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Abstract: Urbanization has destroyed and fragmented large amounts of natural habitats, resulting in
serious consequences for urban ecosystems over past decades, especially in the rapidly urbanizing
areas of developing countries. The Yangtze River Delta Urban Agglomeration, which has experienced
the fastest socioeconomic development in China, was selected as the study area. To explore
the relationship between urbanization and vegetation dynamics at the agglomeration scale, the
spatiotemporal characteristics of urban expansion and vegetation variation of the study area were
evaluated by landscape spatial analysis, regression analysis, and trend analysis. The results show
that the urbanization level of the study area exhibited a continuous upward trend, with Shanghai as
the regional core city, and the level of urbanization gradually decreased from the center towards the
periphery of the urban agglomeration. The overall urban expansion presented obvious landscape
spatial heterogeneity characteristics and the emergence of new cities and towns enhanced landscape
connectedness and created a more aggregated urban agglomeration. Noticeable spatiotemporal
differences of vegetation variation were observed from 2004 to 2013. Areas with relatively low
vegetation coverage showed a steady growth trend, while those with higher vegetation coverage
reported a significant decreasing trend. The spatial heterogeneity analysis of the vegetation trend
demonstrated that vegetation degradation was a dominant and inevitable process across the study area.
However, some parts of the urban sprawl area, especially at the periphery of the metropolis, may
experience a greening trend rather than a browning trend, indicating that urbanization does not
necessarily lead to large-scale vegetation degradation. Although urbanization poses a negative
impact on vegetation and physical environments, urbanization has not yet reduced a large area of
vegetation at the regional level.

Keywords: urban expansion; vegetation variation; nighttime light; NDVI; the Yangtze River Delta
Urban Agglomeration; China

1. Introduction

Urbanization is usually accompanied by land use change and urban expansion, and is among
the most irreversible human impacts on the global biosphere [1]. For example, the transformation of
natural landscape exerts a predominant influence on the local climate and environment by modifying
the surface roughness, albedo and evapotranspiration and increasing the aerosols, hence exacerbating
the urban heat island effect and altering the precipitation patterns at a regional scale [2,3]. With the
intensification of anthropogenic activities and land cover change throughout the world, urbanization
has profoundly affected the structure, function, and processes of ecosystems and has resulted in
various detrimental outcomes regarding natural resource depletion, ecosystem deterioration, and
biodiversity loss [4,5]. Therefore, studies on broad-scale urbanization and its ecological effects are
becoming increasingly important for natural resource management and regional planning.
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The urban landscape refers to a region dominated by specific landscape elements in an urban area,
including buildings, roads, gray infrastructure, and green space [6]. Many studies have been conducted
to quantitatively monitor urban landscape dynamics and estimate urban ecosystem pressure to
understand the spatio-temporal characteristics and ecological effects of urbanization. There is sufficient
evidence provided by previous investigations to show that large-scale changes in the urban landscape
spatial pattern (e.g., distribution, composition and configuration) will lead to mass plant extinction [7],
species richness decline [8], decreasing carbon sequestration and flux [9,10], atmospheric humidity
reduction [11] and changing land surface temperature [12,13], and aggravation of fine particulate
pollution [14]. Therefore, the change in urban landscape pattern is one of the most conspicuous
aspects of urbanization, and it poses a variety of negative influences on the physical environment
and ecosystems.

In most previous investigations, remote sensing data contained periodically and spatially explicit
information on urbanization and were extensively employed to delineate the layout of urban space,
measure human settlement, and detect urban growth [15,16]. Static pictures and dynamic information
on land use change are often provided by studies based on fine- or moderate-resolution remote sensing
images; these studies have usually focused on individual cities or certain metropolitan areas [17,18].
In terms of urban agglomerations, due to the limited scene area and negative effect of the presence of
clouds [19], it is impractical to expect medium- and high-resolution data to be available for application
at a larger scale. Thus, depicting timely characterizations of urban cluster dynamics requires imagery
that has a greater geographic coverage and higher temporal resolution [20].

In particular, nighttime light (NTL) data with coarse spatial resolution, collected by the Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS), are commonly utilized
for evaluating urban growth at regional and continental scales [21–23]. Based on a daily temporal
resolution and relatively long time span (i.e., 1992–2013), numerous efforts have been made to generate
a wealth of information about urbanization using NTL imagery, e.g., assessing light pollution [24],
extracting impervious surface areas [25], and mapping urban expansion dynamics [26–29]. Although not
reflecting the socio-economic status directly, NTL data have been regarded as a proxy measure of
human well-being [30]. Moreover, a significant and positive correlation between NTL luminosity and
human activity intensity has been widely reported using DMSP/OLS images as indicators of population
density, energy consumption [31], greenhouse gas emissions [32], and economic activities. On the other
hand, the complexity of urbanization issues has motivated considerable scientific attempts to combine
complementary features across different data sources [33]. For instance, the normalized difference
vegetation index (NDVI) images obtained from a Moderate Resolution Imaging Spectroradiometer
(MODIS) contain abundant vegetative information about natural ecosystems, including data on net
primary productivity, biomass, and leaf area index [34–37]. A few studies applied the NDVI along
with other remotely sensed datasets to demonstrate that a reduction in vegetation would trigger
severe environmental challenges [38,39]. Likewise, the combination of NTL and NDVI datasets can be
beneficial for identifying changes caused by natural disasters and tracking recovery [40]. It is evident
that such remote sensing data lend themselves to probe into the nonlinear interrelationships between
urbanization and vegetation degradation [41].

