Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models
Abstract
:1. Introduction
2. Study Area
3. Materials
3.1. Satellite Images
3.2. Reference Data
3.3. Hardware and Software
4. Methodology
4.1. General Description
- Definition of the target classes.
- Definition of the time period for the analysis.
- Image evaluation, selection and preprocessing.
- Collection of training areas.
- Generation of single date classifications.
- Aggregation of single date classifications.
- Evaluation of results.
- Overall Accuracy (OA): calculated by summing the number of correctly classified sites (the diagonal of the matrix) and dividing by the number of reference sites. This value indicates the proportion of the reference sites that was correctly classified.
- Producer’s Accuracy (PA): the result of dividing the number of correctly classified reference points in each category by the total number of reference points for that category. It corresponds to the map accuracy from the point of view of the map maker. It represents how often real features on the ground are correctly shown on the classified map or the probability that a certain land cover of an area on the ground is properly classified.
- User’s Accuracy (UA): computed by dividing the number of correctly classified pixels in each category by the total number of pixels that were classified for that category. This value represents the reliability of the map or the probability that a pixel classified into a given category actually represents that category on the ground.
- F-1 Score: a weighted average of the producer’s and user’s accuracy.
- Kappa Index: compares the accuracy obtained in the classification to the accuracy that would be obtained randomly. It is calculated as the difference between the total accuracy (OA) and the accuracy that would be obtained by a random classification, divided by one minus the accuracy that would be obtained by a random classification.
- p-value associated to Kappa Index: probability that the Kappa Index measures the evidence against the null hypothesis (H0: agreement is due to chance).
4.2. Aggregation Method
4.3. Random Forests Training and Model Creation
4.4. Spatial Resolution
5. Results
5.1. Aggregation Method
5.2. Random Forests Training and Model Creation
5.3. Spatial Resolution
6. Discussion
6.1. Time Series Selection
6.2. Reference Dataset
6.3. Aggregation Criteria
6.4. Model Creation
6.5. Spatial Resolution
6.6. Comparison with Other Large-Scale Land Cover Classifications Performed with Sentinel-2
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors 2007, 7, 3209–3241. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Bartholomé, E. GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). Landsat-8. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 4 December 2020).
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the Added Value of Sentinel-2’s Red-Edge Bands to Land-Use and Land-Cover Mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Qiu, S.; He, B.; Yin, C.; Liao, Z. Assessments of Sentinel-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W. How Much Does Multi-Temporal Sentinel-2 Data Improve Crop Type Classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Madonsela, S.; Cho, M.A.; Mathieu, R.; Mutanga, O.; Ramoelo, A.; Kaszta, Ż.; Van De Kerchove, R.; Wolff, E. Multi-Phenology WorldView-2 Imagery Improves Remote Sensing of Savannah Tree Species. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Peroni, L.; Chiaberge, M. Land Cover and Crop Classification Using Multitemporal Sentinel-2 Images Based on Crops Phenological Cycle. IEEE Workshop Environ. Energy Struct. Monit. Syst. 2018, 1–5. [Google Scholar] [CrossRef]
- Matton, N.; Sepulcre-Canto, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Sarukkai, V.; Jain, A.; Uzkent, B.; Ermon, S. Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 1785–1794. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved Land Cover Map of Iran Using Sentinel Imagery within Google Earth Engine and a Novel Automatic Workflow for Land Cover Classification Using Migrated Training Samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Hernandez, I.; Benevides, P.; Costa, H.; Caetano, M. Exploring Sentinel-2 for Land Cover and Crop Mapping in Portugal. In Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B3 2020, 2020, 83–89. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Lewiński, S.; Nowakowski, A.; Malinowski, R.; Rybicki, M.; Kukawska, E.; Krupiński, M. Aggregation of Sentinel-2 Time Series Classifications as a Solution for Multitemporal Analysis. In Proceedings Volume 10427, Image and Signal Processing for Remote Sensing XXIII; SPIE Remote Sensing: Warsaw, Poland, 2017. [Google Scholar] [CrossRef]
