080. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, X. Reduction of industrial land beyond Urban Development Boundary in Shanghai: Differences in policy responses and impact on towns and villages. Land Use Policy 2019, 82, 620–630. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.; La Rosa, D. Which communities have better accessibility to green space? An investigation into environmental inequality using big data. Landsc. Urban Plan. 2020, 204, 103919. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ahani, S. A conceptual typology of the spatial territories of the peripheral areas of metropolises. Habitat Int. 2019, 90, 102015. [Google Scholar] [CrossRef]
- Amirinejad, G.; Donehue, P.; Baker, D. Ambiguity at the peri-urban interface in Australia. Land Use Policy 2018, 78, 472–480. [Google Scholar] [CrossRef]
- Shkaruba, A.; Kireyeu, V.; Likhacheva, O. Rural–urban peripheries under socioeconomic transitions: Changing planning contexts, lasting legacies, and growing pressure. Landsc. Urban Plan. 2017, 165, 244–255. [Google Scholar] [CrossRef]
Metrics | Description | Range |
---|---|---|
Total Area (TA) | The sum of the areas (km2) of all patches. | TA > 0 |
Number of Patches (NP) | The total number of the patches of the landscape. | NP ≥ 1 |
Patch Density (PD) | PD equals the number of patches of the corresponding patch type divided by total landscape area (km2). | PD > 0 |
Percentage of Landscape (PLAND) | PLAND quantifies the proportional abundance (%) of each patch type in the landscape. | 0 < PLAND ≤ 100 |
Euclidean nearest-neighbor distance (ENN) | The average distance (km) to the nearest neighboring patch based on shortest edge-to-edge distance. | ENN > 0 |
Largest patch index (LPI) | The percentage of the total landscape that is made up by the largest patch. | 0 < LPI ≤ 100 |
Shape Index (SHAPE) | SHAPE = 1 when the patch is maximally compact and increases without limit as patch shape becomes more irregular. | SHAPE ≥ 1 |
Aggregation index (AI) | AI equals 0 when the given landscape is maximally disaggregated and equals 100 when the landscape is aggregated into a single, compact patch. | 0 ≤ AI ≤ 100 |
Year | The Derived Urban Area | City Statistical Yearbook | GlobCover2009 | Atlas of Urban Expansion | Average CR | |
---|---|---|---|---|---|---|
Shanghai | 2000 | 732 | 550 | — | 1267 | 62.34% |
2010 | 1110 | 999 | 1151 | — | 92.66% | |
Hangzhou | 2000 | 153 | 177 | — | 213 | 79.14% |
2010 | 307 | 413 | 335 | — | 82.99% | |
Anqing | 2000 | 23 | 30 | — | 18 | 74.44% |
2010 | 43 | 77 | 72.54 | — | 57.56% | |
YRDUA | 2000 | 2429 | 2991 | — | — | 81.21% |
2010 | 5735 | 6387 | 6256 | 90.73% |
TA | NP | LPI | ENN | AI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | |
Shanghai | 1023 | 1972 | 26 | 30 | 75.95 | 82.1 | 5.52 | 4.01 | 74.82 | 85.24 |
Jiangsu | 4002 | 7391 | 264 | 237 | 8.87 | 34.19 | 5.9 | 5.47 | 64.99 | 74.69 |
Zhejiang | 2350 | 4879 | 170 | 180 | 10.21 | 25.74 | 6.7 | 6.16 | 62.42 | 72.14 |
Anhui | 964 | 1573 | 71 | 65 | 14.94 | 26.83 | 15.35 | 16.51 | 64.29 | 69.47 |
Land Cover Type * | PLAND | PD | SHAPE | AI | ||||
---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | |
Cultivated land | 57.61 | 53.19 | 0.79 | 0.63 | 1.71 | 1.64 | 94.77 | 95.30 |
Forest | 4.56 | 4.21 | 0.68 | 0.78 | 1.35 | 1.36 | 88.73 | 87.28 |
Grassland | 0.95 | 1.52 | 0.76 | 0.91 | 1.27 | 1.30 | 68.28 | 72.97 |
Shrubland | 0.02 | 0.04 | 0.03 | 0.05 | 1.23 | 1.21 | 58.04 | 60.74 |
Wetland | 0.07 | 0.07 | 0.01 | 0.00 | 1.51 | 1.73 | 89.70 | 90.34 |
Water bodies | 5.33 | 6.44 | 0.83 | 0.53 | 1.53 | 1.57 | 86.03 | 89.86 |
Artificial Surfaces | 31.47 | 34.54 | 0.58 | 0.50 | 1.79 | 1.65 | 92.88 | 94.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; CAO, Y.; He, Z.; He, J.; Cao, Y.; Wang, J.; Fang, X. Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sens. 2021, 13, 2373. https://doi.org/10.3390/rs13122373
Li G, CAO Y, He Z, He J, Cao Y, Wang J, Fang X. Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sensing. 2021; 13(12):2373. https://doi.org/10.3390/rs13122373
Chicago/Turabian StyleLi, Guoyu, Yu CAO, Zhichao He, Ju He, Yu Cao, Jiayi Wang, and Xiaoqian Fang. 2021. "Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China" Remote Sensing 13, no. 12: 2373. https://doi.org/10.3390/rs13122373
APA StyleLi, G., CAO, Y., He, Z., He, J., Cao, Y., Wang, J., & Fang, X. (2021). Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sensing, 13(12), 2373. https://doi.org/10.3390/rs13122373