However, previous studies based on NTL data have mostly focused on the spatial changes in
physical built-up areas or precise urban boundaries, and peri-urban areas, which may be characterized
by rural urbanization have usually been ignored. Additionally, studies concerning the integrated use
of the NTL data and NDVI index to describe the total vegetation variation associated with urban
growth at the metropolitan circle level are relatively rare and have not garnered wide attention from
the scientific community [42]. Meanwhile, scientific evidence based on long-term urban morphological
observations and the vegetation activity dynamics in China remains insufficient for policy-making,
particularly from the perspective of urban agglomerations.

The primary objective of this paper was to examine the evolving nature of urban growth
and vegetation dynamics at the agglomeration scale through the synergistic use of NTL data and
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MODIS images. For the purpose of this research, urban growth did not merely signify the expansion of
physical built-up area or impervious surface [43] but rather encompassed the spatial pattern change of
all urban landscapes. Then, the Yangtze River Delta Urban Agglomeration (YRDUA) was selected as the
study area. Since its reform and opening-up, the Yangtze River Delta has witnessed an unprecedented
process of urbanization and a dramatic economic boom. The YRDUA was one of the earliest urban
clusters formed in China, and its urbanization rate and economic growth rate are well above the
national average. Unfortunately, few studies have adopted NTL and NDVI datasets to monitor the
characteristics of urbanization and vegetation changes in the Yangtze River Delta region [44].

Accordingly, we proposed a feasible approach based on previous efforts to use time-series
DMSP/OLS and MODIS images to evaluate urban expansion and vegetation variation in the YRDUA.
Moreover, the correlation between urbanization and vegetation variation in the YRDUA was analyzed
spatially at both agglomeration and metropolitan levels. Our work is expected to enrich existing
studies of urbanization with environmental consequences, especially for rapidly developing regions in
China, and contribute to the current literature by incorporating multi-source remote sensing data.

2. Study Area and Data

2.1. Study Area

The YRDUA is located along the east coast of China and covers one municipality (Shanghai) and
three neighboring provinces (Jiangsu, Zhejiang and Anhui) (Figure 1). The entire region consists of 26
prefecture-level cities that cover an area of 211,700 km2. Following the YRDUA development plan
approved by the State Council in 2016, these cities were ranked by urban resident population as listed
in Table 1. The whole region is designed as an urban network, including one core megacity (Shanghai)
and five metropolitan circles (Nanjing, Hangzhou, Ningbo, Hefei, and Su-xi-chang). As the fastest
urbanized area and most densely populated area in the country, the YRDUA contributes roughly
more than one-fifth of the economic aggregate and industrial growth, but has just 2.2% of China’s
land area. By 2014, the gross domestic product (GDP) of the YRDUA reached over 12.67 trillion yuan,
and its total population reached approximately 150 million, accounting for 18.5% and 11%, respectively,
of China’s total values. Under the background of world multi-polarization and economic globalization,
the YRDUA plays a vital role in China’s socio-economic development in that it serves as a convergence
zone for the “Yangtze River Economic Belt” and the “Belt and Road Initiative”.Sustainability 2019, 11, x FOR PEER REVIEW 4 of 18 
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Table 1. City ranking of YRDUA (2014).

Rank Resident Population City Name

1 >10 million Shanghai
2 5–10 million Nanjing
3 3–5 million Hangzhou, Hefei, Suzhou

4 1–3 million Wuxi, Ningbo, Nantong, Changzhou, Shaoxing, Wuhu, Yancheng,
Yangzhou, Taizhou (Jiangsu province), Taizhou (Zhejiang province)

5 0.5–1 million Zhenjiang, Huzhou, Jiaxing, Maanshan, Anqing, Jinhua, Zhoushan
6 0.2–0.5 million Tongling, Chuzhou, Xuancheng, Chizhou

2.2. Data Collection

The remote sensing datasets used in this study include the DMSP/OLS dataset and MODIS
NDVI dataset. The version 4 DMSP/OLS stable light annual image dataset covering the period
from 2004 to 2013 was downloaded from the National Oceanic and Atmospheric Administration’s
National Geophysical Data Center (NOAA/NGDC) website (http://www.ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html). The nighttime light data composites with a 0.55 km spatial resolution
are aggregated to 30 arc-sec grids. Each grid’s pixel value is a 6-bit digital number (DN) ranging
from 0 to 63, and it indicates the average NTL intensity. We chose a time series of the NTL data that
was derived from the DMSP F16 satellite and F18 satellite for the years 2004–2009 and 2010–2013,
respectively. The MODIS-enhanced vegetation index monthly composite (MOD13A3) is a gridded
product with a 1 km spatial resolution, and it is utilized as the data source for extracting the NDVI
information in this research. We obtained this monthly MODIS product from the NASA Earth
Observing System Data and Information System website (https://ladsweb.modaps.eosdis.nasa.gov/).
To avoid spurious vegetation information, we acquired the annual NDVI value from the growing season,
i.e., March to November. Other auxiliary data include administrative boundaries, linear transportation
network data, and socioeconomic statistical data. The administrative boundary and transportation
vector data were acquired from the National Geomatics Center of China (http://www.ngcc.cn/ngcc/),
and the socioeconomic statistical figures for the years 2004–2013 were derived from the China City
Statistical Yearbook. Moreover, we obtained a land cover data with 300 m spatial resolution from
the Climate Change Initiative Land Cover (CCI-LC) project (https://www.esa-landcover-cci.org/);
the finer resolution land cover image was used as a reference map to assess the accuracy and validity
of NTL-derived urban areas.