- Paris, C.; Bruzzone, L.; Fernández-Prieto, D. A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images. Geosci. Remote Sens. IEEE Trans. 2019, 57, 4259–4277. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; de la Fuente, D.; Rivas-Gonzalez, F.W.; Franco-Nieto, A. Sentinel-2 Unsupervised Forest Mask for European Sites. In Earth Resources and Environmental Remote Sensing/GIS Applications X; SPIE Remote Sensing: Strasbourg, France, 2019; p. 111560Y. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, X.; Lin, L.; Wang, Q.; Liu, J.; Yu, K.; Chen, C. BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker. J. For. Res. 2020, 31, 107–121. [Google Scholar] [CrossRef]
- Qin, J.; Wang, B.; Wu, Y.; Lu, Q.; Zhu, H. Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning Algorithms. Remote Sens. 2021, 13, 162. [Google Scholar] [CrossRef]
- Bayat, M.; Bettinger, P.; Heidari, S.; Henareh Khalyani, A.; Jourgholami, M.; Hamidi, S.K. Estimation of tree heights in an uneven-aged, mixed forest in northern Iran using artificial intelligence and empirical models. Forests 2020, 11, 324. [Google Scholar]
- Santi, E.; Chiesi, M.; Fontanelli, G.; Lapini, A.; Paloscia, S.; Pettinato, S.; Ramat, G.; Santurri, L. Mapping Woody Volume of Mediterranean Forests by Using SAR and Machine Learning: A Case Study in Central Italy. Remote Sens. 2021, 13, 809. [Google Scholar] [CrossRef]
- Akay, A.E.; Taş, İ. Mapping the risk of winter storm damage using GIS-based fuzzy logic. J. For. Res. 2020, 31, 729–742. [Google Scholar] [CrossRef]
- Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lennsky, I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, S.; Jaafari, M.R.; Oliva, P.; Ghorbanzadeh, O.; Blaschke, T. Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data. Remote Sens. 2020, 12, 1912. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Heydari, A.; Fusilli, L.; Laneve, G. Land Cover Classification by Using Sentinel-2 Images: A Case Study in the City of Rome. In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE’19), Rome, Italy, 4–7 April 2019. [Google Scholar] [CrossRef]
- Eka, M.; Mutiara, A.B.; Catur-Wibowo, W. Forest Classification Method Based on Convolutional Neural Networks and Sentinel-2 Satellite Imagery. Int. J. Fuzzy Log. Intell. Syst. 2019, 19, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Delalay, M.; Tiwari, V.; Ziegler, A.D.; Gopal, V.; Passy, P. Land-Use and Land-Cover Classification Using Sentinel-2 Data and Machine-Learning Algorithms: Operational Method and Its Implementation for a Mountainous Area of Nepal. J. Appl. Remote Sens. 2019, 13, 014530. [Google Scholar] [CrossRef]
- Nomura, K.; Mitchard, E.T.A. More Than Meets the Eye: Using Sentinel-2 to Map Small Plantations in Complex Forest Landscapes. Remote Sens. 2018, 10, 1693. [Google Scholar] [CrossRef] [Green Version]
- Swapan, T.; Singha, P.; Mahato, S.; Shahfahad, P.S.; Liou, Y.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the Robustness of Random Forests to Map Land Cover with High Resolution Satellite Image Time Series over Large Areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- ESA (European Space Agency) and SEOM (Scientific Exploitation of Operational Missions). High Resolution Land Cover Map of Europe. 2017. Available online: http://s2glc.cbk.waw.pl/ (accessed on 7 June 2021).
- ESA (European Space Agency). CCI Land Cover-S2 Prototype Land Cover 20m Map of Africa 2016. 2016. Available online: http://2016africalandcover20m.esrin.esa.int/ (accessed on 11 March 2021).
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual Reflectance Composites from Sentinel-2 and Landsat for National-scale Crop and Land Cover Mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- ESA (European Space Agency). Mapping Germany’s Agricultural Landscape. 2017. Available online: http://www.esa.int/ESA_Multimedia/Images/2017/08/Mapping_Germany_s_agricultural_landscape (accessed on 11 March 2021).
