Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground Based and Satellite Datasets
2.2. Data Processing
- Larnaca (34.92° N, 33.62° E);
- Limassol (35.17° N, 33.33° E);
- Nicosia (34.67° N, 33.04° E);
- Omodos (34.78° N, 32.42° E);
- Paphos (34.83° N, 32.80° E).
- GHI;
- DNI;
- Solar irradiance (direct + diffuse) at an inclined horizontal surface with inclination angle equal to the latitude of the location;
- Solar irradiance (direct + diffuse) at an inclined horizontal surface with inclination angle equal to the latitude of the location, which follows solar azimuth;
- Solar irradiance (direct + diffuse) at a surface that is constantly perpendicular to the solar beam.
2.3. Uncertainty in the Simulation of GHI and DNI
3. Results and Discussion
3.1. Aerosols in Cyprus
3.2. Effect of Aerosols and Clouds on SSR
3.3. Climatology
3.4. Intense Aerosol Events
3.5. Economical Impact of the Attenuation of SSR by Clouds, Aerosols, and Dust
- (a)
- Horizontal PV panels (e.g., on the terrace of a building);
- (b)
- Tilted PV panels with tilt angle equal to the latitude of the site;
- (c)
- One axis solar tracking PV system (following solar azimuth);
- (d)
- Two axis solar tracking PV system (following solar zenith and azimuth);
- (e)
- CSP installation.
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Angstrom Exponent |
AERONET | Aerosol Robotic Network |
AOD | Aerosol Optical Depth |
CAMS | Copernicus Atmospheric Monitoring Service |
CMF | Cloud Modification Factor |
CM SAF | Satellite Application Facilities on Climate Monitoring |
CMSAF-SARAH2.1 | Surface Radiation Data Set-Heliosat (SARAH)-Edition 2.1, of the Application Facilities on Climate Monitoring |
CSP | Concentrated Solar Power |
CUT-TEPAK | Cyprus University of Technology |
Cy-CARE | Cyprus, Cloud, Aerosol, and Rain Experiment |
DNI | Direct Normal Irradiance |
DOD | Dust Optical Depth |
EE | Expected Errors |
GDAS | Global Data Analysis System |
GHG | Green House Gas |
GHI | Global Horizontal Irradiance |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
LACROS | Leipzig Aerosol and Cloud Remote Observation System |
LUT | Look Up Table |
MERRA-2 | Modern-Era Retrospective Analysis for Research and Applications version 2 |
MIDAS | ModIs Dust AeroSol |
MODIS | Moderate resolution Imaging Spectrometer |
MORDOR | Mobile Radiation Observatory |
NOAA-ARL | National Oceanic and Atmospheric Administration–Air Resources Laboratory |
Polly | Portable Lidar system |
PV | Photovoltaic |
RTM | Radiative Transfer Model |
SSR | Surface Solar Radiation |
SW | Short Wave |
TCWV | Total Column of Water Vapor |
TOC | Total Ozone Column |
TROPOS | Leibniz Institute for Tropospheric Research |
SSA | Single Scattering Albedo |
Appendix A
Larnaka | Lemesos | Nicosia | Paphos | Omodos | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GHI | DNI | GHI | DNI | GHI | DNI | GHI | DNI | GHI | DNI | |
