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Abstract: The level of spatial co-registration between airborne laser scanning (ALS) and ground data
can determine the goodness of the statistical inference used in forest inventories. The importance of
positioning methods in the field can increase, depending on the structural complexity of forests. An
area-based approach was followed to conduct forest inventory over seven National Forest Inventory
(NFI) forest strata in Spain. The benefit of improving the co-registration goodness was assessed
through model transferability using low- and high-accuracy positioning methods. Through the
inoptimality losses approach, we evaluated the value of good co-registered data, while assessing
the influence of forest structural complexity. When using good co-registered data in the 4th NFI,
the mean tree height (HTmean), stand basal area (G) and growing stock volume (V) models were
2.6%, 10.6% and 14.7% (in terms of root mean squared error, RMSE %), lower than when using the
coordinates from the 3rd NFI. Transferring models built under poor co-registration conditions using
more precise data improved the models, on average, 0.3%, 6.0% and 8.8%, while the worsening
effect of using low-accuracy data with models built in optimal conditions reached 4.0%, 16.1% and
16.2%. The value of enhanced data co-registration varied between forests. The usability of current
NFI data under modern forest inventory approaches can be restricted when combining with ALS
data. As this research showed, investing in improving co-registration goodness over a set of samples
in NFI projects enhanced model performance, depending on the type of forest and on the assessed
forest attributes.
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1. Introduction

Collecting information on the status of the forest stands is the basis for developing effective
strategies to maximize the use of forest resources [1,2]. The scale of the assessment can turn the process
of measuring all existing trees into a prohibitively expensive and time-consuming operation, which
explains why sample-based estimates are normally used to conduct forest inventory [3,4]. These
sampling schemes aim at collecting trustworthy information, from which one can compute unbiased
estimates at different planning scales [5]. However, relying purely on ground-based measurements to
build robust estimators implies the use of massive effort [6], which can be reduced if spatially-explicit
auxiliary information such as remote sensing is used to conduct statistical inferences [7]. Among
the techniques based on remote sensing, active remote sensing is mainstream nowadays, due to the
capability of precisely describing the three-dimensional (3D) structure of forests [8]. The development
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of the forestry applications using Light Detection and Ranging (LiDAR) data has been focused on the
use of airborne laser scanning (ALS) and the implementation of area-based methods (ABA) to estimate
forest attributes [9,10].

In ALS-based forest inventory, the height and density statistics computed from a three-dimensional
(3D) point cloud are related to measured data collected in sampling designs as the x, y and z coordinates
(easting, northing and elevation) of all ASL echoes are recorded. The co-registration of the data, i.e.,
the spatial alignment in the Euclidean space between 3D point clouds and ground data coordinates,
is needed to relate ALS statistics to ground tree-level data. As a result, the co-registration factor
can determine the goodness of the statistical inference when estimating forest attributes [11]. The
occurrence of positioning errors in ground operations bias the co-registration factor, and results can be
costly when building harvest-scheduling models due to the bias in the estimation stage [12]. Several
factors can affect the quality of the positioning, such as interference of the forest canopies on the signal
transmission or the use of low-quality equipment with inefficient protocols [13]; furthermore, studies
have demonstrated the effect of these factors on the forest attributes estimation using ABA [14,15].
The complexity of the forest ecosystem can explain and scale the impact of co-registration errors in
ALS-based forest inventory [16]. Previous studies evaluated the impact of co-registration errors in
relatively small sampling designs for species-specific conditions [15,17]. They demonstrated that a
large-scale study should be conducted to assess the effect of different ecosystems on the co-registration
error and how they relate to the forest attribute estimation. The improvement of using expensive global
navigation satellite systems (GNSS) may not be worthwhile when conducting ABA below dense forest
canopies, but it can improve the forest estimation accuracy for more sparse forest ecosystems [18–20].
Therefore, the trade-off between increasing the positioning accuracy of ground data and the operational
costs during the inventory needs to be carefully assessed when developing national- and regional-level
strategies to conduct forest inventory [21].

The influence of co-registration errors in ALS-based forest inventory has received especial relevance
for applications using national forest inventory (NFI) data, since the quality of the plot positioning
in this case is not optimal [22,23]. NFI data have been mostly used for growth and stand dynamics
modeling based on purely ground data [24]. The combined use of NFI data and remote sensing data
have been challenging due to the uncertainty arising from the positioning equipment used in previous
campaigns [1]. However, what is the impact on ALS-based models when they are generated using
NFI data with low-accurate plot positioning? What is the benefit of re-measuring the positions of
NFI sample plots when using ALS-based forest inventory? What is the proportion of sample plots
in a regional stratum to be re-measured using high-accuracy equipment? The addressing of those
questions is nowadays timely, especially in the context of new large-scale ground campaigns under
NFI projects [2], which progressively acknowledge the need to improve their usability when combined
with remote sensing data [6,25]. The time gap between ground measurements and ALS surveys
can constraint the performance of the statistical inference, but still, old models can provide valuable
insights for forest managers [26]. The need to conduct forest inventory under constrained data sources
led the way to the development of sub-optimal methods when dependent and independent variables
cannot be collected simultaneously. Temporal transferability between models has been considered as a
good solution to estimate forest attributes when ALS data and ground measurements do not match in
time [27]. In this paper, we further evaluated the transferability approach while distinguishing between
different co-registration accuracies, which still remains unexplored despite very recent advances in
the method [25–28]. The model transferability approach as presented in this study is similar to the
inoptimality losses approach integrated by Pascual et al. [12], based on the cost of sub-optimal decisions.
In this study, we evaluated the benefit of using good co-registration data to validate models developed
under low-accuracy measurements in several forest ecosystems, and vice versa. Previous studies have
already recognized the worsening effect of using poorly co-registered data, but less attention has been
given to the role of high-accuracy co-registered data to improve existing models developed under poor
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co-registration goodness. The addressing of the topic is really needed in the field in order to evaluate
what the benefits are of collecting better co-registered 3D data in forest inventory [29].

In the context of large-scale NFI inventories, the usability of the data can be boosted not only
by reducing the co-registration error during ground operations but also by meeting the schedule of
nationwide surveys using ALS [30]. A disadvantage of NFI sampling is that the periodicity of the data
collection can range from a few years to more than a decade, considering the growth conditions and
operational delay in the last ground campaign. Therefore, this shortcoming of NFI projects increases
the potential and the need for approaches like the model transferability. For instance, forest managers
can use models with good positioning quality once and then use the same model on a multi-temporal
basis just by updating the ALS data by using less expensive sources, such as drone-based LiDAR
scanning [31] or structure from motion (see [32]). The underlying principle is that the usability of
accurate ground datasets can increase if the co-registration of the data improves, especially with the
use of NFI data [33].