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Del Pozo, S.; González-Aguilera, D.; Moreno, M.A. Scalable Pixel-Based Crop Classification Combining Sentinel-2 and Landsat-8 Data Time Series: Case Study of the Duero River Basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Lafarga Arnal, A.; Armesto Andrés, A.P.; Garraza Zurbano, J.A. Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy. Remote Sens. 2018, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Gómez, V.; Del Blanco Medina, V.; Bengoa, J.L.; Nafría García, D.A. Accuracy Assesment of a 122 Classes Land Cover Map Based on Sentinel-2, Lansat 8 and Deimos-1 Images and Ancillary Data. In Proceedings of the IGARSS 2018—2018, IEEE International Geoscience and Remote Sensing, Valencia, Spain, 22–27 July 2018; pp. 5453–5456. [Google Scholar] [CrossRef]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-Based Integrated Assessment of Environmental Variables and Wildfire Severity through Sentinel-2 Data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L.; Armesto, J.; Picos, J. Chestnut Cover Automatic Classification through Lidar and Sentinel-2 Multi-Temporal Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 425–430. [Google Scholar]
- MAPA (Ministerio de Agricultura Pesca y Alimentación. Mapa Forestal de España a Escla 1:25.000 (MFE25). Available online: https://www.mapa.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/mapa-forestal-espana/mfe_25.aspx (accessed on 16 February 2021).
- Consellería do Medio Rural, Xunta de Galicia. 1a Revisión Del Plan Forestal de Galicia. 2015. Available online: https://mediorural.xunta.gal/fileadmin/arquivos/forestal/ordenacion/1_REVISION_PLAN_FORESTAL_CAST.pdf (accessed on 11 March 2021).
- Gobierno de España. Ministerio de Hacienda. Sede Electrónica del Catastro. 2011. Available online: https://www.sedecatastro.gob.es (accessed on 26 January 2021).
- MTMAU (Ministerio de Transporte Movilidad y Agenda Urbana) and IGN (Instituto geográfico Nacional). Centro de Descargas. Centro Nacional de Información Geográfica. Available online: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 7 June 2021).
- Rodríguez Quitán, M.A.; Ramil-Rego, P. Clasificaciones Climáticas Aplicadas a Galicia: Revisión desde una Perspectiva Biogeográfica. Recur. Rurais 2007, 3, 31–53. [Google Scholar] [CrossRef]
- Xunta de Galicia and IGAPE. Oportunidades Industria 4.0 En Galicia. Diagnóstico Sectorial: Madera/Forestal. 2017. Available online: http://www.igape.es/es/ser-mas-competitivo/galiciaindustria4-0/estudos-e-informes/item/1529-oportunidades-industria-4-0-en-galicia (accessed on 7 June 2021).
- Copernicus. Available online: https://www.copernicus.eu/es (accessed on 16 February 2021).
- ESA (European Space Agency). ESA Standard Document—Sentinel-2 User Handbook. 2015. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook (accessed on 7 June 2021).
- ESA (European Space Agency). Copernicus and European Comission. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 16 February 2021).
- Kukawska, E.; Lewiński, S.; Krupiński, M.; Malinowski, R.; Nowakowski, A.; Rybicki, M.; Kotarba, A. Multitemporal Sentinel-2 Data—Remarks and Observations. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; pp. 2–5. [Google Scholar] [CrossRef]
- MTMAU (Ministerio de Transporte Movilidad y Agenda Urbana). Plan Nacional de Ortofotografía Aérea (PNOA). Available online: https://pnoa.ign.es/ (accessed on 16 February 2021).
- Google Street View. Available online: https://www.google.es/intl/es/streetview/ (accessed on 16 February 2021).