A series of data pre-processing procedures were performed as follows: all collected remote sensing
data were resampled to 1 km grid cells and re-projected to a Lambert conformal conic projection.
Finally, all raster data were clipped with the geographic extent boundaries of the YRDUA.

3. Methods

Our analysis consisted of four steps: discussing the relationship between the average light
intensity index and urbanization level, extracting the urban extents from 2004 to 2013, analyzing the
spatiotemporal patterns of urban expansion, and exploring the correlation between urban expansion
and vegetation variation.

3.1. Relationship between NTL Intensity and Urbanization Level

To explore the relationship between NTL intensity and the urbanization level of the YRDUA,
the average nighttime light intensity index (ALI) and composite urbanization index were defined in
this study. ALI has been proven to be an effective indicator to estimate regional light intensity at the
county, city, and provincial scales [45,46]. When each prefecture level city is selected as the study area,
the ALI is calculated as follows:

ALI =
DNm∑
i=1

DNi ×
ni

N×DNm
, (1)

http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.ngcc.cn/ngcc/
https://www.esa-landcover-cci.org/
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where ALI is the average light intensity, DNi is the DN value of the i-th level pixel, ni is the count of the
i-th level pixel, N is the total number of light pixels (1 ≤DN ≤ 63), and DNm is the maximum DN value.

The urbanization level is a comprehensive indicator that could be used to characterize
urban socioeconomic development, industrial growth, and spatial expansion simultaneously [47].
Therefore, the composite urbanization index was chosen as the indicator to comprehensively evaluate
the urbanization level; it is shown in Equation (2). Note that all statistical data should be standardized
to unify dimensions.

Cj =
3∑

i=1

Wi × Xi, (2)

where Cj is the composite urbanization index of city j. Xi is the normalized urbanization factor
comprising the urbanization rate, GDP per km2 and secondary and tertiary industry growth per km2.
Wi is the weight of the i-th urbanization factor, and all factors were equally weighted in this study.

3.2. Urban Area Extraction from DMSP/OLS Nighttime Light Data

Using the NTL data and ancillary data, an optimal DN value threshold method was applied
in this study to extract the urban extent. The thresholding technique with ancillary data has been
extensively used because of its simplicity and relatively high reliability [26,48]. The objective of this
method is to extract an urban area from the NTL data that is close or equal to the area derived from the
corresponding statistical data [49].

In light of the status quo of continuous and irreversible urban expansion in the YRDUA, we assumed
that the existing urban areas would not be transformed into rural areas in subsequent years. In other
words, the light patch pixels assigned as urban fragments in previous DMSP/OLS images would
be maintained as light pixels afterwards. Therefore, the optimal threshold method was based on
this assumption. For each prefecture city, a potential threshold, such as the median DN value of each
specific city, was given to first obtain the light area. Then, the total light patch area was compared
with the corresponding urban area census data to quantify any differences. Optimum thresholds
were determined for 2004, 2008 and 2013 by iteratively modifying the threshold parameter until the
luminous area at that threshold most closely matched the ancillary data with regard to the area statistics.
Considering that the priority of this study is to explore the interaction between urbanization and
vegetation dynamics, we focused on all urban areas with nighttime lights rather than the extent of
built-up area [50]. Thus, the lowest threshold among 26 cities for each year was defined as a uniform
threshold to extract urban landscapes in the YRDUA. This threshold value extended the delimitation
of urban areas, while encompassing urban human activity areas in suburbs or exurbs.

3.3. Measuring Urban Landscape Spatial Pattern Change

On the basis of the urban geographic extent obtained from the DMSP/OLS imagery, the spatial
distribution of the urban expansion in the YRDUA can be analyzed directly. In addition, a landscape
spatial pattern analysis was performed as a proxy measure to depict the spatial characteristics of urban
expansion in this study, and a series of landscape metrics were calculated to indirectly demonstrate the
change in urban area (Table 2).



Sustainability 2020, 12, 68 6 of 18

Table 2. Selected landscape metrics to measure urban spatial characteristics.

Index Abbreviation Unit Description

NP – Number of patches.

LPI % Largest Patch Index is the ratio of the area of the
largest patch to the total area of the urban landscape.

MPS km2 Mean patch size is computed by dividing the total
urban area by the number of patches.

COHESION % Cohesion measures the physical connectedness of the
corresponding patches.

AI % Aggregation index measures the degree of
aggregation between urban patches.