The objectives of this paper were as follows: (i) to measure the improvement in the ABA method
when improving data co-registration using NFI data and ALS data and (ii) to evaluate the impact
of forest structural complexity on model performance and on model transferability. Specifically,
we evaluate the use of ABA models built under different co-registration goodness using the model
transferability approach. Hence, this paper tries to provide novel and further insights on how
regional-scale forest inventories can gain in precision when using enhanced procedures to co-register
data sources.

2. Materials and Methods

2.1. Study Area, Sampling Design and Ground Data

The study area is located in Spain, in the regions of Extremadura and the Canary Islands, covering
2.73 and 0.57 million hectares of forested landscapes. The region of Extremadura is located in continental
Spain, in proximity to Portugal (Figure 1). The diversity of forest ecosystems is high, ranging from
Atlantic areas to Mediterranean forests, including also agroforestry systems, which are the drivers
of local economies based on farming. The Canary Islands comprise some of the most singular forest
ecosystems in Europe due to their proximity to Africa and the presence of abrupt valleys, which act as
reservoirs of endangered forest ecosystems in mild conditions, such as the Laurasia or “Laurisilva”
(Figure 2). The forest map of Spain and the sampling design of the National Forest Inventory (NFI)
were used in this research to cover a wide spectrum of forest structures. We selected seven forest
ecosystems that have a minimum of 100 NFI sampling plots. The first five forest ecosystems listed are
located in Extremadura, while Canario and Fayal-Brezal refer to the Canary Islands, and especially
to the islands of Tenerife, La Palma and Gran Canaria, where most forest areas are located. The
descriptions of the forest ecosystems and their notation used in the research are as follows:

• Dehesa: sparse old-growth cork oak forests (Quercus suber L.) of low tree density, “Dehesas”,
traditionally managed to produce cork and provide grazing for domestic and wild livestock.

• Encinar: sparse oak forest (Quercus ilex subsp. ballota (Desf.) Samp.) managed in a coppice rotation
system to produce firewood and grazing for domestic and wild livestock.

• Pinaster: even-aged forests of Pinus pinaster subsp. mesogeensis Aiton.
• Eucalyptus: commercial forests of Eucalyptus spp.; the dominant especies is Eucalyptus camaldulensis

Dehnh., which is used to be managed for pulp.
• Pinea: even-aged forests of Pinus pinea L. managed for cone production and oriented to provide

important ecosystem services over sandy soils, such as soil erosion control.
• Canario: dense even-aged forests of Pinus canariensis C. Sm. that provide important forest

ecosystems services, such as erosion control in steep terrains. Fayal-Brezal: the wax myrtle-tree
heath (‘Fayal-Brezal’) forest is a mixture of laurel tree (Familia Lauraceae) and Myrica faya Ait.
trees and Erica arborea L. arboreal shrubs.
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Figure 1. (a) Forest map of Spain for the region of Extremadura showing the five forest ecosystems 
assessed using the sample plot from the National Forest Inventory (NFI). (b) Spatial arrangement of 
NFI samples for Dehesa forest ecosystems, distinguishing between coordinates measured in the 4th 
NFI using Global Navigation Satellite Systems (POSHA) and in the 3rd round of the NFI using 
traditional positioning methods (POSLA). 

Figure 1. (a) Forest map of Spain for the region of Extremadura showing the five forest ecosystems
assessed using the sample plot from the National Forest Inventory (NFI). (b) Spatial arrangement of
NFI samples for Dehesa forest ecosystems, distinguishing between coordinates measured in the 4th NFI
using Global Navigation Satellite Systems (POSHA) and in the 3rd round of the NFI using traditional
positioning methods (POSLA).
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Figure 2. (a) Spatial arrangement of NFI samples for Canario (Pinus canariensis) on La Palma Island. 
The NFI samples whose coordinates were registered in the 4th round using Global Navigation 
Satellite Systems (POSHA) and in the 3rd round using traditional positioning (POSLA) are displayed. 
(b) Same for Tenerife Island, the largest island in the archipelago.  

The sampling design in the NFI of Spain allows the variation of sampling size depending on tree 
diameter at breast height (1.3 m, dbh) as the statistitical inference based on circular plots with four 
concentric sub-plots, as follows: (i) Trees with dbh of at least 7.5 cm were measured using a plot 
radius of 5 m. (ii) Trees with dbh larger than 12.5 cm were measured in samples of 10-m radii. (iii) 
Trees with dbh larger than 22.5 cm were measured in the third plot radius (15 m). (iv) In the last 
concentric 25 m plot, all trees with dbh larger than 42.5 cm were measured. For more details about 
the NFI of Spain, see Alberdi et al. [34]. In the 3rd and 4th rounds of the NFI in Spain, ground 
measurements for both regions were collected, including tree diameters, species and the relative 
positions of all tress within a plot, were recorded and refered to the centre of the sample plot. The 
heights of all trees were recorded in the plots. The convesion of tree-level measuremetns into plot-
level estimates resulted in the following characteristics for the sample plots (Table 1). The estimation 
of volume was computed at tree-level using equations from the NFI protocol before upscaling the 
values to plot-level estimates. The final sampling set used as ground data comprised 2320 sample 

Figure 2. (a) Spatial arrangement of NFI samples for Canario (Pinus canariensis) on La Palma Island.
The NFI samples whose coordinates were registered in the 4th round using Global Navigation Satellite
Systems (POSHA) and in the 3rd round using traditional positioning (POSLA) are displayed. (b) Same
for Tenerife Island, the largest island in the archipelago.

The sampling design in the NFI of Spain allows the variation of sampling size depending on tree
diameter at breast height (1.3 m, dbh) as the statistitical inference based on circular plots with four
concentric sub-plots, as follows: (i) Trees with dbh of at least 7.5 cm were measured using a plot radius
of 5 m. (ii) Trees with dbh larger than 12.5 cm were measured in samples of 10-m radii. (iii) Trees
with dbh larger than 22.5 cm were measured in the third plot radius (15 m). (iv) In the last concentric
25 m plot, all trees with dbh larger than 42.5 cm were measured. For more details about the NFI of
Spain, see Alberdi et al. [34]. In the 3rd and 4th rounds of the NFI in Spain, ground measurements for
both regions were collected, including tree diameters, species and the relative positions of all tress
within a plot, were recorded and refered to the centre of the sample plot. The heights of all trees were
recorded in the plots. The convesion of tree-level measuremetns into plot-level estimates resulted in
the following characteristics for the sample plots (Table 1). The estimation of volume was computed at
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tree-level using equations from the NFI protocol before upscaling the values to plot-level estimates.
The final sampling set used as ground data comprised 2320 sample records from the 4th NFI (collected
during 2016–2017 in both regions), including tree density (N, trees ha−1), basal area (G, m2 ha−1),
growing stock volume (V, m3 ha−1) and mean tree height (HTmean, m).

