Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Airborne Laser Scanning Acquisition and Processing
2.3. GEDI Data Adquisition and Processing
2.4. Field Data Adquisition
2.5. ALS-Derived AGB Models
2.6. GEDI-Derived AGB Models
3. Results
3.1. GEDI-ALS Metrics Accuracy
3.2. ALS AGB-Derived Models
3.3. Performance of GEDI AGB-Derived Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cross One-Out Validation | |||||
---|---|---|---|---|---|
Forest Type | n | Model | Mefc | RMSE (Mg/ha)C | rRMSE(%)C |
Dehesas | 239 | 0.24 | 20.93 | 50.2 | |
Encinares | 90 | 0.54 | 15.32 | 55.87 | |
Alconocales | 82 | 0.80 | 10.39 | 38.58 | |
Pinaster | 45 | 0.69 | 27.37 | 36.71 | |
Pinea | 52 | 0.81 | 15.65 | 30.74 |
Cross One-Out Validation | |||||
---|---|---|---|---|---|
Forest Type | n | Model | Mefc | RMSE(Mg/ha)C | rRMSE(%)C |
Dehesas | 38,983 | 0.30 | 15.38 | 38.17 | |
Encinares | 15,958 | 0.30 | 14.41 | 62.30 | |
Alconocales | 3026 | 0.37 | 22.10 | 84.91 | |
Pinaster | 1534 | 0.37 | 32.22 | 48.27 | |
Pinea | 3634 | 0.45 | 28.41 | 64.07 |
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Martín-Ortega, P.; Picard, N.; García-Montero, L.G.; Del Rio, S.; Penas, A.; Marchetti, M.; Lasserre, B.; Özdemir, E.; García-Robredo, F.; Pascual, C. Importance Des Forêts Méditerranéennes. In Etat des Forêts Méditerranéennes 2018; Bourlion, N., Garavaglia, V., Picard, N., Eds.; FAO: Rome, Italy; Plan Bleu: Marseille, France, 2020; pp. 33–54. [Google Scholar]
- Guerra-Hernández, J.; Aviles, C.; Botequim, B.; Jurado-Varela, A.; Sandoval, V.; Robla-González, E. Expansión Continua Del IFN4 de Extremadura y Canarias Mediante Técnicas LiDAR. In Teledetección: Hacia una Visión Global del Cambio Climático; Universidad de Valladolid: Valladolid, Spain, 2019; pp. 467–470. [Google Scholar]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval, V. The Role of Improved Ground Positioning and Forest Structural Complexity When Performing Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- Espejo, A.; Federici, S.; Green, C.; Amuchastegui, N.; d’Annunzio, R.; Balzter, H.; Bholanath, P.; Brack, C.; Brewer, C.; Birigazzi, L. Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative, 3rd ed.; U.N. Food and Agriculture Organization: Rome, Italy, 2020; 300p. [Google Scholar]
- Álvarez-González, J.G.; Cañellas, I.; Alberdi, I.; Gadow, K.V.; Ruiz-González, A.D. National Forest Inventory and Forest Observational Studies in Spain: Applications to Forest Modeling. For. Ecol. Manag. 2014, 316, 54–64. [Google Scholar] [CrossRef]
- Tomppo, E.; Haakana, M.; Katila, M.; Peräsaari, J. Multi-Source National Forest Inventory: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 18. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC National Greenhouse Gas Inventories Programme: Hayama, Kanagawa, Japan, 2006. [Google Scholar]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Cosenza, D.N.; Rodriguez, L.C.E.; Silva, M.; Tomé, M.; Díaz-Varela, R.A.; González-Ferreiro, E. Comparison of ALS-and UAV (SfM)-Derived High-Density Point Clouds for Individual Tree Detection in Eucalyptus Plantations. Int. J. Remote Sens. 2018, 39, 5211–5235. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Arellano-Pérez, S.; González-Ferreiro, E.; Pascual, A.; Sandoval Altelarrea, V.; Ruiz-González, A.D.; Álvarez-González, J.G. Developing a Site Index Model for P. Pinaster Stands in NW Spain by Combining Bi-Temporal ALS Data and Environmental Data. For. Ecol. Manag. 2021, 481, 118690. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Görgens, E.B.; García-Gutiérrez, J.; Rodriguez, L.C.E.; Tomé, M.; González-Ferreiro, E. Comparison of ALS Based Models for Estimating Aboveground Biomass in Three Types of Mediterranean Forest. Eur. J. Remote Sens. 2016, 49, 185–204. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Borges, J.G.; González-Ferreiro, E.; Guerra-Hernández, J. Improving Silvicultural Practices for Mediterranean Forests through Fire Behaviour Modelling Using LiDAR-Derived Canopy Fuel Characteristics. Int. J. Wildland Fire 2019, 28, 823–839. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning. Remote Sens. 2019, 11, 1503. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W. The Ice, Cloud, and Land Elevation Satellite—2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W. The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M. Biomass Estimation from Simulated GEDI, ICESat-2 and NISAR across Environmental Gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Montesano, P.M.; Rosette, J.; Sun, G.; North, P.; Nelson, R.F.; Dubayah, R.O.; Ranson, K.J.; Kharuk, V. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns across a Boreal Forest Gradient. Remote Sens. Environ. 2015, 158, 95–109. [Google Scholar] [CrossRef]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval-Altelarrea, V. Using Enhanced Data Co-Registration to Update Spanish National Forest Inventories (NFI) and to Reduce Training Data under LiDAR-Assisted Inference. Int. J. Remote Sens. 2021, 42, 126–147. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-Resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Pascual, A. Using GEDI Lidar Data and Airborne Laser Scanning to Assess Height Growth Dynamics in Fast-Growing Species: A Showcase in Spain. For. Ecosyst. 2021, 8, 14. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global Canopy Height Estimation with GEDI LIDAR Waveforms and Bayesian Deep Learning. arXiv 2021, arXiv:210303975. [Google Scholar]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 Terrain and Canopy Heights in Boreal Forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; Version 3.60+; USDA Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2019.
