A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization
Abstract
:1. Introduction
Notation
2. Methods
2.1. Model Based Methods
2.1.1. ATPRK
2.1.2. Sen2res
2.1.3. SupReME
2.1.4. S2Sharp
2.1.5. MuSA
2.1.6. SSSS
2.2. Deep-Learning Based Methods
2.2.1. DSen2
2.2.2. S2 SSC
2.3. Performance Evaluation
2.4. Tuning Parameter Selection
3. Results
3.1. Real Data Experiments
3.1.1. Qualitative Comparisons Using Real S2 Data
3.1.2. Quantitative Comparisons Using Reduced Scale S2 Data
3.2. Synthesized Data Experiments
3.2.1. Quantitative Comparisons Using Synthesized S2 Data
3.2.2. Evaluating Effects of Parameter Tuning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATPRK | Area-To-Point Regression Kriging |
C-BM3D | Color Block Matching 3D Denoiser |
DSen2 | Deep Sentinel-2 |
ERGAS | relative dimensionless global error |
GAN | Generative Adversarial Networks |
GMM | Gaussian Mixture Model |
MS | Multi-Spectral |
MTF | Modulation Transfer Function |
MuSA | Multiresolution Sharpening Approach |
PSF | Point Spread Function |
RMSE | Root-Mean-Squared Error |
S2 | Sentinel-2 |
S2 SSC | Sentinel-2 Symmetric Skip Connection |
S2Sharp | Sentinel-2 Sharpening |
SALSA | Split Augmented Lagrangian Shrinkage Algorithm |
SAM | Spectral Angle Mapper |
SRE | Signal-to-Reconstruction Error |
SRF | Spectral Response Functions |
SSIM | Structural Similarity Index Measure |
SSSS | Sentinel-2 Super-resolution via Scene-adapted Self-similarity |
SupReME | Super-resolution for multispectral multiresolution estimation |
TPE | Tree-structured Parzen Estimator |
UIQI | Universal Image Quality Index |
Appendix A. Descriptions of Datasets
Appendix A.1. S2Sharp
Appendix A.2. SupReME
Appendix A.3. MuSA and SSSS
References
- European Space Agency. Sentinel-2 Spectral Response Functions (S2-SRF). Sentinel-2 MSI Document Library. 2017. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library (accessed on 2 June 2021).
- Kaplan, G. Sentinel-2 Pan Sharpening—Comparative Analysis. Proceedings 2018, 2, 345. [Google Scholar] [CrossRef] [Green Version]
- G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface; Technical Report; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.M.; Baltsavias, E.; Schindler, K. Super-Resolution of Multispectral Multiresolution Images from a Single Sensor. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1505–1513. [Google Scholar] [CrossRef]
- Ulfarsson, M.O.; Palsson, F.; Mura, M.D.; Sveinsson, J.R. Sentinel-2 Sharpening Using a Reduced-Rank Method. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6408–6420. [Google Scholar] [CrossRef]
- Paris, C.; Bioucas-Dias, J.M.; Bruzzone, L. A Novel Sharpening Approach for Superresolving Multiresolution Optical Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1545–1560. [Google Scholar] [CrossRef]
- Lin, C.H.; Bioucas-Dias, J.M. An Explicit and Scene-Adapted Definition of Convex Self-Similarity Prior With Application to Unsupervised Sentinel-2 Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3352–3365. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 Images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Brodu, N. Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef] [Green Version]
- Lanaras, C.; Bioucas-Dias, J.M.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Sentinel-2 Image Fusion Using a Deep Residual Network. Remote Sens. 2018, 10, 1290. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.V.; Ulfarsson, M.O.; Sveinsson, J.R.; Sigurdsson, J. Zero-Shot Sentinel-2 Sharpening Using a Symmetric Skipped Connection Convolutional Neural Network. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 613–616. [Google Scholar] [CrossRef]
- Panagiotopoulou, A.; Grammatikopoulos, L.; Charou, E.; Bratsolis, E.; Madamopoulos, N.; Petrogonas, J. Very Deep Super-Resolution of Remotely Sensed Images with Mean Square Error and Var-Norm Estimators as Loss Functions. arXiv 2020, arXiv:2007.15417. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Zioga, E.; Panagiotopoulou, A.; Stefouli, M.; Charou, E.; Grammatikopoulos, L.; Bratsolis, E.; Madamopoulos, N. Spatial Resolution Increase of Remotely Sensed Images from Mining Areas with Deep Learning Techniques. arXiv 2020, arXiv:2007.08791. [Google Scholar]
- Wu, J.; He, Z.; Hu, J. Sentinel-2 Sharpening via Parallel Residual Network. Remote Sens. 2020, 12, 279. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Cavallaro, G.; Jitsev, J. Super-Resolution of Large Volumes of Sentinel-2 Images with High Performance Distributed Deep Learning; Technical Report FZJ-2020-04989; Jülich Supercomputing Center: Jülich, Germany, 2020. [Google Scholar]