3.4. Correlation between Urban Growth and Vegetation Variation

3.4.1. Vegetation Coverage Changes

The NDVI is one widely-used indicator of vegetation growth and plant coverage. Studies have
found that the NDVI value of water is less than zero, and is approximately equal to zero for rock,
bare soil, and construction areas. If the NDVI is greater, the degree of vegetation coverage is higher.
The fractional vegetation cover ( f c) is defined as follows:

f c =
NDVI−NDVIsoil

NDVIveg − NDVIsoil
, (3)

where NDVIsoil represents the bare ground and is equal to the minimum value; NDVIveg indicates
the vegetation-covered area and is equal to the maximum value. To judge the vegetation variation in
the YRDUA more clearly, we further projected the vegetation variation trend spatially based on the
NDVI data by applying the linear regression method. The slope of the fitting function can be expressed
as follows:

SLOPE =
n ×
∑n

i=1 i × NDVIi −
∑n

i=1 NDVIi ×
∑n

i=1 i

n ×
∑n

i=1 i2 − (
∑n

i=1 i)2 , (4)

where n is the cumulative number of years, NDVIi represents the NDVI value of the i-th year, and
SLOPE represents the variation trend of the observation NDVI values. For vegetation variation,
SLOPE > 0 indicates plant restoration and SLOPE < 0 indicates plant degradation during the study
period [51]. The significance of the trends for all pixels was evaluated using a two-tailed Student’s
t test. When the observed p-value is greater than 0.05, the time series trends did not present statistical
significance, whereas when the p value is less than or equal to 0.05, the time series trend is significant
and the pixels represent significantly changed areas.

3.4.2. Correlation between Urban Growth and Vegetation Variation

On the basis of the premise that NTL value fluctuation is consistent with urban dynamics,
the DN-NDVI correlation model was built to examine the relationship between urban growth and
vegetation change at a regional and pixel level. We developed a stratified sampling method to explore
the correlation between light intensity and vegetation. Note that abnormal fluctuations and anomalous
DN values exist in the NTL data composites, and the stratified sampling method can minimize the
discrepant impact from noise pixels on the correlation analysis result. Based on the mean DN value
and mean NDVI value from different years, the selection of the sampling point was performed by
using the equal interval division method [50] as follows: the DN value was subdivided into 6 layers
at intervals of 10, and then 50 sample points were randomly selected from each layer to maximize
the dispersal uniformity of sampling. After sampling, we built linear regression models based on the
observed mean DN and NDVI values. We further employed the spatial overlay and statistical analysis
methods to detect vegetation variation in urban expanded areas across different cities. When the
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urban extent was overlaid with the SLOPE and ∆fc spatial distribution map, the result could not only
provide a visual expression of vegetation changes in the expansion area but also embody the statistical
vegetation coverage variation for each region in different periods.

4. Results

4.1. Relationship between NTL Intensity and Urbanization Level

The urbanization rate, standardized composite urbanization index, and average NTL intensity
index for a total of 26 prefecture cities in 2013 are plotted in Figure 2. Our first linear regression model
showed that the ALI explained more than half of the variation in the urbanization rate (R2 = 0.60) at
the prefecture-level city scale (Figure 2a). In the second model, we replaced the urbanization rate with
the composite urbanization index for the analysis. Changing the dependent variable increased the R2

to 0.81 (Figure 2b). These results showed a positive linear relationship between urban development
and NTL intensity. In highly urbanized regions, the use of NTL data is an efficient way to reflect the
urbanization level.
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4.2. Urban Growth Characteristic

Due to the significant variation in physical geographic conditions and socioeconomic development
levels in the study area, the optimum threshold may vary considerably across different cities.
The difference among the optimal threshold can reflect the diversified characteristics in the urbanization
level within the urban cluster. Figure 3b shows that the threshold representing the minimum brightness
of urban luminous area in each city continually increased during the study period. The difference
in threshold in every city in 2004 appears to be notable while there was less of a difference in 2013
because of the increased human activity intensity level. The threshold values of Xuancheng for 2004,
Anqing for 2008, and Zhoushan for 2013 were selected as the uniform thresholds of the study area in
corresponding years.