- The R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 16 February 2021).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Grommy, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Stehman, S. Basic probability sampling designs for thematic map accuracy assessment. Remote Sens. 1999, 20, 2423–2441. [Google Scholar] [CrossRef]
- Stehman, S. Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment. Remote Sens. Environ. 2000, 72, 35–45. [Google Scholar] [CrossRef]
- Belcore, E.; Piras, M.; Wozniak, E. Specific Alpine Environment Land Cover Classification Methodology: Google Earth Engine Processing for Sentinel-2 Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2020, 43, 663–670. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Gromny, E.; Lewiński, S.; Rybicki, M.; Malinowski, R.; Krupiński, M.; Nowakowski, A.; Jenerowicz, M. Creation of Training Dataset for Sentinel-2 Land Cover Classification. Proc. SPIE 2019, 11176. [Google Scholar] [CrossRef]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Stehman, S. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 3, 5243–5272. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, R.; Li, X.; Shen, H.; Yuan, Z. Block adjustment-based radiometric normalization by considering global and local differences. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Li, X.; Feng, R.; Guan, X.; Shen, H.; Zhang, L. Remote sensing image mosaicking: Achievements and challenges. IEE Geosci. Remote Sens. Mag. 2019, 7, 8–22. [Google Scholar] [CrossRef]
- Forstmaier, A.; Shekhar, A.; Chen, J. Mapping of Eucalyptus in Natura 2000 Areas Using Sentinel 2 Imagery and Artificial Neural Networks. Remote Sens. 2020, 12, 2176. [Google Scholar] [CrossRef]
Class | Description |
---|---|
Eucalyptus spp. | Land covered by Eucalyptus spp. trees. |
Conifers | Land covered by coniferous trees. |
Broadleaves | Land covered by broadleaf trees other than Eucalyptus spp. |
Shrubs | Land covered by non-tree, woody vegetation. |
Crops and pastures | Land covered by non-woody vegetation. |
Bare soil | Land covered by rocks or non-anthropogenic non-vegetated areas. |
Anthropogenic areas | Buildings or built-up areas or areas modified by humans, such as mines. |
Water | Bodies of water. |
Sentinel-2 Tile TMH | Sentinel-2 Tile TNH | Sentinel-2 Tile TPJ | |||||||||
Date | CCP | CSP | DFP | Date | CCP | CSP | DFP | Date | CCP | CSP | DFP |
20190103 | 0.05 | 0.11 | 0.58 | 20190108 | 4.09 | 0.79 | 5.65 | 20190105 | 0.71 | 0.14 | 4.64 |
20190212 | 12.92 | 0.03 | 0.24 | 20190212 | 30.46 | 0.16 | 1.62 | 20190214 | 17.61 | 0.05 | 2.10 |
20190329 | 0.61 | 0.00 | 0.08 | 20190329 | 1.91 | 0.07 | 0.34 | 20190326 | 0.86 | 0.18 | 0.25 |
20190503 | 0.77 | 0.03 | 0.07 | 20190428 | 15.01 | 0.01 | 0.16 | 20190420 | 9.10 | 0.00 | 0.08 |
20190513 | 7.13 | 0.00 | 0.06 | 20190513 | 0.75 | 0.01 | 0.14 | 20190530 | 1.49 | 0.01 | 0.05 |