Jan | 0.04 | 0.37 | 0.03 | 0.38 | −0.11 | 0.17 | −0.16 | 0.16 | 0.10 | 0.30 |
Feb | −0.87 | −1.27 | −0.94 | −1.27 | −0.73 | −1.02 | −1.17 | −1.67 | −1.03 | −1.50 |
Mar | −0.02 | 0.12 | −0.05 | −0.01 | −0.14 | −0.08 | −0.09 | 0.00 | 0.01 | 0.09 |
Apr | −0.30 | −0.18 | −0.40 | −0.36 | −0.25 | −0.16 | −0.51 | −0.55 | −0.34 | −0.34 |
May | 0.19 | 0.48 | 0.17 | 0.49 | 0.18 | 0.56 | 0.16 | 0.48 | 0.34 | 0.87 |
Jun | 0.01 | 0.15 | −0.03 | 0.04 | −0.04 | 0.08 | 0.02 | 0.14 | 0.03 | 0.22 |
Jul | −0.07 | 0.00 | −0.08 | 0.03 | −0.09 | −0.01 | −0.06 | 0.04 | −0.05 | 0.09 |
Aug | −0.07 | −0.03 | −0.06 | 0.04 | −0.06 | 0.03 | −0.02 | 0.07 | −0.04 | 0.07 |
Sep | −0.05 | 0.02 | −0.05 | 0.04 | −0.05 | 0.08 | −0.02 | 0.07 | −0.05 | 0.03 |
Oct | −0.03 | 0.20 | −0.09 | 0.12 | −0.15 | −0.02 | −0.07 | 0.06 | −0.04 | 0.24 |
Nov | −0.11 | 0.00 | −0.16 | −0.14 | −0.24 | −0.30 | −0.29 | −0.40 | −0.39 | −0.57 |
Dec | −0.06 | −0.13 | 0.06 | 0.22 | −0.07 | −0.15 | 0.02 | 0.18 | −0.11 | −0.11 |
Ann | −0.05 | 0.08 | −0.07 | 0.06 | −0.08 | 0.05 | −0.11 | 0.01 | −0.05 | 0.10 |
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A. (Eds.) IPCC Climate Change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Quadrelli, R.; Peterson, S. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 2007, 35, 5938–5952. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schloemer, S. (Eds.) IPCC Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781107023406. [Google Scholar] [CrossRef] [Green Version]
- Baruch-Mordo, S.; Kiesecker, J.M.; Kennedy, C.M.; Oakleaf, J.R.; Opperman, J.J. From Paris to practice: Sustainable implementation of renewable energy goals. Environ. Res. Lett. 2019, 14, 24013. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- Müller, J.; Folini, D.; Wild, M.; Pfenninger, S. CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change. Energy 2019, 171, 135–148. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Lacal Arantegui, R.; Jäger-Waldau, A. Photovoltaics and wind status in the European Union after the Paris Agreement. Renew. Sustain. Energy Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Agathokleous, R.A.; Kalogirou, S.A. Target for 100% Renewable Energy Systems Use in Cyprus for Electricity Production BT-Solar Energy Conversion in Communities; Visa, I., Duta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 179–194. [Google Scholar]
- Koroneos, C.; Fokaidis, P.; Moussiopoulos, N. Cyprus energy system and the use of renewable energy sources. Energy 2005, 30, 1889–1901. [Google Scholar] [CrossRef]
- Mesimeris, T.; Kythreotou, N.; Menelaou, M.; Rousos, C.; Karapitta-Zachariadou, C.; Partasides, G.; Antoniou, T.; Hadjinikolaou, N.; Piripitsi, K.; Kalaika, A.; et al. Cyprus’ Integrated National Energy and Climate Plan for the Period 2021–2030; Ministry of Energy Commerce and Industry of Cyprus: Nicosia, Cyprus, 2020.