Table 1. Summary of ground data collected in the 4th National Forest Inventory (NFI) for the seven
forest ecosystems. Plot-level estimates are presented for stand basal area (G, m2 ha−1), tree density (N,
trees ha−1), growing stock volume (V, m3 ha−1) and mean tree height (HTmean, m).

Forest Ecosystem Sample Plots Statistic HTmean
(m)

G
(m2 ha−1)

V
(m3 ha−1)

N
(trees ha−1)

Dehesa 499
Mean 7.7 6.5 15.3 85.0
Max 14.1 27.8 62.6 1143.0
Min 3.4 0.7 1.2 5.1

Encinar 275
Mean 5.9 4.9 15.8 272.0
Max 11.7 31.3 108.6 2132.0
Min 2.9 0.4 1.2 5.1

Pinaster 180
Mean 11.7 20.1 126.1 488.0
Max 13.1 75.8 452.7 3214.9
Min 4.6 0.4 1.6 5.1

Eucalyptus 163
Mean 11.6 7.2 42.2 390.7
Max 24.9 47.8 396.5 1651.3
Min 4.3 0.4 2.1 5.1

Pinea 113
Mean 9.2 13.9 63.7 360.4
Max 17.7 64.4 426.8 2383.7
Min 3.6 0.4 2.2 5.1

Canario 880
Mean 13.3 18.4 132.6 302.7
Max 31.3 84.9 784.4 2574.7
Min 2.8 0.4 1.6 5.1

Fayal-Brezal 210
Mean 8.1 23.8 105.6 1527.8
Max 17.7 85.8 423.0 4806.8
Min 3.4 0.4 1.5 5.1

2.2. Positioning Equipment and Co-Registration Assessment

In this study, the center coordinates of the 2320 sample plots were available from the previous
round of NFI measurements (3rd NFI). The location of NFI samples in Spain was conducted based
on orthoimagery and cartographic maps over a 1 km square grid covering the whole country. The
registration of new NFI sample plots during the 4th NFI was improved, compared to the field positioning
methods used in the 3rd NFI. Hereby, the ongoing 4th round of the Spanish NFI is addressing the
measurements of sample plots using modern GNSS equipment to improve plot positioning. The 4th
NFI campaign in the Canary Islands and Extremadura used the TRIMBLE Juno 5B Handheld (Trimble
Inc., USA), which can achieve real-time positioning accuracies between 2–4 m that can decrease to
1–3 m in the post-processing. As a showcase example, similar GNSS technology has been recently used
in the NFI of Italy [35]. In the case of the NFI of Spain, Fernández-Landa et al. (2018) [3] also observed
a mean error of 8.6 m, using the 4th NFI data from Spain, between the nominal coordinates available
from previous rounds of the NFI of Spain and the new coordinates measured with commercial-grade
GNSS equipment.

During field data collection in the 4th round of NFI measurements, a set of 877 NFI samples
registered during the 3rd NFI were identified and inspected in the field to be re-measured using
commercial-grade GNSS. The re-measurement samples represent 38% of the whole set of 2320
sample plots included in the study (Table 2). To control the bias from harvesting operations and
natural disturbances in our research, and based on previous studies [36], only sample plots showing
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non-negative increments in forest attributes between the 3rd and 4th campaigns of the NFI were
considered. The size of the training data to build the estimation models is within the range that other
studies have identified as optimal to conduct ALS-based inferences [37]. In the next sections of the
manuscript, we evaluate the use of two sets of measurements under the ABA approach. The ground
data correspond to the recent 4th round of the NFI, in which measurements took place between 2016
and 2017. The coordinates used to conduct the ABA were used to split the data into two categories: The
NFI samples for which coordinates were collected using a low-accuracy positioning in the traditional
NFI (used in the 3rd NFI) will be denoted as POSLA, while the recent positions measured in the 4th
round (38% of the samples) with commercial-grade GNSS will be referred as POSHA. The spatial
layouts of the NFI-based sampling designs are presented for three forest ecosystems as showcases
(Figures 1 and 2).

Table 2. Proportion of the sampling dataset measured both in the 3rd and 4th campaigns of the National
Forest Inventory (NFI) using traditional plot positioning methods in the NFI (POSLA) when using
Global Navigation Satellite System (GNSS) equipment (POSLA).

Positioning Accuracy Forest Ecosystem

Dehesa Encinar Pinaster Eucalyptus Pinea Canario Fayal Brezal

POSLA only 302 187 130 96 73 553 102
POSLA and POSHA 197 88 50 67 40 327 108

Re-measurement (%) 39.5 32.0 27.8 41.1 35.4 37.2 51.5
Total samples 499 275 180 163 113 880 210

2.3. Airborne Laser Scanning

Two sets of ALS point clouds collected in different years were processed in this study: The ALS
data for Extremadura were collected between July and September 2010, while the ALS campaign in
the Canary Islands took place in 2015–2016. The time gap between NFI ground data collection and
ALS surveys acquisition was 3 years for the Canary Islands and 7 for Extremadura, both within the
feasible range to produce reliable estimates [38]. Both datasets correspond to the first (Extremadura)
and second (the Canary Islands) round of nationwide ALS measurements, which are publicly available
in Spain through the National Program of Aerial Orthophotography of Spain (PNOA). The nominal
laser pulse density was 0.5 first returns m−2 in Extremadura and 1 first returns m−2 in the Canary
Islands, respectively. The horizontal accuracy of scanning survey was 0.20 m in both datasets, while
the vertical accuracy of ALS measurements was 0.20 m and 0.15 m in Extremadura and the Canary
Islands, respectively. The scanning operations involved in the collection of the ALS data in the region
of Extremadura used the LEICA ALS50 sensor operated at 1064 nm; the maximum pulse repetition rate
was 83 kHz, the maximum scan frequency was 32.1 Hz, the maximum scanning angle was ± 50◦ and
the average altitude during the scanning was 2866 m above the ground level. The specified scanning
equipment recorded a maximum of four returns per pulse. The extension of the ALS data in both cases
was very large, and the ALS processing was carried out using a manageable set of tiles (2 km2 each).