- Isenburg, M. LAStools—Efficient Tools for LiDAR Processing, Version 200216; 2020. Available online: http://lastools.org (accessed on 15 April 2020).
- Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and Field Data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001 [Data Set]. 2020. NASA EOSDIS Land Processes DAAC. Available online: https://search.earthdata.nasa.gov/search?q=C1656766463-LPDAAC_ECS (accessed on 1 June 2020).
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H. GEDI L2B GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V001 [Data Set]. 2020. NASA EOSDIS Land Processes DAAC. Available online: https://search.earthdata.nasa.gov/search?q=C1656767133-LPDAAC_ECS (accessed on 1 June 2020).
- Silva, C.A. rGEDI: NASA’s Global Ecosystem Dynamics Investigation (GEDI) Data Visualization and Processing. R Package. 2020. Available online: https://CRAN.R-project.org/package=rGEDI (accessed on 15 August 2020).
- R Core Team. R: A Language and Environment for Statistical Computing, version 3.6.1; R Foundation Project for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- MacArthur, R.H.; Horn, H.S. Foliage Profile by Vertical Measurements. Ecology 1969, 50, 802–804. [Google Scholar] [CrossRef] [Green Version]
- Lumley, T.; Miller, A. Leaps: Regression Subset Selection. R Package. 2017. Available online: https://CRAN.R-Project.Org/Package=leaps (accessed on 15 August 2020).
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 571. [Google Scholar]
- Li, Y.; Andersen, H.-E.; McGaughey, R. A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data. West. J. Appl. For. 2008, 23, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A Universal Airborne LiDAR Approach for Tropical Forest Carbon Mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.-P. Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L. Comparison of Small-and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study from Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest Biomass Estimation over Three Distinct Forest Types Using TanDEM-X InSAR Data and Simulated GEDI Lidar Data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Jupp, D.L.; Dubayah, R. Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1943–1958. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, R. The NASA-ISRO SAR (NISAR) Mission Dual-Band Radar Instrument Preliminary Design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3832–3835. [Google Scholar]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K. The European Space Agency BIOMASS Mission: Measuring Forest above-Ground Biomass from Space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
Variables | Description |
---|---|
Height metrics: (height_cutoff = 2) | |
hmean | mean |
qav | quadratic mean height |
hstd | standard deviation |
hmax, hmin | maximum and minimum |
hSkw | skewness |
hKurt | kurtosis |
CRR | canopy relief ratio ((mean heightmin height)/(max height- min height)) |
p01, p10, …… p99 | 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles |
Canopy cover metrics (cover_cutoff: 2 m) | |
(Canopy Cover) CCALS | percentage of first returns above 2.00/total first returns |
PARA2 | percentage of all returns above 2.00/total all returns |
(A) GEDI Level 2A product | |||
Label | Variable GEDI-AGB Model | Unit score | Description |
rh | rh01, rh02, … … rh100 | m | Relative height metrics at 1% interval (m) |
(B) GEDI Level 2B product | |||
cover | CCGEDI | % | Total canopy cover, defined as the percent of the ground covered by the vertical projection of canopy material |
pgap_theta | PGP_THT | % | Canopy Gap Probability |
pai | PAI | m2/m2 | Total Plant Area Index |
fhd_normal | FHD | - | Foliage Height Diversity index calculated by vertical foliage profile normalized by total plant area index [37] |