- Kassem, Y.; Çamur, H.; Alhuoti, S.M. Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study. Energies 2020, 13, 940. [Google Scholar] [CrossRef] [Green Version]
- Jacovides, C.P.; Kaltsunides, N.; Hachioannou, L.; Stefanou, L. An assessment of the solar radiation climate of the Cyprus environment. Renew. Energy 1993, 3, 913–918. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Pashiardis, S.; Pashiardi, A. Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus. Renew. Energy 2017, 101, 1102–1123. [Google Scholar] [CrossRef]
- Pashiardis, S.; Kalogirou, S.A.; Pelengaris, A. Statistical analysis for the characterization of solar energy utilization and inter-comparison of solar radiation at two sites in Cyprus. Appl. Energy 2017, 190, 1138–1158. [Google Scholar] [CrossRef]
- Katopodis, T.; Markantonis, I.; Politi, N.; Vlachogiannis, D.; Sfetsos, A. High-Resolution Solar Climate Atlas for Greece under Climate Change Using the Weather Research and Forecasting (WRF) Model. Atmosphere 2020, 11, 761. [Google Scholar] [CrossRef]
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Moreno-Tejera, S.; Silva-Pérez, M.A.; Lillo-Bravo, I.; Ramírez-Santigosa, L. Solar resource assessment in Seville, Spain. Statistical characterisation of solar radiation at different time resolutions. Sol. Energy 2016, 132, 430–441. [Google Scholar] [CrossRef]
- Yousif, C.; Quecedo, G.O.; Santos, J.B. Comparison of solar radiation in Marsaxlokk, Malta and Valladolid, Spain. Renew. Energy 2013, 49, 203–206. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S. Atmospheric impacts on climatic variability of surface incident solar radiation. Atmos. Chem. Phys. 2012, 12, 9581–9592. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Achilleos, S.; Mouzourides, P.; Kalivitis, N.; Katra, I.; Kloog, I.; Kouis, P.; Middleton, N.; Mihalopoulos, N.; Neophytou, M.; Panayiotou, A.; et al. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci. Total Environ. 2020, 714, 136693. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Aldabash, M. Long-term AOD trend assessment over the Eastern Mediterranean region: A comparative study including a new merged aerosol product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Mallet, M.; Sevault, F.; Chiacchio, M.; Wild, M. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim. Dyn. 2015, 44, 1127–1155. [Google Scholar] [CrossRef] [Green Version]
- Esteve, A.R.; Estellés, V.; Utrillas, M.P.; Martínez-Lozano, J.A. Analysis of the aerosol radiative forcing over a Mediterranean urban coastal site. Atmos. Res. 2014, 137, 195–204. [Google Scholar] [CrossRef]
- Nabat, P.; Somot, S.; Cassou, C.; Mallet, M.; Michou, M.; Bouniol, D.; Decharme, B.; Drugé, T.; Roehrig, R.; Saint-Martin, D. Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos. Chem. Phys. 2020, 20, 8315–8349. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Aerosol contributions at an urban background site in Eastern Mediterranean–Potential source regions of PAHs in PM10 mass. Sci. Total Environ. 2017, 598, 563–571. [Google Scholar] [CrossRef]
- Mamouri, R.-E.; Ansmann, A. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles. Atmos. Meas. Tech. 2017, 10, 3403–3427. [Google Scholar] [CrossRef] [Green Version]
- Neitola, K.; Sciare, J.; Keleshis, C.; Pikridas, M.; Argyrides, M.; Vouterakos, P.; Antoniou, P.; Apostolou, A.; Savvides, C.; Vrekoussis, M.; et al. UAV measurements of aerosol properties at the Cyprus institute. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; p. 11882. [Google Scholar]
- Nisantzi, A.; Mamouri, R.E.; Ansmann, A.; Hadjimitsis, D. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus. Atmos. Chem. Phys. 2014, 14, 12155–12165. [Google Scholar] [CrossRef] [Green Version]
- Tsekeri, A.; Amiridis, V.; Lopatin, A.; Marinou, E.; Giannakaki, E.; Pikridas, M.; Sciare, J.; Liakakou, E.; Gerasopoulos, E.; Duesing, S.; et al. Aerosol absorption profiling from the synergy of lidar and sun-photometry: The ACTRIS-2 campaigns in Germany, Greece and Cyprus. EPJ Web Conf. 2018, 176. [Google Scholar] [CrossRef] [Green Version]