20190528 | 0.42 | 0.05 | 0.07 | 20190528 | 2.17 | 0.26 | 0.38 | 20190719 | 9.61 | 0.02 | 0.04 |
20190722 | 9.35 | 0.01 | 0.05 | 20190712 | 3.94 | 0.02 | 0.20 | 20190724 | 13.29 | 0.02 | 0.06 |
20190821 | 4.09 | 0.01 | 0.05 | 20190816 | 1.95 | 0.12 | 0.20 | 20190823 | 29.93 | 0.03 | 0.09 |
20190915 | 0.07 | 0.01 | 0.09 | 20190915 | 3.69 | 0.03 | 0.22 | 20190912 | 12.43 | 0.01 | 0.09 |
20191010 | 0.83 | 0.41 | 0.15 | 20191010 | 1.32 | 1.04 | 0.53 | 20191007 | 5.13 | 0.01 | 0.20 |
20191204 | 1.89 | 0.19 | 0.62 | 20191204 | 1.76 | 0.71 | 4.75 | 20191121 | 20.29 | 4.88 | 2.51 |
20191229 | 4.61 | 0.12 | 0.57 | 20191229 | 4.22 | 0.58 | 5.40 | 20191226 | 4.52 | 0.46 | 5.78 |
Sentinel-2 Tile TPH | Sentinel-2 Tile TPG | Sentinel-2 Tile TNG | |||||||||
Date | CCP | CSP | DFP | Date | CCP | CSP | DFP | Date | CCP | CSP | DFP |
20190105 | 0.84 | 0.88 | 15.41 | 20190105 | 4.46 | 0.99 | 14.03 | 20190110 | 0.69 | 1.21 | 9.42 |
20190224 | 1.70 | 0.33 | 6.86 | 20190224 | 0.46 | 0.19 | 4.48 | 20190214 | 2.96 | 0.22 | 3.84 |
20190311 | 0.59 | 0.22 | 3.65 | 20190316 | 10.97 | 0.04 | 1.72 | 20190321 | 0.34 | 0.02 | 0.38 |
20190430 | 40.65 | 0.13 | 0.36 | 20190420 | 15.80 | 0.04 | 0.98 | 20190430 | 6.08 | 0.03 | 0.17 |
20190530 | 0.22 | 0.08 | 0.22 | 20190505 | 17.15 | 0.01 | 0.25 | 20190505 | 32.16 | 0.02 | 0.12 |
20190629 | 17.67 | 0.25 | 0.34 | 20190629 | 12.04 | 0.27 | 0.67 | 20190530 | 0.19 | 0.02 | 0.11 |
20190719 | 0.09 | 0.03 | 0.25 | 20190719 | 0.10 | 0.04 | 0.22 | 20190719 | 0.17 | 0.02 | 0.14 |
20190803 | 0.12 | 0.06 | 0.27 | 20190803 | 0.11 | 0.05 | 0.25 | 20190813 | 1.88 | 0.04 | 0.14 |
20190912 | 0.05 | 0.01 | 0.45 | 20190907 | 0.53 | 0.01 | 0.36 | 20190912 | 0.19 | 0.03 | 0.16 |
20191007 | 0.05 | 0.01 | 0.80 | 20191007 | 3.29 | 0.03 | 1.12 | 20191007 | 1.94 | 0.78 | 1.30 |
20191226 | 10.95 | 2.57 | 16.83 | 20191022 | 21.57 | 8.08 | 3.60 | 20191022 | 1.94 | 0.78 | 1.30 |
20191231 | 12.73 | 2.39 | 16.74 | 20191229 | 2.78 | 0.92 | 8.43 | ||||
Sentinel-2 Tile TNJ | |||||||||||
Date | CCP | CSP | DFP | ||||||||
20190105 | 0.55 | 0.33 | 5.65 | ||||||||
20190212 | 11.10 | 0.06 | 1.62 | ||||||||
20190324 | 0.30 | 0.02 | 0.34 | ||||||||
20190428 | 6.31 | 0.01 | 0.16 | ||||||||
20190513 | 3.32 | 0.02 | 0.14 | ||||||||
20190712 | 0.34 | 0.03 | 0.38 | ||||||||
20190724 | 14.34 | 0.13 | 0.20 | ||||||||
20190816 | 26.0 | 0.04 | 0.20 | ||||||||
20190915 | 38.54 | 0.09 | 0.22 | ||||||||
20191010 | 12.00 | 1.26 | 0.53 | ||||||||
20191129 | 43.34 | 2.82 | 4.75 | ||||||||
20191204 | 10.01 | 0.20 | 5.40 |
Tile | Total Nº of Pixels | Nº of Training Pixels | Percentage (%) |
---|---|---|---|
TNG | 12,677,103 | 37,311 | 0.29 |
TNH | 28,458,489 | 49,649 | 0.17 |
TNJ | 7,156,720 | 41,229 | 0.58 |
TPG | 11,317,069 | 19,141 | 0.17 |
TPH | 3,964,302 | 21,720 | 0.55 |
TPJ | 18,880,557 | 43,050 | 0.23 |