The licensed software Lastools version 180620 [39] was used to process the ALS data. The ALS
processing workflow within the Lastools environment comprised several steps (Figure 3). A total of
12058 and 2527 tiles were generated using lastile (parameters: tile_size = 2000 m, buffer = 50 m) in
Extremadura and the Canary Islands, respectively. Secondly, tiles were filtered to remove noise using
lasduplicate (parameters: unique_xyz) and lasnoise (parameters: step_z = 4, isolated = 5) and lasoverage
to classify the overlap. Then, an ALS-derived point cloud was used to compute a digital terrain model
(DTM) and a canopy height model (CHM). Firstly, ground points were classified using a progressive
triangulated irregular network densification algorithm implemented in lasground_new (settings: step =

25 m, bulge= 2 m and offset = 0.05 m), and a 2 m DTM was created using the blast2dem. Lasclassify was
used to discriminate between buildings and vegetation, and Lasheight were used to normalize the point
cloud data. Then, raster layer metrics of vertical structures were extracted as follows, using lascanopy:
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The center plot coordinates from the 3rd NFI (POSLA) and the new GNSS-based measurements from
the 4th NFI data (POSHA) were used to compute the ALS statistics that correspond to each sample
plot. The last concentric buffer of 25 m radius in the NFI samples was used to clip the normalized ALS
point clouds. The above-ground heights of ALS echoes were used to distinguish between tree canopies
(echoes above 2 m) and the shrub layers (echoes below 2 meters) when computing ALS density and
height statistics (lascanopy parameters: height_cutoff = 2, cover_cutoff = 2). The resulting set of 23 ALS
statistics (Table 3) computed for each sample plot was used as candidate predictor variables in the
model building stage.
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Figure 3. Implemented workflow based on Lastools software [38] to process the ALS data and conduct
forest inventory using airborne laser scanning (ALS) under the area-based approach (ABA).

Table 3. Set of statistics derived from airborne laser scanning data used as candidate predictor variables
to build the estimation models.

*Statistic Symbol Description

Moment statistics
Central tendency Hmean Mean elevation of ALS echoes.
Skewness Hskew Skewness of the distribution of ALS echoes.
Kurtosis Hkurt Kurtosis of the distribution of ALS echoes.
Order statistics Hmax HMin Maximum and minimum elevation of ALS echoes.

CRR Canopy Relief Ratio defined as
(Hmean − HMin)/ (Hmax − HMin).

Height
percentiles

Hi for i = 1, 5, 10, 20, 25, 30, 40, 50,
60, 70, 75, 80, 90, 95, 99 Height percentiles of the ALS echoes distribution.

Density metric

Percent all > 2 m FCall
Number of all points above 2 m divided by the
number of all returns.

Cover metric

Percent first > 2 m FCfirst
Number of first returns above 2 m divided by the
number of all first returns as a percentage.

* Further explanation of the variables can be consulted in the LasTools manual [36].

2.4. Estimation of Forest Attributes

The estimation of forest attributes using statistics derived from 3D point clouds has been widely
applied for ALS-based inventory [39]. The set of possible modeling techniques to be applied for
the purpose is rich and of different complexity, ranging from simple linear regression methods to
machine-learning algorithms [40–43]. As the level of influence of plot-positioning errors on data
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co-registration can differ between forest ecosystems, we sought for the ease of detection of worsening
relationships between ground and ALS data rather than building complex models to promote model
error minimization. We followed the maxima, “making simple models while possible without
compromising their description of the phenomena” [44]. Multiple linear regression was preferred for
simplicity and to compare previous studies using the same modeling technique to detect the impact of
errors on data co-registration [11,12,17]. The modeling dataset for each of the seven forest ecosystems
comprised models for stand basal area (G, m2 ha−1), growing stock volume (V, m3 ha−1) and mean tree
height (HTmean, m). The already documented low predictive capability of stand density models was
the reason to finally remove stand density from the fitting dataset [9,10].

The first step in the modeling phase was to select the optimal set of predictor variables to be
used in the estimation of forest attributes. The leaps package [45], which is available for R statistical
software [46], was tested to compute all possible combinations of predictors of certain arrays. In this
study, we proposed the use of two predictors to estimate stand basal area and growing stock volume,
while, for the case of mean tree height, we relied on one-parameter linear models. The described
variable selection method was applied to both POSHA and POSLA in each forest ecosystem. The smallest
root mean squared error (RMSE), the total explained variance (adjusted R2) and bias were used as the
criteria for the selection of models [47,48]. The relative RMSE (RMSE%) values were calculated as the
percentage of the average ground value of the given forest attributes. The implemented methodology
to filter, process and to conduct ALS-based inventory is presented in Figure 3.

2.5. Inoptimality-Losses Approach and Co-Registration Assessment

The selection of predictor variables under the POSLA and POSHA was applied to estimate forest
attributes for each studied forest ecosystem. The evaluation of plot positioning errors has previously
determined the cost of biased selections of predictors [48]. The model transferability approach [25]
can be further tested by evaluating the effect of the improved co-registration when sample plots are
re-measured using commercial-grade GNSS positioning. In this study, the shift from low-accuracy
positioning (POSLA) versus high-accuracy positioning (POSHA) is evaluated using the inoptimality
losses approach concept under modern ALS-based forest inventory. The assessment aims at determining
the reduction and increment in terms of RMSE% when co-registration thresholds between dependent
and independent variables do not match. Hereby, the transferability model approach was evaluated
as follows: we tested (i) the expected improvement of models built under low-accuracy positioning
(POSLA) when fitted with data corresponding to samples measured under high-accuracy positioning
(POSHA) and (ii) the expected worsening effect of transferring models built using POSHA data when
used with ALS statistics computed using POSLA data. The model RMSE was firstly computed for each
of the forest attributes estimated using the data from POSHA and POSLA. Then, the transferability of
models was assessed in the following manner: the model built from the POSLA was applied to predict
the data from POSHA, and vice versa, to compute the RMSE, called here as CrossRMSE. The RMSE
and the CrossRMSE were computed as follows:

RMSEHA =

√√√√√∑n
i=1

(
YHA − ŶHA

MHA

)2

nHA
, (1)

RMSELA =

√√√√√∑n
i=1

(
YLA − ŶLA

MLA

)2

nLA
, (2)

CrossRMSELA =

√√√√√∑n
i=1

(
YLA − ŶLA

MHA

)2

nLA
, (3)
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CrossRMSEHA =

√√√√√∑n
i=1

(
YHA − ŶHA

MLA

)2

nHA
, (4)

where RMSEHA and RMSELA are the RMSE values for models (MHA and MLA) when using the ground
data and ALS statistics of POSHA and POSLA datasets; nHA and nLA are the number of sample plots of
POSHA and POSLA. Model predictions are denoted by (Ŷ). For instance, the term YHA

MHA
accounts for

the prediction when using the ALS statistics and ground data of POSHA. Equations (3) and (4) account
for the CrossRMSE. In Equation (3), for instance, the model built with POSHA data was used to predict
forest attributes using ALS statistics of POSLA data, and the RMSE% was computed using ground data
of POSLA. The RMSE and CrossRMSE values were scaled to relative values to express the percentage
over the average value of the three forest attributes included in POSHA and POSLA datasets.