- Mamouri, R.-E.; Ansmann, A.; Nisantzi, A.; Solomos, S.; Kallos, G.; Hadjimitsis, D.G. Extreme dust storm over the eastern Mediterranean in September 2015: Satellite, lidar, and surface observations in the Cyprus region. Atmos. Chem. Phys. 2016, 16, 13711–13724. [Google Scholar] [CrossRef] [Green Version]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Agathokleous, R.; Panayiotou, G. On-site PV characterization and the effect of soiling on their performance. Energy 2013, 51, 439–446. [Google Scholar] [CrossRef]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.W.; Jones, W.K.; Stier, P. Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition. Proc. Natl. Acad. Sci. USA 2020, 117, 17591–17598. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wurzler, S.; Levin, Z.; Reisin, T.G. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res. Atmos. 2002, 107, AAC 19-1–AAC 19-14. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I. Modeling the mineral dust aerosol cycle in the climate system. Quat. Sci. Rev. 2003, 22, 1821–1834. [Google Scholar] [CrossRef]
- Koehler, K.A.; Kreidenweis, S.M.; DeMott, P.J.; Petters, M.D.; Prenni, A.J.; Möhler, O. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmos. Chem. Phys. 2010, 10, 11955–11968. [Google Scholar] [CrossRef] [Green Version]
- Schroedter-Homscheidt, M.; Oumbe, A.; Benedetti, A.; Morcrette, J.-J. Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment. Bull. Am. Meteorol. Soc. 2013, 94, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [Google Scholar] [CrossRef] [Green Version]
- Neher, I.; Buchmann, T.; Crewell, S.; Evers-Dietze, B.; Pfeilsticker, K.; Pospichal, B.; Schirrmeister, C.; Meilinger, S. Impact of atmospheric aerosols on photovoltaic energy production Scenario for the Sahel zone. Energy Procedia 2017, 125, 170–179. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Gkikas, A.; Proestakis, E.; Amiridis, V.; Kazadzis, S.; Di Tomaso, E.; Tsekeri, A.; Marinou, E.; Hatzianastassiou, N.; Pérez García-Pando, C. ModIs Dust AeroSol (MIDAS): A global fine-resolution dust optical depth data set. Atmos. Meas. Tech. 2021, 14, 309–334. [Google Scholar] [CrossRef]
- Alexandri, G.; Georgoulias, A.K.; Meleti, C.; Balis, D.; Kourtidis, K.A.; Sanchez-Lorenzo, A.; Trentmann, J.; Zanis, P. A high resolution satellite view of surface solar radiation over the climatically sensitive region of Eastern Mediterranean. Atmos. Res. 2017, 188, 107–121. [Google Scholar] [CrossRef]
- Hubanks, P.; Platnick, S.; King, M.; Ridgway, B. MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-30 for Level-3 Global Gridded Atmosphere Products (08_D3, 08_E3, 08_M3) and Users Guide; Collection 006, Version 4.2, 27; NASA: Greenbelt, MD, USA, July 2016.
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; et al. LIVAS: A 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos. Chem. Phys. 2015, 15, 7127–7153. [Google Scholar] [CrossRef] [Green Version]
- Pfeifroth, U.; Kothe, S.; Trentmann, J.; Hollmann, R.; Fuchs, P.; Kaiser, J.; Werscheck, M. Surface Radiation Data Set-Heliosat (SARAH)-Edition 2.1. Satellite Application Facility on Climate Monitoring (CM SAF), Germany. 2019. Available online: https://training.eumetsat.int/pluginfile.php/42991/mod_resource/content/1/Algorithm%20Theoretical%20Baseline%20Document.pdf (accessed on 10 April 2021). [CrossRef]
- Posselt, R.; Mueller, R.W.; Stöckli, R.; Trentmann, J. Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens. Environ. 2012, 118, 186–198. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and Variability of Surface Solar Radiation in Europe Based on Surface- and Satellite-Based Data Records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.S.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef] [Green Version]
- LACROS LACROS Data Base. Available online: http://lacros.rsd.tropos.de/ (accessed on 10 April 2021).