The total urban built-up area of the entire region in 2004 was approximately 3350 km2,
and it extended to 4272 km2 in 2008 and reached a maximum of approximately 5952 km2 in 2013.
Figure 3a shows that urban construction land was mainly concentrated in Shanghai, Nanjing, Suzhou,
Hangzhou, and Hefei, which are all regional central cities or provincial cities. Most large cities
underwent accelerated expansion from 2008 to 2013 due to the increasing demand for construction land.
In particular, the urban sizes of Shanghai, Suzhou, Wuxi, and Changzhou increased continuously,
leading to a contiguous urban cluster in the east coastal area, namely, the Su-xi-chang metropolitan circle.
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Figure 4 shows the spatial changes in the urban built-up area of the YRDUA over the past decade.
The spatial extent of the urban built-up area of the YRDUA changed greatly throughout the period and
resulted in various characteristics of the urban expansion spatial pattern between different metropolitan
circles in the YRDUA. The Shanghai and Su-xi-chang metropolitan circles experienced rapid external
sprawl patterns, which was the spatial manifestation of urbanization, and there was vast planar
expansion in the area around these city centers. Meanwhile, urban expansion occurred along the
waterway, railway, and highway. Cities like Jiaxing that are spatially distributed between two central
metropolitans, i.e., Shanghai and Hangzhou, presented a linear urban expansion pattern along the
main traffic arteries. Other cities with relatively lower urbanization levels formed a point dispersal
pattern during the period.
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Figure 5 portrays the characteristics of urban areas for different years at the landscape level. All of
the selected landscape metrics results show an increasing trend from 2008 to 2013. The considerable
increases in the number of patches (NP) and mean patch size (MPS) represent the quantitative and
areal growth of urban patches, and this growth illustrates the dramatic urban external sprawl and
emergence of new cities and towns in the YRUDA. The largest patch index (LPI) presented a significant
growth from 2004 to 2008; then, this growing trend turned into a slower pace from 2008 to 2013.
This result indicated that the largest urban cluster, i.e., the Shanghai and Su-xi-chang metropolitan
circles, experienced lower rates of urban growth for the later period. As for the spatial configuration of
urban landscape, AI and COHESION presented relatively slight upward tendencies, indicating that
the aggregation level and connectedness of urban landscapes increased gradually within a narrow
range as the urbanization process accelerated. Additionally, the starting value of these two indicators
were relatively high, signifying that an aggregated urban landscape and contagious urban cluster had
already been formed in the YRDUA before 2004.
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4.3. Vegetation Variation Analysis

To understand the annual variance and spatial distribution of vegetation quantitatively,
we classified the fractional vegetation cover (fc) into five grades to demonstrate the differences
in vegetation quality [44]. Figure 6 portrays the spatial patterns of vegetation cover for 2004, 2008,
and 2013. The vegetation grade at an fc value greater than 0.75 covered a large proportion of the
study area, which was commonly dominated by tree, shrub, or herbaceous cover. The vegetation
distributed in the northern and central area of the YRDUA experienced the most significant reduction
during the period. Note that the two regions mainly cover arable land and construction land; thus, the
reduction in fc value may be attributed to land use transformation caused by intensive human activity.
Conversely, the fc value in the southern area of the YRDUA, i.e., most of Zhejiang Province, basically
remained unchanged. By 2013, the fc value of the whole study area presented an explicit spatial
disparity between the north and south.

Table 3 shows the different fc grade variances at the whole-region scale. The classification results
show that fc less than 0.74 increased significantly, while fc greater than 0.75 decreased in both periods.
In other words, areas with a relatively lower vegetation cover in the YRDUA showed a steady growth
tendency with the acceleration of the urbanization process, while areas with a higher vegetation cover
showed a slight reduction trend. According to the annual rate of vegetation change, we also found
that the areas with higher vegetation coverage (fc > 0.75) experienced more severe plant degradation
after 2008. These statistics reveal that the declining tendency of vegetation appears to be worse on a
macroscopic scale, especially in densely vegetated land. The intensive anthropogenic activities and
rapid urbanization may jointly contribute to the variation trend.
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Table 3. Area and rate change of each vegetation grade in the YRDUA.

fc 2004 (km2) 2008 (km2) 2013 (km2)
2004–2008 Annual Rate

of Change (%)
2008–2013 Annual Rate

of Change (%)

<0.50 8761.03 9421.46 11278.36 1.88 3.94
0.50~0.54 2122.04 3212.47 4005.95 12.85 4.94
0.55~0.61 7196.25 12,428.57 14,284.51 18.18 2.99
0.62~0.74 40,121.21 44,050.03 62,590.20 2.45 8.42
<0.75 148,556.64 137,644.64 114,598.14 −1.84 −3.35

4.4. Correlation between Urban Growth and Vegetation Variation

The mean NDVI and DN value for each prefecture city and all 300 sampling points in the YRDUA
were calculated during 2004 to 2013. Further, we ascertained the relationship between the nighttime
light and vegetation index using a linear regression method. As Figure 7 shows, the NDVI value and
DN value exhibited a significant negative relation at either the prefecture city level or pixel-based
level, with a coefficient of determination equal to 0.7107 and 0.3383, respectively, which means that a
higher light intensity was correlated with lower vegetation coverage. Due to the positive correlation
between light intensity and urbanization level, this statistical result also verified that urbanization and
vegetation degradation have a significant spatial correlation, namely, higher urbanization levels or
anthropogenic activity intensity may worsen vegetation conditions.
Sustainability 2019, 11, x FOR PEER REVIEW 11 of 18 

 

Figure 7. Relationship between light intensity and vegetation coverage of (a) 26 prefecture cities and 
(b) 300 sample pixels. 

Based on the linear regression model, the spatial pattern of the vegetation variation trend was 
determined and is displayed in Figure 8a. Areas characterized by a decreased NDVI trend were 
mainly distributed in most of Shanghai and the metropolitan areas of Jiangsu Province, the landforms 
of which mainly consist of alluvial plain. In contrast, the mountainous area of Zhejiang Province and 
western Anhui Province showed an obvious greening trend. These regions were dominated by 
subtropical evergreen broadleaf forest and needle-leaved evergreen forest, and the fine ecological 
conditions and forest tending projects contributed to this temporal signature. 