3. Results

3.1. Selection of Predictor Variables and Model Building

The horizontal distance between ground sample positions in POSHA and POSLA was computed
in both study areas, where the field crew identified sample plots on the ground before the plot center
was measured again by using the commercial-grade GNSS (Table 4). The results pointed out the
discrepancy between both positioning sources. The mean difference in the positioning records was 22.6
m, ranging from 21 m for the sparse Encinar and Dehesa forests to 30.2 m in the dense Fayal-Brezal
forests. The observed deviation of POSLA horizontal coordinates from POSHA coordinates (assumed
ground truth) was 90 m in the Extremadura dataset and reaching almost 250 m for the Canario forests.
The standard deviation of the distances showed more variability in the Canary Islands, where NFI
samples located in the Canario forests had higher values than those computed for Extremadura.

Table 4. Distance between sampling positions in the 3rd and 4th National Forest Inventory (NFI).
The mean value and the standard deviation of the computed distances are presented for the selected
forest ecosystems.

Forest Ecosystem Mean Distance
(m)

Distance Range
(m)

Standard Deviation
(m)

Dehesa 21.1 0.5–90.6 12.9
Encinar 21.4 4.0–63.5 13.4
Pinaster 29.5 0.8–85.5 19.2

Pinea 22.9 0.7–57.8 16.9
Eucalyptus 22.5 2.3–90.6 14.4

Canario 29.5 1.6–249.7 35.2
Fayal-Brezal 30.1 2.3–119.5 28.0

3.2. Selection of Predictor Variables and Model Building

The observed variation on the distribution of ALS echoes (Figures A1 and A2 and Appendix A)
was further assessed towards the composition of the models. The selection of variables pointed out
the good performance of density and height-based statistics to estimate both growing stock volume
and stand basal area. The selected optimal predictor variables for the models built from the POSLA

datasets were similar to when using the POSHA datasets. At least one density statistic was selected in
all models for growing stock volume and stand basal area in both positioning conditions. The selection
of the best predictor to estimate mean tree height remained similar for POSLA and POSHA datasets in
all tested forest ecosystems, except for the Dehesa forest, for which the selection shifted from H40 to
H99 (Table 5). The benchmark between the set of models for POSLA to POSHA was further assessed by
comparing the accuracy of the linear models using RMSE% and the total explained variance. Increasing
the co-registration mismatch by using low-accuracy positioning reduced the efficiency of the models
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(Table 6). The scale of the effect significantly differed when comparing forest ecosystems. For instance,
the increment in the RMSE% for stand basal area ranged from 2.1% for the Dehesa forest ecosystem to
19.9% in the Pinea forests. For the growing stock volume, the RMSE% ranged from 1.6% to 27.8% in
both forest ecosystems, respectively. The trends for both forest attributes were similar, except for the
case of the Eucalyptus, for which the worsening effect reached 5.8% for stand basal area but increased
up to 16.6% for the volume. The cost of low-accuracy positioning when modeling mean tree height was
less than 5% in all cases; the difference between POSLA to POSHA was less than 1% for the Dehesa and
the Encinar, progressively increasing to 2.3% (Canario), 2.9% (Fayal-Brezal), 3.2% (Pinaster) and 4.7%
(Eucalyptus and Pinea). The difference between the computed RMSE% values from the co-registration
factor is presented in (Figure 4).

Table 5. Selection of predictor variables using low-accuracy positioning methods (POSlA) and
commercial-grade GNSS positioning (POSHA).

Forest Attribute
Forest Ecosystem

Dehesa Encinar Pinaster Eucalyptus Pinea Canario Fayal Brezal

POSLA

Mean tree height
(HTmean, m) Hmean H40 H70 H90 Hmean Hmean H99

Basal area
(G, m2 ha−1)

Hmax Hkur H10 Hstd FCfirst H50 H01
FCfirst FCfirst FCfirst FCall FCall FCfirst H25

Volume
(V, m3 ha−1)

Hstd H10 H01 Hstd FCfirst H25 H30
FCfirst FCfirst FCfirst FCall FCall FCfirst FCfirst

POSHA

Mean tree height
(HTmean, m) Hmean H99 H80 H80 Hstd H50 H40

Basal area
(G, m2 ha−1)

H99 H95 H25 Hstd FCfirst FCfirst FCfirst
FCall FCall FCall FCall H20 H40 H20

Volume
(V, m3 ha−1)

H01 H40 H10 H50 H10 CRR FCall
FCfirst FCfirst FCall FCall FCfirst FCfirst FCfirst

Note: Model coefficients are presented in Appendix B (Table A1).
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Table 6. Goodness of the model fitting expressed by the R-squared value in bold and the computed
RMSE% between parentheses. The results are presented for seven forest ecosystems considering low-
accuracy positioning methods (POSLA) and commercial-grade GNSS positioning (POSHA).