- Bühl, J.; Seifert, P.; Myagkov, A.; Ansmann, A. Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station. Atmos. Chem. Phys. 2016, 16, 10609–10620. [Google Scholar] [CrossRef] [Green Version]
- Baars, H.; Ansmann, A.; Ohneiser, K.; Haarig, M.; Engelmann, R.; Althausen, D.; Hanssen, I.; Gausa, M.; Pietruczuk, A.; Szkop, A.; et al. The unprecedented 2017–2018 stratospheric smoke event: Decay phase and aerosol properties observed with the EARLINET. Atmos. Chem. Phys. 2019, 19, 15183–15198. [Google Scholar] [CrossRef] [Green Version]
- Baars, H.; Geiß, A.; Wandinger, U.; Herzog, A.; Engelmann, R.; Bühl, J.; Radenz, M.; Seifert, P.; Ansmann, A.; Martin, A.; et al. First Results from the German Cal/Val Activities for Aeolus. In Proceedings of the European Physical Journal Web of Conferences, Hefei, China, 24–28 June 2020; Volume 237. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Kazadzis, S.; Kouremeti, N.; Diémoz, H.; Gröbner, J.; Forgan, B.W.; Campanelli, M.; Estellés, V.; Lantz, K.; Michalsky, J.; Carlund, T.; et al. Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements. Atmos. Chem. Phys. 2018, 18, 3185–3201. [Google Scholar] [CrossRef] [Green Version]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Raptis, P.I.; Keramitsoglou, I.; Kiranoudis, C.; Bais, A.F. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements. Atmos. Meas. Tech. 2018, 11, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Kylling, A. The libRadtran software package for radiative transfer calculations-description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Dahlback, A.; Stamnes, K. A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planet Space Sci. 1991, 39, 671–683. [Google Scholar] [CrossRef]
- Pierluissi, J.H.; Peng, G.-S. New Molecular Transmission Band Models For LOWTRAN. Opt. Eng. 1985, 24, 541–547. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Kurucz, R.L. Synthetic Infrared Spectra BT-Infrared Solar Physics; Rabin, D.M., Jefferies, J.T., Lindsey, C., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 523–531. [Google Scholar]
- McClatchey, R.A. Optical Properties of the Atmosphere; Air Force Cambridge Research Laboratories, Office of Aerospace Research: Cambridge, UK, 1972. [Google Scholar]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Kazadzis, S.; Amiridis, V.; Kahn, R.A. Global aerosol mixtures and their multiyear and seasonal characteristics. Atmos. Environ. 2015, 116, 112–129. [Google Scholar] [CrossRef]
- Oumbe, A.; Wald, L. A Parameterisation of Vertical Profile of Solar Irradiance for Correcting Solar Fluxes for Changes in Terrain Elevation. In Proceedings of the Earth Observation and Water Cycle Science Conference, Frascati, Italy, 18 November 2009. [Google Scholar]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Ansmann, A.; Petzold, A.; Kandler, K.; Tegen, I.N.A.; Wendisch, M.; Müller, D.; Weinzierl, B.; Müller, T.; Heintzenberg, J. Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: What have we learned? Tellus B 2011, 63, 403–429. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements–methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef] [Green Version]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Giannakaki, E.; Pfüller, A.; Korhonen, K.; Mielonen, T.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; et al. One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa. Atmos. Chem. Phys. 2015, 15, 5429–5442. [Google Scholar] [CrossRef] [Green Version]