- Esquena Calm, O. Super-Resolution of Sentinel-2 Images a Single Network for All-Bands Upsampling. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS’14; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 2672–2680. [Google Scholar]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Single Sensor Image Fusion Using A Deep Convolutional Generative Adversarial Network. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, K.; Sumbul, G.; Demir, B. An Approach to Super-Resolution of Sentinel-2 Images Based on Generative Adversarial Networks. arXiv 2020, arXiv:1912.06013. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef] [Green Version]
- Pineda, F.; Ayma, V.; Beltran, C. A Generative Adversarial Network Approach for Super-Resolution of Sentinel-2 Satellite Images. In The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Gottingen, Germany, 2020; Volume XLIII-B1-2020, pp. 9–14. [Google Scholar] [CrossRef]
- Wald, L. Assessing the Quality of Synthesized Images. In Data Fusion. Definitions and Architectures—Fusion of Images of Different Spatial Resolutions; Les Presses de l’École des Mines: Paris, France, 2002. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 2951–2959. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. Adv. Neural Inf. Process. Syst. 2011, 24, 2546–2554. [Google Scholar]
- Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 115–123. [Google Scholar]
- Armannsson, S.E.; Sigurdsson, J.; Sveinsson, J.R.; Ulfarsson, M.O. Tuning Parameter Selection for Sentinel-2 Sharpening Using Wald’s Protocol. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Brussels, Belgium, 12–16 July 2021. [Google Scholar]
- Masek, J.G. Landsat 8 Overview|Landsat Science. 2013. Available online: https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview (accessed on 2 June 2021).
- Thome, K. ASTER|Terra. 2021. Available online: https://terra.nasa.gov/about/terra-instruments/aster (accessed on 2 June 2021).
- Thome, K. MODIS|Terra. 2021. Available online: https://terra.nasa.gov/about/terra-instruments/modis (accessed on 2 June 2021).
- Wang, Q.; Shi, W.; Atkinson, P.M.; Zhao, Y. Downscaling MODIS Images with Area-to-Point Regression Kriging. Remote Sens. Environ. 2015, 166, 191–204. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P.M. Area-to-Point Regression Kriging for Pan-Sharpening. ISPRS J. Photogramm. Remote Sens. 2016, 114, 151–165. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Prewitt, J. Object Enhancement and Extraction. In Picture Processing and Psychopictorics; Elsevier Science: Saint Louis, MO, USA, 1970; pp. 75–149. [Google Scholar]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. A Fast Algorithm for the Constrained Formulation of Compressive Image Reconstruction and Other Linear Inverse Problems. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 4034–4037. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. Image Process. 2010, 19, 2345–2356. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 1, pp. I-313–I-316. [Google Scholar] [CrossRef] [Green Version]
- Venkatakrishnan, S.V.; Bouman, C.A.; Wohlberg, B. Plug-and-Play Priors for Model Based Reconstruction. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 945–948. [Google Scholar] [CrossRef] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising with Block-Matching and 3D Filtering. In Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning; International Society for Optics and Photonics: San Jose, CA, USA, 2006; Volume 6064, p. 606414. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Combettes, P.L.; Wajs, V.R. Signal Recovery by Proximal Forward-Backward Splitting. Multiscale Model. Simul. 2005. [Google Scholar] [CrossRef] [Green Version]
- Combettes, P.L.; Pesquet, J.C. Proximal Splitting Methods in Signal Processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering; Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H., Eds.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2011; pp. 185–212. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention –MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. “Zero-Shot” Super-Resolution Using Deep Internal Learning. arXiv 2017, arXiv:1712.06087. [Google Scholar]
- Wang, Z.; Bovik, A. A Universal Image Quality Index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Jagalingam, P.; Hegde, A.V. A Review of Quality Metrics for Fused Image. Aquat. Procedia 2015, 4, 133–142. [Google Scholar] [CrossRef]
- Clerc, S.; MPC-Team. S2 MPC—Data Quality Report; Technical Report 05, Online, Reference S2-PDGS-MPC-DQR; European Space Agency: Paris, France, 2016; Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2+Data+Quality+Report+(DQR)/ (accessed on 2 June 2021).