Forest Attribute
Forest Ecosystem

Dehesa Encinar Pinaster Eucalyptus Pinea Canario Fayal Brezal

POSLA

Mean tree height
(HTmean, m)

0.70 0.45 0.65 0.62 0.59 0.49 0.46
(11.2) (16.9) (15.2) (16.8) (16.8) (25.1) (25.5)

Basal area
(G, m2 ha−1)

0.45 0.57 0.66 0.60 0.69 0.65 0.45
(42.3) (55.4) (41.8) (54.0) (44.3) (47.6) (62.4)

Volume
(V, m3 ha−1)

0.50 0.46 0.67 0.57 0.61 0.67 0.61
(46.6) (73.0) (46.0) (72.7) (58.5) (55.8) (62.2)

POSHA

Mean tree height
(HTmean, m)

0.70 0.65 0.69 0.81 0.81 0.67 0.46
(11.2) (17.0) (12.0) (12.1) (12.1) (22.9) (22.6)

Basal area
(G, m2 ha−1)

0.35 0.40 0.79 0.71 0.83 0.65 0.68
(40.1) (50.3) (29.3) (48.5) (24.6) (37.7) (43.0)

Volume
(V, m3 ha−1)

0.31 0.50 0.78 0.78 0.83 0.77 0.74
(45.0) (62.6) (33.2) (56.1) (30.7) (35.9) (46.7)

3.3. Assessing the Transferability Approach

3.3.1. Mean Tree Height Models

The expected improvement of using POSLA models for mean tree height with POSHA data was
not observed for both the Encinar and Fayal-Brezal ecosystems; no RMSE reduction was observed
from enhancing data co-registration. The improvement for the other five cases ranged between 0.9%
(Dehesa) to 3.4% (Pinaster) points in the RMSE%. The scale of the benefit was lower for mean tree
height compared to the basal area growing stock volume, as expected (Figure 5a,b). The RMSE%
increased when using POSHA models with POSLA data, reaching the maximum for the Pinea forest
ecosystem (14.2%), followed by the Eucalyptus (6.5%).

3.3.2. Stand Basal Area Models

The use of basal area models built for POSLA and ground data from POSHA datasets resulted
in a reduction of the RMSE% by 10%–11% for Pinea, Canario and Fayal-Brezal (Figure 5c,d). The
computed decrement was substantially lower for Dehesa (3.2%), Encinar (0.1%) and Pinaster (5.7%).
The increment in the computed model error (CrossRMSE%–RMSE%) when using POSHA models with
POSLA datasets was used to classify forest ecosystems as: (i) low impact computed for Eucalyptus
(5.9%) and Dehesa (6.9%); (ii) medium impact for Encinar (11.0%), Pinaster (15.2%) and Canario
(11.2%) and (iii) high impact for the Canario and Pinea forests, which had an increment of 35.5% and
38.2%, respectively.
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Figure 5. Model performance for mean tree height (a and b), stand basal area (c and d) and growing stock
volume (e and f) expressed as the relative root mean squared error (RMSE%) when using high-accuracy
positioning (POSHA, left) and low-accuracy positioning (POSLA, right). The CrossRMSE% represents
the model error (RMSE%) when using POSHA models with POSLA datasets in left sub-figures (a, c and
e), while the right-subfigures (b, d, f) refer to using POSLA models with POSHA datasets.

3.3.3. Growing Stock Volume Models

Similarly, as with stand basal area, the largest improvement in the estimation of volume was
computed for the Canario forest ecosystems, for which POSLA models improved 18.9% on RMSE%
when fitted with POSHA data (Figure 5e,f). The improvement was also higher for Eucalyptus and
Pinaster, while for the rest of the forest ecosystems, the improvement was below 3%. In the opposite
scenario, transferring models for the growing stock volume from high-accuracy to low-accuracy
co-registration resulted in greater impacts compared to the basal area. For instance, the increments
in the computed RMSE% increased between 8.8% and 41.7% points in the RMSE% for Dehesa and
Pinea, respectively.
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4. Discussion

The combined use of NFI sampling designs and nationwide ALS data ensures a robust estimation
and prediction of forest attributes due to the scale of sampling campaigns [23], as long as certain
operational and technical requirements are met [9]. The use of NFI data with ALS-based applications
has always been constrained due to an important and frequent source of uncertainty when interpreting
ALS data and related to ground data collection: co-registration. The accuracy in the collection of
plot locations using commercial-grade GNSS is then a cornerstone factor to conduct a good statistical
inference [10]. Furthermore, we evaluated in this paper the implications of improving the co-registration
between ground and ALS data by means of modern plot positioning methods on two regional-scale
inventories based on the sampling design from the NFI of Spain. We compared modeling results
from two sets of measurements. Ground NFI data corresponded to the 4th NFI in all cases, but
the coordinates of the NFI samples were registered under two different conditions in terms of data
co-registration goodness: (i) using traditional positioning methods in the 3rd NFI (POSLA) and new
coordinates registered with GNSS equipment during the 4th NFI ground campaign (POSHA). The
outcomes of the research pointed out the benefit of using better georeferenced data, although the level
of improvement needs to be carefully assessed considering the complexity of the forest structure, as
previously suggested in small-scale experiments [11,12].