TMH | 6,174,287 | 31,339 | 0.51 |
TOTAL | 88,628,527 | 243,439 | 0.27 |
CLASS | TNH | TNG | TNJ | TPG | TPH | TPJ | TMH | TOTAL |
---|---|---|---|---|---|---|---|---|
Eucalyptus spp. | 6300 | 3549 | 2010 | 0 | 4363 | 2123 | 3013 | 21,358 |
Coniferous | 4592 | 5224 | 2648 | 2003 | 6638 | 3793 | 2503 | 27,401 |
Broadleaves | 8286 | 4727 | 5765 | 2623 | 7901 | 6519 | 1940 | 37,761 |
Crops and pastures | 5697 | 5459 | 2437 | 5573 | 5783 | 5276 | 1150 | 31,275 |
Shrub | 6173 | 2129 | 4268 | 2577 | 9041 | 3393 | 2721 | 30,302 |
Bare soil | 1379 | 4849 | 132 | 1654 | 1533 | 183 | 2985 | 12,715 |
Anthropogenic areas | 6990 | 2844 | 2254 | 1260 | 3794 | 3077 | 641 | 20,860 |
Water | 10,233 | 8529 | 21,715 | 3551 | 3997 | 6975 | 6767 | 61,762 |
TOTAL | 49,650 | 37,310 | 41,229 | 19,141 | 43,050 | 31,339 | 21,720 | 243,439 |
Classified/ Reference | 1 | 2 | 3 | 6 | 7 | 8 | 9 | 10 | Total | PA (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 75 | 4 | 1 | 5 | 2 | 0 | 0 | 0 | 87 | 86.2 |
2 | 2 | 79 | 2 | 4 | 2 | 0 | 0 | 0 | 89 | 88.8 |
3 | 0 | 0 | 106 | 0 | 0 | 0 | 0 | 0 | 106 | 100 |
6 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 47 | 100 |
7 | 0 | 0 | 1 | 2 | 39 | 0 | 1 | 0 | 43 | 90.7 |
8 | 0 | 0 | 0 | 0 | 1 | 25 | 12 | 0 | 38 | 65.7 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 1 | 49 | 97.9 |
10 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 45 | 46 | 97.8 |
Total | 77 | 83 | 110 | 59 | 44 | 25 | 61 | 46 | 505 | OA (%) |
UA (%) | 97.4 | 95.2 | 96.4 | 79.7 | 88.6 | 100 | 78.4 | 97.8 | OA (%) | 91.8 |
F-1 Score | 0.91 | 0.92 | 0.98 | 0.89 | 0.89 | 0.79 | 0.87 | 0.98 | ||
KI | 0.905 | |||||||||
p-value | <2.2 × 10−16 |
Classified/ Reference | 1 | 2 | 3 | 6 | 7 | 8 | 9 | 10 | Total | PA (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 75 | 3 | 1 | 6 | 2 | 0 | 0 | 0 | 87 | 86.2 |
2 | 3 | 79 | 0 | 5 | 2 | 0 | 0 | 0 | 89 | 88.8 |
3 | 0 | 0 | 106 | 0 | 0 | 0 | 0 | 0 | 106 | 100 |
6 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 47 | 100 |
7 | 0 | 0 | 1 | 1 | 39 | 0 | 2 | 0 | 43 | 90.7 |
8 | 0 | 0 | 0 | 0 | 1 | 26 | 11 | 0 | 38 | 68.4 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 1 | 49 | 98.0 |
10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 45 | 46 | 97.8 |
Total | 78 | 82 | 109 | 59 | 44 | 26 | 61 | 46 | 505 | OA (%) |
UA (%) | 96.2 | 96.3 | 97.2 | 80.0 | 88.6 | 100 | 78.7 | 97.8 | OA (%) | 92.1 |
F-1 Score | 0.91 | 0.92 | 0.99 | 0.89 | 0.90 | 0.81 | 0.87 | 0.98 | ||
KI | 0.907 | |||||||||
p-value | <2.2 × 10−16 |
Aggregation Method | Modeling and Prediction | Probability Rasters Obtainment | Aggregation |
---|---|---|---|
Plurality voting | 5 h 30 min 18 s | 10 min 18 s | |
DivByAll | 5 h 30 min 18 s | 5 h 6 min 9 s | 12 min 44 s |
TMH | TNG | TNH | ||||||||||||||||
M_TILE | M_ALL | M_TILE | M_ALL | M_TILE | M_ALL | |||||||||||||
CLASS | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 |