Forest Ecosystem | SNFI-4 Samples | Min AGB | Max AGB | Mean AGB | Min G | Max G | Mean G | Min N | Max N | Mean N |
---|---|---|---|---|---|---|---|---|---|---|
Dehesas | 239 | 4.11 | 154.36 | 41.20 | 1.13 | 19.50 | 6.17 | 5.09 | 969.08 | 86.37 |
Encinares | 90 | 1.72 | 101.56 | 28.25 | 0.43 | 17.80 | 5.32 | 5.09 | 1310.16 | 284.88 |
Pinaster | 82 | 1.80 | 184.48 | 73.95 | 0.59 | 46.46 | 20.51 | 14.15 | 1464.23 | 348.38 |
Alcornocales | 45 | 1.69 | 112.41 | 29.85 | 0.54 | 25.64 | 8.26 | 10.19 | 1457.15 | 222.21 |
Pinea | 52 | 11.07 | 159.90 | 49.46 | 2.77 | 39.88 | 12.41 | 29.43 | 1973.52 | 310.88 |
Forest Ecosystem | Metrics Comparison | Pearson Correlation (r) | Root-Mean-Square Error (RMSE, m) | Relative Root-Mean-Square Error (rRMSE, %) | Bias (m) | rBias (%) |
---|---|---|---|---|---|---|
Dehesas | p95–rh95 | 0.465 | 2.39 | 35.45 | −1.37 | −20.35 |
p98–rh98 | 0.496 | 2.05 | 29.39 | −0.51 | −7.26 | |
p99–rh99 | 0.497 | 2.02 | 28.40 | −0.05 | −0.70 | |
Encinares | p95–rh95 | 0.529 | 2.03 | 38.26 | 0.40 | 7.52 |
p98–rh98 | 0.544 | 2.17 | 38.68 | 0.39 | 7.016 | |
p99–rh99 | 0.545 | 2.36 | 41.37 | 0.82 | 14.46 | |
Alcornocales | p95–rh95 | 0.640 | 2.03 | 33.98 | −0.80 | −13.45 |
p98–rh98 | 0.651 | 1.95 | 31.14 | −0.06 | −0.99 | |
p99–rh99 | 0.653 | 2.04 | 31.87 | 0.35 | 5.53 | |
Pinaster | p95–rh95 | 0.713 | 4.17 | 31.30 | −1.69 | −12.71 |
p98–rh98 | 0.716 | 3.96 | 28.36 | −0.96 | −6.86 | |
p99–rh99 | 0.712 | 3.95 | 27.68 | −0.65 | −4.58 | |
Pinea | p95–rh95 | 0.718 | 2.36 | 29.80 | −0.53 | −6.76 |
p98–rh98 | 0.716 | 2.37 | 28.29 | 0.28 | 3.39 | |
p99–rh99 | 0.709 | 2.51 | 30.05 | 0.70 | 8.41 |
Regression | |||||||||
---|---|---|---|---|---|---|---|---|---|
Forest Type | Model | a | b | c | Mef | RMSE (Mg/ha) | rRMSE (%) | Bias | rBias (%) |
Dehesas | 3.00842 *** | 0.6914 *** | 0.491 *** | 0.27 | 20.4 | 49.75 | 0.18 | 0.48 | |
Encinares | 0.4387 * | 1.4052 *** | 0.5234 *** | 0.61 | 14.54 | 51.48 | 0.22 | 0.78 | |
Alconocales | 0.09626 * | 0.6912 *** | 1.283 *** | 0.84 | 9.26 | 31.01 | −0.77 | −2.58 | |
Pinaster | 0.31035 * | 0.3316 *** | 1.258 *** | 0.76 | 23.78 | 37.01 | −0.48 | −1.04 | |
Pinea | 0.15928 * | 0.988 *** | 1.0759 *** | 0.86 | 13.46 | 27.22 | 1.04 | 1.41 |
Regression | |||||||||
---|---|---|---|---|---|---|---|---|---|
Forest Type | Model | a | b | c | Mef | RMSE (Mg/ha) | rRMSE (%) | Bias (Mg/ha) | rBias (%) |
Dehesas | 10.69188 *** | 0.55525 *** | 0.10726 *** | 0.30 | 15.38 | 38.17 | −0.08 | −0.20 | |
Encinares | 5.29572 *** | 1.06131 *** | 0.41344 *** | 0.33 | 14.13 | 57.87 | 0.14 | 0.65 | |
Alconocales | 5.8822 *** | 1.50235 *** | −1.0564 *** | 0.38 | 22.06 | 84.74 | 0.71 | 2.73 | |
Pinaster | 21.21140 *** | 0.56900 *** | 0.20040 *** | 0.37 | 32.16 | 48.19 | −0.45 | −0.67 | |
Pinea | 10.40710 *** | 0.90480 *** | 0.25550 *** | 0.46 | 28.37 | 63.97 | −0.56 | −1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. https://doi.org/10.3390/rs13122279
Dorado-Roda I, Pascual A, Godinho S, Silva CA, Botequim B, Rodríguez-Gonzálvez P, González-Ferreiro E, Guerra-Hernández J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing. 2021; 13(12):2279. https://doi.org/10.3390/rs13122279
Chicago/Turabian StyleDorado-Roda, Iván, Adrián Pascual, Sergio Godinho, Carlos A. Silva, Brigite Botequim, Pablo Rodríguez-Gonzálvez, Eduardo González-Ferreiro, and Juan Guerra-Hernández. 2021. "Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests" Remote Sensing 13, no. 12: 2279. https://doi.org/10.3390/rs13122279
APA StyleDorado-Roda, I., Pascual, A., Godinho, S., Silva, C. A., Botequim, B., Rodríguez-Gonzálvez, P., González-Ferreiro, E., & Guerra-Hernández, J. (2021). Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing, 13(12), 2279. https://doi.org/10.3390/rs13122279