The results of the study showed the slight benefit of improved data co-registration in sparse forest
ecosystems, where errors for stand basal area models are already considerably high. The benefit of
re-measuring sample plots with high-accurate GNSS for the Dehesa ecosystem were minor compared to
the level of improvement in other, denser forest ecosystems. The density and structural complexity of
the Quercus ilex forests (Encinar) is greater than in the Dehesa, and the results showed an improvement
that reaches 10% for volume and 5% for stand basal area in terms of RMSE%. The case of stone
pine forests (Pinea) needs further analysis, since the models should have behaved similarly as in
Dehesa and Encinar due to the sparse tree spacing in stone pine forests [17]. However, the stone pine
forests in Extremadura are different compared to, for instance, the Northern Plateau [49], in which
the spatial distribution of trees is certainly sparse [11,12]. The stone pine forests in Extremadura are
more densified. Therefore, the structural complexity of Pinea sample plots is high, and this can explain
the high effect of good data co-registration when fitting models for volume and stand basal area: the
scale of the improvement was 20% in both cases in terms of RMSE%, increments from 0.59 to 0.83
and 0.69 to 0.83 in terms of R2 for volume and stand basal area, respectively. As the computation of
growing stock volumes requires the application of models to predict individual tree volumes (with
their associated model error), we found it more logical to base the assessment of data co-registration
using stand basal area and tree height variables. The improvement in basal area models for the densely
vegetated Fayal-Brezal samples was also considerable when using POSHA data. This impact was greater
than for Pinaster and Eucalyptus forests, which models already have good accuracy (R2 above 0.7 in
POSHA and above 0.6 in POSLA). In cases of sparse forest ecosystems, where data co-registration has a
minor effect [17], the forest managers might need to implement additional improvements. The usability
of stand basal models under the traditional ABA method is being discussed by forest managers and
technicians in the Extremadura Forest Service due to the potential overestimation of forest attributes
in the Dehesa forests when predicting forest attributes and comparing them with the estimations
from the ITC approach. A good approach to improve estimation models is to rely on individual tree
detection methods combining active and passive sensing [50,51] and enhanced area-based approaches,
combining ABA and individual tree detection [17]. Those methods can improve the robustness of
ALS-based inference, but, at the same time, the positioning factor can become more restrictive: the shift
from area-based to tree-level forest inventory requires the positioning of ground tree measurements
to validate the results from tree detection algorithms. Therefore, the investment in improving data
co-registration is critical, no matter the forest inventory approach tested under the array of possible
modern ALS-based methods.
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The selection of predictor variables also revealed important patterns. The density metrics were
used for a high proportion of the models in the set for basal area and volume. For example, the
proportion of first ALS vegetation echoes above certain height thresholds is a good indicator of forest
stocking. However, the variability of density statistics towards the occurrence of plot positioning
errors is greater compared to height-based percentiles. The scale of positioning errors influences
more the number and the distribution of ALS echoes in the presence of gaps compared to top height
percentiles (i.e., the maximum elevation of tree canopies), which are prone to be detected by lasers
despite the occurrence of low-scale errors in plot positioning operations [12]. Therefore, and in light of
the model performances for basal area and volume, the use of density statistics can lead to a worsening
performance of the models under bad data co-registration goodness due to their variability in the
presence of gaps and discontinuities. Forthcoming studies need to address the cost of including more
height-based predictors in the volume and stand basal area models, which makes them more stable
towards the impact of plot positioning errors when computing ALS statistics but, at the same time,
less accurate compared to density-metrics-based models. For the case of mean tree height models,
the scale of the improvement from POSLA to POSHA is lower, as expected, and the results confirmed
that improving co-registration in certain forest ecosystems (e.g., Dehesa and Encinar) can have barely
no impact on tree height models. The reason for the different behaviors between stand basal area
models and mean tree height models are again related to model predictors: (i) even in the presence of
high co-registration errors, the ALS data can detect the maximum elevation of the echoes if the height
profile of tree vegetation in the surroundings of the plot remains homogeneous and( ii) the presence
of gaps reduce the number of ALS echoes corresponding to forest vegetation, and this impacts the
computation of density statistics, which is based on the ratio between the number of ALS echoes that
hits forest vegetation in the enumerator and the total number of ALS echoes in the denominator [38].

The tested modeling approach was simple and oriented to detect shifts in the predictive capability
of the models in the presence of the positioning errors that altered data co-registration between ground
and ALS data. Using more sophisticated and contemporary inference methods could have reduced
model errors [41], but the idea of the paper was to keep the models as simple as possible, which is
perfectly valid in ALS-based forest inventory. Among the set of possible improvements in the models,
the statistical inference can acknowledge structural relationships between dependent variables to
conform a system of nested but simple models rather than increasing the complexity of the models
individually [52,53]. The efficiency of ABA models for the case of POSLA was poor, as expected, due to
the uncertainty in field data protocols in the successive rounds of the NFI in Spain. The horizontal
mean error between POSHA positioning and their previous coordinates in the 3rd NFI was 26.2 m,
which explains the reported values in other studies. The dataset used in the research is very valuable;
the POSHA represents the first opportunity to conduct forest inventory using ALS and sample plots
from the NFI of Spain registered under good data co-registration. Our results showed that models
built with poorly co-registered data can perform better when transferred to a new forest area following
the timely model transferability approach.

The principle of the transferability approach is to use ALS models to predict the forest attributes
for a different dataset that was not used to build the model. Such approaches are normally required by
forest managers, who frequently avoid collecting more data for the modeling, especially when public
nationwide datasets are used. Furthermore, the cost of analysis can be reduced, since independent
variables do not require investments for their collection, as occurred with the PNOA in Spain. The
reasoning of the transferability approach is not restricted to assessing spatial transferability between
forest areas but also to measure the benefit (or penalty) of using ALS statistics that do not completely
correspond to the ground observations as a result of uncertainty when registering plot coordinates [12].
On one side, models built under good co-registration quality were more sensitive to their calibration
when poorly co-registered data was used, as expected. On the other, there is a benefit when good
co-registered data is used to transfer “bad” models to a new area, which is the main outcome of our
assessment. In simple words, improved GNSS positioning increases the accuracy of forest attribute
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predictions through ALS data. The computed improvement of the models under the implemented
inoptimality losses approach was high, reaching a RMSE% of almost 30% in some cases for volume
and stand basal area.

The revision of the sample plots requires verifying that no human intervention in the sample plots,
and also in the surroundings, has taken place. In this study, the sampling dataset was reduced from 4031
to 2320 due to the occurrence of negative variations between the 3rd and the 4th measuring campaign
of the NFI. The occurrences of harvesting operations and natural disturbances must be addressed
when accounting for spatial and temporal patterns in forest inventory [36]. We account for the loss of
40% of sampling records due to natural and human interventions, but the impact of disturbances might
be greater, as the buffering zone around the sample plots can be affected. To control the homogeneity
around NFI sample plots is a critical step to improve the usability of remote sensing in large-scale
mapping, especially in the context of co-registration errors that can substantially impact the robustness
of the statistical inferences, as we documented. The time gap between ground measurements and the
collection of the ALS data is an important issue, especially in fast-growing species. In our research, the
time gap was 1–2 years for the Canary Islands and 6–7 years for the Extremadura, which can be in the
feasible threshold (years of the gap) based on previous studies [38]. The maximum lifespan of a certain
ALS dataset can also depend on forest structure. For instance, ALS data collected for slow-growing
species such as in Encinar or Dehesa can still be valid for a longer lifespan than for the case of the
Eucalyptus of pine forests. Further research could evaluate the maximum ALS lifespans for a broader
range of forest ecosystems in Extremadura, where the second round of scanning under the PNOA
project is about to conclude.

The optimal integration of remote sensing data, and ALS in particular, into large-scale mapping
using NFI data needs to account for improved data co-registration methods and also effective methods
to preserve sampling areas. In this regard, it is important to recognize human-related disturbances
and avoid the impact of edge effects [17], which is a real challenge, especially in fragmented forest
landscapes composed of small-scale privately owned areas [23]. The addressing of growth dynamics
based on multi-temporal NFI observations and using remote sensing data is the next challenge once
the co-registration uncertainty is solved or, at least, mitigated [54–56].