1 | 100 | 43.3 | 0.60 | 92.3 | 80.0 | 0.86 | 93.9 | 100 | 0.97 | 93.8 | 96.8 | 0.95 | 97.4 | 86.2 | 0.91 | 97.4 | 85.1 | 0.91 |
2 | 71.8 | 93.3 | 0.81 | 90.3 | 93.3 | 0.92 | 100 | 95.2 | 0.98 | 98.3 | 95.2 | 0.97 | 95.2 | 88.8 | 0.92 | 94.3 | 92.1 | 0.93 |
3 | 89.3 | 83.3 | 0.86 | 90.9 | 100 | 0.95 | 98.0 | 98.0 | 0.98 | 98.1 | 100 | 0.99 | 96.4 | 100 | 0.98 | 97.2 | 99.1 | 0.98 |
6 | 87.1 | 90.0 | 0.89 | 83.3 | 100 | 0.91 | 83.7 | 100 | 0.91 | 81.8 | 100 | 0.90 | 79.7 | 100 | 0.88 | 79.7 | 100 | 0.89 |
7 | 73.3 | 73.3 | 0.73 | 95.8 | 76.7 | 0.85 | 100 | 90.0 | 0.95 | 100 | 80.0 | 0.89 | 88.6 | 90.7 | 0.89 | 88.9 | 93.0 | 0.91 |
8 | 65.9 | 90.0 | 0.76 | 88.8 | 80.0 | 0.84 | 88.6 | 96.9 | 0.93 | 84.8 | 87.6 | 0.86 | 100 | 65.8 | 0.79 | 97.3 | 94.7 | 0.96 |
9 | 92.9 | 86.7 | 0.90 | 84.8 | 93.3 | 0.89 | 92.6 | 75.8 | 0.83 | 86.7 | 78.8 | 0.83 | 78.7 | 98.0 | 0.87 | 97.9 | 95.8 | 0.97 |
10 | 100 | 100 | 1 | 100 | 100 | 1 | 100 | 100 | 1 | 100 | 100 | 1 | 97.8 | 97.8 | 0.98 | 97.8 | 95.7 | 0.97 |
OA (%) | 81.3 | 89.7 | 94.5 | 92.8 | 91.9 | 94.0 | ||||||||||||
KI | 0.78 | 0.83 | 0.94 | 0.92 | 0.91 | 0.93 | ||||||||||||
p-value | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | ||||||||||||
TPG | TPH | TPJ | ||||||||||||||||
MOD_TILE | MOD_ALL | MOD_TILE | MOD_ALL | MOD_TILE | MOD_ALL | |||||||||||||
CLASS | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 |
1 | 90.0 | 90.0 | 0.9 | 84.8 | 93.3 | 0.89 | 83.0 | 81.6 | 0.82 | 96.9 | 81.6 | 0.89 | ||||||
2 | 97.2 | 97.2 | 0.97 | 100 | 97.2 | 0.99 | 96.2 | 92.6 | 0.94 | 98.0 | 87.0 | 0.92 | 80.0 | 94.4 | 0.87 | 79.1 | 94.4 | 0.86 |
3 | 100 | 95.8 | 0.98 | 97.9 | 95.8 | 0.97 | 94.4 | 100 | 0.97 | 96.2 | 100 | 0.98 | 100 | 100 | 1 | 100 | 100 | 1 |
6 | 74.1 | 100 | 0.85 | 88.4 | 95.0 | 0.92 | 94.1 | 100 | 0.97 | 94.1 | 100 | 0.97 | 92.7 | 100 | 0.96 | 90.5 | 100 | 0.95 |
7 | 96.3 | 76.5 | 0.85 | 96.3 | 76.5 | 0.85 | 95.7 | 73.3 | 0.83 | 96.0 | 80.0 | 0.87 | 94.6 | 100 | 0.97 | 95.2 | 100 | 0.98 |
8 | 88.2 | 73.2 | 0.8 | 80.0 | 78.0 | 0.79 | 75.9 | 71.0 | 0.73 | 78.6 | 71.0 | 0.74 | 96.6 | 87.1 | 0.92 | 100 | 87.1 | 0.93 |
9 | 80.6 | 89.3 | 0.85 | 65.6 | 84.0 | 0.74 | 74.1 | 95.2 | 0.83 | 69.2 | 90.0 | 0.78 | 91.7 | 84.6 | 0.88 | 73.3 | 84.6 | 0.79 |
10 | 100 | 95.7 | 0.98 | 95.7 | 95.7 | 0.96 | 100 | 100 | 100 | 96.8 | 100 | 0.93 | 100 | 100 | 1 | 93.8 | 100 | 0.97 |
OA (%) | 89.6 | 89.1 | 91.0 | 90.6 | 94.0 | 94.0 | ||||||||||||
KI | 0.86 | 0.86 | 0.89 | 0.89 | 0.91 | 0.92 | ||||||||||||
p-value | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | <2.2 × 10−16 | ||||||||||||
TNJ | ||||||||||||||||||
M_TILE | M_ALL | |||||||||||||||||
CLASS | UA (%) | PA (%) | F-1 | UA (%) | PA (%) | F-1 | ||||||||||||
1 | 95.5 | 70.0 | 0.81 | 95.7 | 73.3 | 0.83 | ||||||||||||
2 | 93.3 | 87.5 | 0.90 | 96.7 | 90.6 | 0.94 | ||||||||||||