 

Figure 8. Vegetation variation trends in (a) YRDUA and the (b) urban sprawl area from 2004 to 
2013. 

According to the positive or negative SLOPE value and the significance level, four types of 
vegetation temporal signatures were defined. As shown in Figure 8b, we overlaid the urban 
expanded geographic extent extracted from the NTL data onto the vegetation variation trend map to 
retrieve the spatial distribution of vegetation coverage changes in urban sprawl space. The results 
illustrate that the urbanization process had a significant effect on the vegetation cover. The number 
of pixels with negative values were far greater than those with positive values. In general, vegetation 

Figure 7. Relationship between light intensity and vegetation coverage of (a) 26 prefecture cities and
(b) 300 sample pixels.



Sustainability 2020, 12, 68 11 of 18

Based on the linear regression model, the spatial pattern of the vegetation variation trend was
determined and is displayed in Figure 8a. Areas characterized by a decreased NDVI trend were mainly
distributed in most of Shanghai and the metropolitan areas of Jiangsu Province, the landforms of which
mainly consist of alluvial plain. In contrast, the mountainous area of Zhejiang Province and western
Anhui Province showed an obvious greening trend. These regions were dominated by subtropical
evergreen broadleaf forest and needle-leaved evergreen forest, and the fine ecological conditions and
forest tending projects contributed to this temporal signature.

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 18 

 

Figure 7. Relationship between light intensity and vegetation coverage of (a) 26 prefecture cities and 
(b) 300 sample pixels. 

Based on the linear regression model, the spatial pattern of the vegetation variation trend was 
determined and is displayed in Figure 8a. Areas characterized by a decreased NDVI trend were 
mainly distributed in most of Shanghai and the metropolitan areas of Jiangsu Province, the landforms 
of which mainly consist of alluvial plain. In contrast, the mountainous area of Zhejiang Province and 
western Anhui Province showed an obvious greening trend. These regions were dominated by 
subtropical evergreen broadleaf forest and needle-leaved evergreen forest, and the fine ecological 
conditions and forest tending projects contributed to this temporal signature. 

 

Figure 8. Vegetation variation trends in (a) YRDUA and the (b) urban sprawl area from 2004 to 
2013. 

According to the positive or negative SLOPE value and the significance level, four types of 
vegetation temporal signatures were defined. As shown in Figure 8b, we overlaid the urban 
expanded geographic extent extracted from the NTL data onto the vegetation variation trend map to 
retrieve the spatial distribution of vegetation coverage changes in urban sprawl space. The results 
illustrate that the urbanization process had a significant effect on the vegetation cover. The number 
of pixels with negative values were far greater than those with positive values. In general, vegetation 

Figure 8. Vegetation variation trends in (a) YRDUA and the (b) urban sprawl area from 2004 to 2013.

According to the positive or negative SLOPE value and the significance level, four types of
vegetation temporal signatures were defined. As shown in Figure 8b, we overlaid the urban expanded
geographic extent extracted from the NTL data onto the vegetation variation trend map to retrieve the
spatial distribution of vegetation coverage changes in urban sprawl space. The results illustrate that the
urbanization process had a significant effect on the vegetation cover. The number of pixels with negative
values were far greater than those with positive values. In general, vegetation degradation caused by
urban expansion is predominant and inevitable across the study area because of either external sprawl
or linear expansion patterns, with 36.34% of the urban expanded area showing significant degradation
(SLOPE < 0, p ≤ 0.05). Plant degradation is mainly concentrated in the Shanghai, Suzhou, and
Hangzhou metropolitan circles, which experienced major urban growth from 2004–2013. Very small
and dispersed portions of the sprawl region showed a significant restoration trend (SLOPE > 0,
p ≤ 0.05), which accounted for only 2.47% of the expanded area. Moreover, some prefecture cities have
experienced a greening trend despite showing significant changes greater than 0.05. Such vegetation
restoration areas were intensively distributed around the core urban areas of Shanghai, Suzhou, and
Ningbo, which experienced a higher urbanization level than other cities. The vegetation restoration
trend may be caused by the extremely strict land use policies and effective land consolidation measures
that have been taken in these regions.

When vegetation changes are observed in different cities or periods, the characteristics of vegetation
variation may vary significantly. Based on the city rankings from the YRDUA development plan
(Table 1), seven cities in different rank or size were selected to examine the spatial differentiation in
vegetation dynamics. The fc differences of seven cities with diverse urbanization level were analyzed
quantitatively for five-year intervals between 2004 and 2013. The box plots of these differences are given
in Figure 9. The figure was drawn using several eigenvalues of ∆fc, including the extremum, median
and quartiles, and it graphically depicts the underlying statistical distribution of the numerical data.
In Figure 9a, the median ∆fc of each sample and most of the third-quartile values are below 0, which
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indicates an evident vegetation reduction trend between 2004 and 2008. From 2008 to 2013, the median
∆fc values in different cities were still lower than 0, except in Shanghai (Figure 9b). The result also
indicated that vegetation coverage in the urban expanded area around this megacity emerged as a
restoration process. As stated above, the landscape metrics result suggested that the largest urban
cluster, i.e., the Shanghai and Su-xi-chang metropolitan circles, experienced lower rates of urban
expansion for the later period. Consequently, the severe vegetation degradation trend appeared to be
moderate or converted to restoration when the rapid urban sprawl turned into slow aggregation.