- Baars, H.; Kanitz, T.; Engelmann, R.; Althausen, D.; Heese, B.; Komppula, M.; Preißler, J.; Tesche, M.; Ansmann, A.; Wandinger, U.; et al. An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos. Chem. Phys. 2016, 16, 5111–5137. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Nkemdirim, L.C. A Note on the Albedo of Surfaces. J. Appl. Meteorol. Climatol. 1972, 11, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Manara, V.; Beltrano, M.C.; Brunetti, M.; Maugeri, M.; Sanchez-Lorenzo, A.; Simolo, C.; Sorrenti, S. Sunshine duration variability and trends in Italy from homogenized instrumental time series (1936–2013). J. Geophys. Res. Atmos. 2015, 120, 3622–3641. [Google Scholar] [CrossRef]
- Kazadzis, S.; Founda, D.; Psiloglou, B.E.; Kambezidis, H.; Mihalopoulos, N.; Sanchez-Lorenzo, A.; Meleti, C.; Raptis, P.I.; Pierros, F.; Nabat, P. Long-term series and trends in surface solar radiation in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 2395–2411. [Google Scholar] [CrossRef] [Green Version]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kalliampakos, G.K.; Rashki, A.; Wild, M. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Sol. Terr. Phys. 2016, 150–151, 31–46. [Google Scholar] [CrossRef]
- Mateos, D.; Sanchez-Lorenzo, A.; Antón, M.; Cachorro, V.E.; Calbó, J.; Costa, M.J.; Torres, B.; Wild, M. Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula. J. Geophys. Res. Atmos. 2014, 119, 310–382. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martín, J.; Antón, M.; Vaquero-Martínez, J.; Sanchez-Lorenzo, A. Comparison of long-term solar radiation trends from CM SAF satellite products with ground-based data at the Iberian Peninsula for the period 1985–2015. Atmos. Res. 2020, 236, 104839. [Google Scholar] [CrossRef]
- Engelmann, R.; Ansmann, A.; Bühl, J.; Heese, B.; Baars, H.; Althausen, D.; Marinou, E.; Amiridis, V.; Mamouri, R.-E.; Vrekoussis, M. Observation of Arabian and Saharan Dust in Cyprus with a New Generation of the Smart Raman Lidar Polly. EPJ Web Conf. 2016, 119, 27003. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, M.; Metzger, S.; Mamouri, R.E.; Astitha, M.; Barrie, L.; Levin, Z.; Lelieveld, J. Dust–air pollution dynamics over the eastern Mediterranean. Atmos. Chem. Phys. 2015, 15, 9173–9189. [Google Scholar] [CrossRef] [Green Version]
- Nisantzi, A.; Mamouri, R.E.; Ansmann, A.; Schuster, G.L.; Hadjimitsis, D.G. Middle East versus Saharan dust extinction-to-backscatter ratios. Atmos. Chem. Phys. 2015, 15, 7071–7084. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R. HYSPLIT4 user’s Guide. In NOAA Technical Memorandum ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag. 1998, 47, 295–308. [Google Scholar]
- Partasides, G. Epublic of Cyprus Policy Measures-Towards EU Target for Renewable Energy Sources Policies and Support Schemes. Ministry of Energy, Commerce and Industry. Available online: https://energy.gov.cy/assets/entipo-iliko/REPUBLIC%20OF%20CYPRUS%20POLICY%20MEASU (accessed on 11 June 2020).
- Eck, M.; Hirsch, T.; Feldhoff, J.F.; Kretschmann, D.; Dersch, J.; Morales, A.G.; Gonzalez-Martinez, L.; Bachelier, C.; Platzer, W.; Riffelmann, K.-J.; et al. Guidelines for CSP Yield Analysis–Optical Losses of Line Focusing Systems; Definitions, Sensitivity Analysis and Modeling Approaches. Energy Procedia 2014, 49, 1318–1327. [Google Scholar] [CrossRef]
- Raptis, P.I.; Kazadzis, S.; Psiloglou, B.; Kouremeti, N.; Kosmopoulos, P.; Kazantzidis, A. Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture. Energy 2017, 130, 570–580. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Kothe, S.; Müller, R.; Trentmann, J.; Hollmann, R.; Fuchs, P.; Werscheck, M. Surface Radiation Data Set-Heliosat (SARAH)-Edition 2, Satellite Application Facility on Climate Monitoring. CM SAF. 2017. Available online: https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002_01 (accessed on 11 June 2020).