3 | 88.2 | 93.8 | 0.91 | 97.0 | 100 | 0.98 | ||||||||||||
6 | 82.9 | 87.9 | 0.85 | 84.6 | 100 | 0.92 | ||||||||||||
7 | 76.3 | 93.5 | 0.84 | 87.5 | 90.3 | 0.89 | ||||||||||||
8 | 100 | 45.5 | 0.63 | 66.7 | 72.7 | 0.70 | ||||||||||||
9 | 78.9 | 93.8 | 0.86 | 90.3 | 93.3 | 0.92 | ||||||||||||
10 | 93.8 | 88.2 | 0.91 | 100 | 94.1 | 0.97 | ||||||||||||
OA (%) | 85.8 | 90.7 | ||||||||||||||||
KI | 0.83 | 0.89 | ||||||||||||||||
p-value | <2.2 × 10−16 | <2.2 × 10−16 |
Classified/ Reference | 1 | 2 | 3 | 6 | 7 | 8 | 9 | 10 | TOTAL | UA (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 162 | 10 | 2 | 9 | 4 | 3 | 0 | 0 | 190 | 85.3 |
2 | 9 | 261 | 1 | 3 | 4 | 2 | 0 | 0 | 280 | 93.2 |
3 | 1 | 0 | 278 | 1 | 0 | 1 | 0 | 0 | 281 | 98.9 |
6 | 0 | 0 | 0 | 209 | 0 | 2 | 0 | 0 | 211 | 99.1 |
7 | 0 | 3 | 5 | 9 | 177 | 12 | 1 | 0 | 207 | 85.5 |
8 | 0 | 0 | 0 | 3 | 1 | 154 | 31 | 0 | 189 | 81.5 |
9 | 0 | 0 | 0 | 9 | 0 | 4 | 136 | 4 | 153 | 88.9 |
10 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 114 | 117 | 97.4 |
TOTAL | 172 | 274 | 286 | 244 | 186 | 178 | 170 | 118 | 1628 | OA (%) |
PA (%) | 94.2 | 95.3 | 97.2 | 85.7 | 95.2 | 86.5 | 80.0 | 97.0 | OA (%) | 91.6 |
F-1 score | 0.90 | 0.94 | 0.98 | 0.91 | 0.90 | 0.84 | 0.84 | 0.97 | ||
KI | 0.902 | |||||||||
p-value | <2.2 × 10−16 |
Classified/ Reference | 1 | 2 | 3 | 6 | 7 | 8 | 9 | 10 | TOTAL | UA (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 159 | 10 | 7 | 7 | 4 | 3 | 0 | 0 | 190 | 83.7 |
2 | 10 | 259 | 4 | 3 | 3 | 1 | 0 | 0 | 280 | 92.5 |
3 | 2 | 1 | 277 | 1 | 0 | 0 | 0 | 0 | 281 | 98.6 |
6 | 0 | 0 | 0 | 208 | 1 | 1 | 1 | 0 | 211 | 98.6 |
7 | 1 | 4 | 5 | 5 | 174 | 17 | 1 | 0 | 207 | 84.1 |
8 | 0 | 0 | 0 | 5 | 1 | 159 | 24 | 0 | 189 | 84.1 |
9 | 0 | 0 | 0 | 4 | 0 | 4 | 141 | 4 | 153 | 92.2 |
10 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 115 | 117 | 98.3 |
TOTAL | 172 | 274 | 293 | 234 | 183 | 185 | 168 | 119 | 1628 | OA (%) |
PA (%) | 92.4 | 94.5 | 94.5 | 88.9 | 95.1 | 85.9 | 83.9 | 96.6 | OA (%) | 91.6 |
F-1 score | 0.88 | 0.93 | 0.97 | 0.94 | 0.89 | 0.85 | 0.88 | 0.97 | ||
KI | 0.904 | |||||||||
p-value | <2.2 × 10−16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, L.; Picos, J.; Armesto, J. Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models. Remote Sens. 2021, 13, 2237. https://doi.org/10.3390/rs13122237
Alonso L, Picos J, Armesto J. Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models. Remote Sensing. 2021; 13(12):2237. https://doi.org/10.3390/rs13122237
Chicago/Turabian StyleAlonso, Laura, Juan Picos, and Julia Armesto. 2021. "Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models" Remote Sensing 13, no. 12: 2237. https://doi.org/10.3390/rs13122237
APA StyleAlonso, L., Picos, J., & Armesto, J. (2021). Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models. Remote Sensing, 13(12), 2237. https://doi.org/10.3390/rs13122237