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 18 

degradation caused by urban expansion is predominant and inevitable across the study area because 
of either external sprawl or linear expansion patterns, with 36.34% of the urban expanded area 
showing significant degradation (SLOPE < 0, p ≤ 0.05). Plant degradation is mainly concentrated in 
the Shanghai, Suzhou, and Hangzhou metropolitan circles, which experienced major urban growth 
from 2004–2013. Very small and dispersed portions of the sprawl region showed a significant 
restoration trend (SLOPE > 0, p ≤ 0.05), which accounted for only 2.47% of the expanded area. 
Moreover, some prefecture cities have experienced a greening trend despite showing significant 
changes greater than 0.05. Such vegetation restoration areas were intensively distributed around the 
core urban areas of Shanghai, Suzhou, and Ningbo, which experienced a higher urbanization level 
than other cities. The vegetation restoration trend may be caused by the extremely strict land use 
policies and effective land consolidation measures that have been taken in these regions. 

When vegetation changes are observed in different cities or periods, the characteristics of 
vegetation variation may vary significantly. Based on the city rankings from the YRDUA 
development plan (Table 1), seven cities in different rank or size were selected to examine the spatial 
differentiation in vegetation dynamics. The fc differences of seven cities with diverse urbanization 
level were analyzed quantitatively for five-year intervals between 2004 and 2013. The box plots of 
these differences are given in Figure 9. The figure was drawn using several eigenvalues of Δfc, 
including the extremum, median and quartiles, and it graphically depicts the underlying statistical 
distribution of the numerical data. In Figure 9a, the median Δfc of each sample and most of the third-
quartile values are below 0, which indicates an evident vegetation reduction trend between 2004 and 
2008. From 2008 to 2013, the median Δfc values in different cities were still lower than 0, except in 
Shanghai (Figure 9b). The result also indicated that vegetation coverage in the urban expanded area 
around this megacity emerged as a restoration process. As stated above, the landscape metrics result 
suggested that the largest urban cluster, i.e., the Shanghai and Su-xi-chang metropolitan circles, 
experienced lower rates of urban expansion for the later period. Consequently, the severe vegetation 
degradation trend appeared to be moderate or converted to restoration when the rapid urban sprawl 
turned into slow aggregation. 

 

Figure 9. Box plots of fc differences in the urban sprawl area of seven cities in the YRDUA for (a) 2004 
to 2008 and (b) 2008 to 2013. 

5. Discussion 

5.1. Effects of Urbanization on Vegetation 

To further delineate the relationship between urbanization processes and vegetation change in 
the YRDUA, we selected the average SLOPE of NDVI and the proportion of vegetation degradation 
pixels (PVDP) in the extracted urban landscape to reflect the overall vegetation trend of each city. 
Similarly, the slope of nighttime light variation (SNTL), that is, the change rate of the DN value, is 
calculated according to Equation (4) and defined as an indicator to represent the speed of 
urbanization of each city. 

Figure 9. Box plots of fc differences in the urban sprawl area of seven cities in the YRDUA for (a) 2004 to
2008 and (b) 2008 to 2013.

5. Discussion

5.1. Effects of Urbanization on Vegetation

To further delineate the relationship between urbanization processes and vegetation change in
the YRDUA, we selected the average SLOPE of NDVI and the proportion of vegetation degradation
pixels (PVDP) in the extracted urban landscape to reflect the overall vegetation trend of each city.
Similarly, the slope of nighttime light variation (SNTL), that is, the change rate of the DN value,
is calculated according to Equation (4) and defined as an indicator to represent the speed of urbanization
of each city.

We found that the SLOPE of NDVI increases when the average nighttime light intensity index
(ALI) is increased, which reveals that higher urbanization levels possibly improved vegetation coverage
in the YRDUA (Figure 10a). This regression result coincides with the ∆fc box plot and vegetation
trend map; it consistently suggests that higher urbanization level is not always associated with lower
vegetation cover. For instance, urban landscapes distributed in new peripheries of Shanghai and
Suzhou showed obvious greening trends (Figure 8b). The vegetation restoration trend in these regions
may be correlated with suburb parks and other urban green space dominated by greenery and plants.
As the regional growth pole, the urbanization level of the Shanghai and Su-xi-chang regions was
remarkably higher than that of other cities in the YRDUA, and the heavy investment in ecological
rehabilitation projects, efficient government control measures, and landscape planning may have
mainly contributed to this restoration trend. Still, additional analysis with a longer time-series and
finer resolution data combined with other ancillary data are required to explain this phenomenon.