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World–A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Vignesh, P.P.; Jiang, J.H.; Kishore, P.; Su, H.; Smay, T.; Brighton, N.; Velicogna, I. Assessment of CMIP6 Cloud Fraction and Comparison with Satellite Observations. Earth Sp. Sci. 2020, 7, e2019EA000975. [Google Scholar] [CrossRef]
- Cherian, R.; Quaas, J. Trends in AOD, Clouds, and Cloud Radiative Effects in Satellite Data and CMIP5 and CMIP6 Model Simulations Over Aerosol Source Regions. Geophys. Res. Lett. 2020, 47, e2020GL087132. [Google Scholar] [CrossRef]
- Kayetha, V.; Torres, O.; Jethva, H. Retrieval of UV-Visible aerosol absorption using AERONET and OMI-MODIS synergy: Spatial and temporal variability across major aerosol environments. Atmos. Meas. Tech. Discuss. 2021, 2021, 1–54. [Google Scholar] [CrossRef]
- Chaikovsky, A.P.; Bril, A.I.; Fedarenka, A.S.; Peshcharankou, V.A.; Denisov, S.V.; Dick, V.P.; Asipenka, F.P.; Miatselskaya, N.S.; Balin, Y.S.; Kokhanenko, G.P.; et al. Synergy of Ground-Based and Satellite Optical Remote Measurements for Studying Atmospheric Aerosols. J. Appl. Spectrosc. 2020, 86, 1092–1099. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, P.-I.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Monthly climatologies of GHI and DNI for Cyprus retrieved from satellite measurements 2021. Available online: https://doi.org/10.5281/zenodo.4737072 (accessed on 11 June 2020).
Parameter | Range/Step |
---|---|
SZA | 1–86°/5° |
AOD at 550 nm | 0–3/0.1 |
SSA | 0.6–1/0.1 |
Ångström Exponent (AE) | 0.4–1.9/0.5 |
Total Column Water Vapor (TCWV) | 0–3 cm/1 cm |
Total Ozone Column (TOC) | 200–400 DU/100 DU |
Month | AOD500 nm | σAOD | AE440–870 nm | σAE | # Data | # Days | # Months |
---|---|---|---|---|---|---|---|
Jan | 0.13 | 0.09 | 1.09 | 0.42 | 4466 | 149 | 8 |
Feb | 0.14 | 0.08 | 0.99 | 0.40 | 5457 | 127 | 9 |
Mar | 0.18 | 0.13 | 1.02 | 0.47 | 9055 | 179 | 8 |
Apr | 0.19 | 0.11 | 0.97 | 0.43 | 11,640 | 214 | 10 |
May | 0.21 | 0.13 | 0.97 | 0.46 | 10,911 | 204 | 9 |
Jun | 0.20 | 0.10 | 1.25 | 0.45 | 12,115 | 196 | 10 |
Jul | 0.21 | 0.10 | 1.26 | 0.35 | 14,619 | 194 | 8 |
Aug | 0.22 | 0.09 | 1.43 | 0.21 | 14,396 | 187 | 7 |
Sep | 0.19 | 0.10 | 1.27 | 0.40 | 11,372 | 185 | 7 |
Oct | 0.16 | 0.09 | 1.25 | 0.41 | 10,271 | 229 | 10 |
Nov | 0.16 | 0.09 | 1.29 | 0.41 | 6314 | 175 | 10 |
Dec | 0.13 | 0.08 | 1.28 | 0.38 | 4922 | 161 | 9 |
Total | 0.19 | 0.11 | 1.19 | 0.43 | 115,538 | 2200 | 105 |
Larnaca | Limassol | Nicosia | Paphos | Omodos | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AOD | DOD | AOD | DOD | AOD | DOD | AOD | DOD | AOD | DOD | |
Winter | −0.004 | −0.003 | −0.001 | −0.001 | −0.008 | −0.008 | 0.005 | 0.003 | −0.005 | −0.003 |