The cost of the re-measurement operations of the whole set of NFI plots using commercial-grade
GNSS equipment might exceed the resources of the NFI program. Operationally, and in budgetary
terms, the task of re-visiting the whole set of NFI plots can overwhelming at once. The investment
can gradually pay off if NFI forest managers can determine the minimum number of sample plots
to be re-measured using improved positioning protocols. The search for the center points in NFI
sampling designs can be extremely time-consuming, and, therefore, the effort should be progressive
and continuous in the next rounds of NFI campaigns. Still, some questions remain, open and further
evidence is needed to support our discussed model improvement that arose from the re-measurement
of 877 samples from a total of 2320. Further studies are needed to define the optimal size of the
NFI samplings in cases of ALS-based estimations on regional and national scales [21]. Based on the
presented methodology and the very valuable dataset comprising hundreds of corrected NFI sample
positions, the intensity of the NFI sampling design under ALS-based forest inventory can be further
discussed, and this will be the core of a forthcoming research.

5. Conclusions

The research demonstrated the improvement in forest inventory when resources are invested
to improve the co-registration between ground NFI data and ALS point clouds. The scale of the
enhancement varied between forest ecosystems, depending on the structural complexity and the forest
attributes analyzed. The usability of current NFI data under modern forest inventory approaches can be
restricted when combining multiple remote sensing data sources. This research showed that investing
in reducing data uncertainty when registering NFI sample plots improves the predictive capacity of
ALS-based forest inventory while improving the usability of existing models when fitted to new areas
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lacking in ground attributes. The research evaluated the model transferability approach under a new
dimension, shifting from model transferability between areas/regions to an implementation based on
data sources collected under different data co-registration goodness.
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Figure A1. Histograms of the maximum height computed from all the ALS echoes inside the sample 
plots. The results are presented for low- and high-accuracy measurements and for the seven forest 
ecosystems assessed: Dehesa (a), Encinar (b), Pinaster (c), Eucalyptus (d), Pinea (e), Canario (f) and Fayal-
Brezal (g). 
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Figure A2. Histograms of the percentage of first ALS echoes above 2m in the sample plots. 
The results are presented for low- and high-accuracy measurements and for the seven forest 
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POSHA Models POSLA Models 

G Mean tree height (HTmean, m) 
 HTmean = 0.760* + 1.319 Hmean*** HTmean = 0.728** + 1.333 Hmean*** 
Encinar HTmean = 0.896* + 1.324 H50*** HTmean = 2.312*** + 0.795 H70*** 
Pinaster HTmean = 3.678*** + 0.789 H80*** HTmean = 5.447*** + 0.729 H70*** 

Figure A2. Histograms of the percentage of first ALS echoes above 2m in the sample plots. The results
are presented for low- and high-accuracy measurements and for the seven forest ecosystems assessed:
Dehesa (a), Encinar (b), Pinaster (c), Eucalyptus (d), Pinea (e), Canario (f) and Fayal-Brezal (g).

Appendix B

The selected full models are presented in Table A1, including model coefficients and the level of significance
of the predictor variables. The goodness of fit of the models is presented in Table 6 in the manuscript.

Table A1. Model composition, including coefficients, predictor variables and the level of significance.
The models were fitted using low-accuracy measurements positioning (POSlA) and high-accuracy
measurements positioning (POSHA).

Forest
Attributes POSHA Models POSLA Models

G Mean tree height (HTmean, m)
HTmean = 0.760* + 1.319 Hmean*** HTmean = 0.728** + 1.333 Hmean***

Encinar HTmean = 0.896* + 1.324 H50*** HTmean = 2.312*** + 0.795 H70***
Pinaster HTmean = 3.678*** + 0.789 H80*** HTmean = 5.447*** + 0.729 H70***
Eucalyptus HTmean = 2.261*** + 0.934 H80*** HTmean = 2.731*** + 0.744 H90***
Pinea HTmean = 4.552** + 0.097 Hstd*** HTmean = 4.198** + 0.794 Hmean***
Canario HTmean = 1.940*** + 0.982 H50*** HTmean = 3.244*** + 0.952 Hmean***
Fayal-Brezal HTmean = 3.995*** + 0.601 H40*** HTmean = 3.256*** + 0.403 H99***
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Table A1. Cont.

Forest
Attributes POSHA Models POSLA Models

Stand basal area (G, m2 ha−1)
Dehesa G = −1.308 + 1.379 H01*** + 0.139 FCfirst*** G = 0.668 + 0.038 Hstd** + 0.168 FCfirst***
Encinar G = −3.028* + 1.607 H40*** + 0.087 FCfirst*** G = −5.023*** + 2.214 H10*** + 0.141 FCfirst***
Pinaster G = −10.097*** + 1.966 H10*** + 0.548 FCall*** G = −14.256*** + 5.361 H01*** + 0.439 FCfirst***
Eucalyptus G = −7.585*** + 0.922 H50*** + 0.276 FCall*** G = −4.578*** + 0.059 Hstd*** + 0.258 FCall***
Pinea G = −10.024** + 5.474 H01** + 0.264 FCfirst*** G = −0.306 + 1.054 FCfirst *** - 0.803 FCall**
Canario G = −11.28*** + 0.462 FCfirst *** + 24.338 CRR*** G = −5.743*** + 0.747 H25*** + 0.440 FCfirst***
Fayal-Brezal G = −26.429*** + 0.367 FCfirst*** + 68.722 CRR*** G = −9.437*** + 3.341 H30*** + 0.166 FCfirst ***

Growing stock volume (V, m3 ha−1)
Dehesa V = 0.742 + 0.58 H99 + 0.327 FCfirst*** V = −6.75*** + 1.214 H99*** + 0.437 FCfirst***
Encinar V = −6.709* + 1.783 H95* + 0.434 FCall*** V = −6.186* + 1.944 Hkur* + 0.559 FCfirst***
Pinaster V = −85.719*** + 13.508 H25*** + 2.601 FCfirst*** V = −66.684*** + 14.99 H10*** + 2.524 FCfirst***
Eucalyptus V = −39.306*** + 0.53 Hstd*** + 1.585 FCall*** V = 96.374*** - 23.842 Hstd*** + 1.709 Hmean***
Pinea V = −33.442*** + 10.621 H20***- 1.052 FC first *** V = −6.493 + 6.456 FCfirst *** - 5.432FCall**
Canario V = −102.659*** + 11.647 H40***+ 2.875 FC first *** V = −106.582*** + 9.825 H50*** + 3.193 FCfirst***
Fayal-Brezal V = −102.761*** + 31.997 H20*** + 0.867 FCfirst** V = 21.305*** - 47.229 H01* + 36.030 H25***

Note: Significance codes: *** (0.001), ** (0.01) and * (0.05).
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