In addition, Figure 10b indicates that urbanization speed is uncorrelated with the trend of
vegetation change. Furthermore, the percent of vegetation degradation pixel in the urban landscape is
basically uncorrelated with either the urbanization level or speed (Figure 10c,d). The percentage of each
city was nearly the same and mostly ranged from 80% to 95%. These findings help to understand that
a certain ratio of vegetation loss is inevitable under the continuous urbanization process. At the rapid
urban expansion stage, substantial cropland or forest was occupied and converted into impervious
surfaces that consequently resulted in degradation of vegetation [41]. These results may further
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demonstrate that urban expansion combined with land use change were the primary cause of
vegetation degradation in the YRDUA during the study period.
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The integrative use of DMSP/OLS NTL data and MODIS NDVI data is a feasible way of delineating
the relationships between vegetation changes and urban expansion, both spatially and temporally.
The results clearly indicate that the urbanization process in the YRDUA significantly impacts vegetation.
On the one hand, rapidly urbanized cities have a high probability of vegetation degradation, but the
urbanization process does not necessarily cause vegetation degradation on a large scale. On the
other hand, the vegetation variation trend may vary significantly at different urbanization stages.
Multiple socioeconomic factors, such as urban development, environmental conservation policy and
public awareness, may have benefits in terms of vegetation growth; however, more evidence is needed
to support this conjecture. The results also reveal that the prevention of vegetation degradation in
rapid urbanization processes is possible.

5.2. Limitation and Further Improvement

Employing remote sensing data to monitor landscape change can provide information on the
spatial distribution, pattern, and scale of human activities or socioeconomic developments. For instance,
urban built-up areas are directly related to the NTL brightness derived from DMSP/OLS images.
MODIS images can be used to detect total vegetation in a more accurate and consistent fashion. In this
study, we combined NTL data with conventional statistical data from city yearbooks to measure urban
expansion in the YRDUA from 2004 to 2013. The use of the optimal threshold method with ancillary
data provides a practical and direct way to extract urban areas, and less work and time expenses are
expected in terms of data pre-processing.

However, previous studies have proven that the “urban area” reported in the Statistical Yearbook
is smaller than the actual urban area [26,27,52]. In this paper, we adopted the definition of urban
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area in a broad sense and extracted the spatial extent of urban area by using the lowest threshold
among 26 cities as the uniform threshold in the study area. Meanwhile, the accuracy of this approach
needs to be assessed. Figure 11 shows a comparison between the urban areas of Shanghai, Hefei, and
Nanjing in 2013 extracted by DMSP/OLS NTL data and CCI Land Cover data. The spatial feature of
urban areas obtained with our proposed method was basically consistent with the finer resolution land
cover dataset. However, the over-estimation of urban patches is also evident in the extraction owing
to pixel saturation in the raw NTL data. In some megacities with high building intensity, such as
Shanghai, saturated light pixels in the core urban area could significantly enhance the DN value of
pixels located in the periphery area.
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In general, some definite data limitations, namely, coarse resolution, blooming effects, lack of
onboard calibration systems, differences in satellite orbits, and sensor degradation would result in
anomalous DN values in the original DMSP/OLS composite products, and this has been discussed in
previous studies [53,54]. Although the thresholding technique is a promising method to identify urban
human activity area, such an approach can only be used to distinguish urban areas from non-urban
areas and not to generate or analyze credible yearly DN values. Hence, more comprehensive data
pre-processing of NTL data needs to be performed in future studies. When time-series NTL data are
applied, a more accurate calibration to overcome the drawbacks mentioned above is indispensable for
building a consistent NTL dataset.

6. Conclusions

In this study, we investigated the urbanization level, urban expansion characteristics, and its
effects on the vegetation variation in the YRDUA from DMSP/OLS NTL and MODIS NDVI images
over the past decade. The urban geographic extents of the agglomeration for 2004, 2008, and 2013 were
extracted from the NTL data. Several indices and methods were used to comprehensively analyze
the urban expansion and vegetation changes from three aspects: urban expansion spatial patterns,
landscape metrics, and vegetation variation trends. The main conclusions of this paper are as follows:

The urbanization level is highly related to NTL intensity, and the regional light brightness
growth in the YRDUA is consistent with the urbanization process. All prefecture cities in the
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YRDUA have experienced accelerated urbanization and remarkable urban expansion from 2004
to 2013. Additionally, distinguishing characteristics of urbanization spatial patterns were observed
between different metropolitan circles in the YRDUA. Cities with relatively higher urbanization levels
experienced rapid external sprawl patterns, and megalopolises and urban clusters were gradually
formed in such regions. Cities that were distributed along the traffic artery and development belt
experienced a linear expansion spatial pattern, whereas other small cities formed a single point sprawl
expansion pattern. The landscape metrics results also demonstrate that dramatic urban external sprawl
and the emergence of new cities and towns, as well as the increasing connectedness of cities, occurred
in the YRUDA.

The spatial analysis of the vegetation variation trend verifies that vegetation degradation caused
by urban expansion is predominant and inevitable across the study area. However, the correlations
between urban expansion and vegetation variation vary in different regions and periods. Some portions
of the expanded area, especially in the urban periphery of large cities, may experience a greening
trend rather than a browning trend, which reveals that the urbanization process does not necessarily
result in massive vegetation degradation at the macroscale. By implementing effective urban planning
and positive environmental conservation policy, urban vegetation restoration can replace degradation.
Thus, this study offers valuable information for policy makers to conduct regional planning practices
in different urbanization stages.
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