Spring | −0.005 | −0.004 | −0.011 | −0.011 | 0.000 | −0.001 | −0.001 | −0.003 | 0.000 | −0.001 |
Summer | −0.003 | −0.003 | −0.001 | −0.002 | 0.003 | −0.001 | 0.000 | −0.003 | 0.000 | −0.002 |
Autumn | −0.001 | 0.000 | 0.007 | 0.004 | 0.000 | 0.000 | 0.002 | 0.001 | −0.001 | −0.001 |
Larnaca | Limassol | Nicosia | Paphos | Omodos | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Med | Max | Min | Med | Max | Min | Med | Max | Min | Med | Max | Min | Med | Max | Min | |
Clouds GHI | 12 (6) | 13 (7) | 11 (5) | 11 (6) | 13 (6) | 10 (5) | 11 (6) | 13 (7) | 10 (5) | 11 (5) | 12 (6) | 10 (5) | 11 (4) | 14 (5) | 10 (3) |
Aero GHI | 7 (6) | 8 (7) | 6 (5) | 7 (7) | 8 (9) | 6 (6) | 6 (6) | 8 (9) | 5 (5) | 6 (6) | 8 (8) | 6 (5) | 7 (7) | 9 (9) | 7 (7) |
Dust GHI | 3 (2) | 4 (3) | 2 (2) | 3 (2) | 4 (3) | 2 (2) | 3 (2) | 4 (4) | 2 (2) | 3 (2) | 4 (4) | 2 (1) | 3 (3) | 5 (4) | 3 (2) |
Clouds DNI | 15 (4) | 16 (5) | 13 (3) | 14 (4) | 15 (5) | 12 (3) | 15 (5) | 17 (7) | 13 (3) | 14 (3) | 15 (4) | 12 (2) | 18 (4) | 21 (6) | 16 (2) |
Aero DNI | 26 (27) | 30 (30) | 23 (23) | 28 (29) | 30 (36) | 24 (25) | 23 (26) | 30 (35) | 21 (22) | 26 (27) | 29 (33) | 23 (24) | 29 (31) | 32 (36) | 27 (28) |
Dust DNI | 14 (12) | 19 (16) | 11 (8) | 14 (12) | 17 (17) | 11 (9) | 12 (11) | 18 (18) | 10 (9) | 13 (12) | 19 (18) | 11 (7) | 16 (14) | 20 (20) | 13 (10) |
Location | GHI-MIDAS (MJ/m2) | GHI-CM SAF (MJ/m2) | GHI Differences (MJ/m2) | DNI-MIDAS (MJ/m2) | DNI-CM SAF (MJ/m2) | DNI Differences (MJ/m2) |
---|---|---|---|---|---|---|
Larnaca | 6838 ± 140 | 6818 ± 146 | 20 (0.3%) | 7840 ± 266 | 7543 ± 374 | 297 (3.9%) |
Limassol | 6951 ± 142 | 6818 ± 143 | 133 (2.1%) | 7786 ± 286 | 7717 ± 389 | 69 (0.9%) |
Nicosia | 6913 ± 128 | 6929 ± 145 | −16 (−0,2%) | 8112 ± 282 | 7573 ± 384 | 539 (7.1%) |
Paphos | 6919 ± 149 | 6846 ± 147 | 73 (1.0%) | 7647 ± 280 | 7729 ± 380 | −82 (1.1%) |
Omodos | 6871 ± 137 | 7372 ± 152 | −501 (−6.8%) | 7154 ± 240 | 8736 ± 328 | −1582 (18.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.-P.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. https://doi.org/10.3390/rs13122319
Fountoulakis I, Kosmopoulos P, Papachristopoulou K, Raptis I-P, Mamouri R-E, Nisantzi A, Gkikas A, Witthuhn J, Bley S, Moustaka A, et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sensing. 2021; 13(12):2319. https://doi.org/10.3390/rs13122319
Chicago/Turabian StyleFountoulakis, Ilias, Panagiotis Kosmopoulos, Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Antonis Gkikas, Jonas Witthuhn, Sebastian Bley, Anna Moustaka, and et al. 2021. "Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus" Remote Sensing 13, no. 12: 2319. https://doi.org/10.3390/rs13122319