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency. S2B_MSIL2A_20191017T130259_N0213_R038_T27WVM_20191017T134229; Copernicus Open Access Hub. 2021. Available online: https://scihub.copernicus.eu/ (accessed on 2 June 2021).
- Magnusson, M.; Sigurdsson, J.; Armansson, S.E.; Ulfarsson, M.O.; Sveinsson, J.R.; Deborah, H. Creating RGB Images from Hyperspectral Images Using a Color Matching Function. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2045–2048. [Google Scholar] [CrossRef]
- Sovdat, B.; Kadunc, M.; Batič, M.; Milčinski, G. Natural Color Representation of Sentinel-2 Data. Remote Sens. Environ. 2019, 225, 392–402. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory. Flight f111116t01p00r12; AVIRIS Data Portal. 2021. Available online: https://aviris.jpl.nasa.gov/ (accessed on 2 June 2021).
- European Space Agency. APEX; APEX Open Science Data Set. 2021. Available online: https://apex-esa.org/en/data/free-data-cubes (accessed on 2 June 2021).
- Schaepman, M.; Jehle, M.; Hueni, A.; D’Odorico, P.; Damm, A.; Weyermann, J.; Schneider, F.D.; Laurent, V.; Popp, C.; Seidel, F.C.; et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sens. Environ. 2015, 158, 207–219. [Google Scholar] [CrossRef] [Green Version]
ATPRK | DSen2 | MuSA | S2Sharp | S2 SSC | SSSS | SupReME | Sen2res | ||
---|---|---|---|---|---|---|---|---|---|
RMSE↓ | 20 m | ||||||||
SAM↓ | 20 m | ||||||||
ERGAS↓ | 20 m | ||||||||
Time ↓ | Average | ||||||||
STD | |||||||||
UIQI ↑ | B5 | ||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B11 | |||||||||
B12 | |||||||||
20 m | |||||||||
SSIM ↑ | B5 | ||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B11 | |||||||||
B12 | |||||||||
20 m | |||||||||
SRE [dB] ↑ | B5 | ||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B11 | |||||||||
B12 | |||||||||
20 m |
ATPRK | DSen2 | MuSA | S2Sharp | SSSS | SupReME | Sen2res | ||
---|---|---|---|---|---|---|---|---|
RMSE↓ | 60 m | |||||||
ERGAS↓ | 60 m | |||||||
Time ↓ | Average | |||||||
STD | ||||||||
UIQI ↑ | B1 | |||||||
B9 | ||||||||
60 m | ||||||||
SSIM ↑ | B1 | |||||||
B9 | ||||||||
60 m | ||||||||
SRE [dB] ↑ | B1 | |||||||
B9 | ||||||||
60 m |
ATPRK | DSen2 | MuSA | S2Sharp | S2 SSC | SSSS | SupReME | Sen2res | ||
---|---|---|---|---|---|---|---|---|---|
RMSE↓ | 20 m | ||||||||
60 m | - | ||||||||
All | - | ||||||||
SAM↓ | 20 m | ||||||||
All | - | ||||||||
ERGAS↓ | 20 m | ||||||||
60 m | - | ||||||||
Time ↓ | Average | ||||||||
STD | |||||||||
UIQI ↑ | B1 | - | |||||||
B5 | |||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B9 | - | ||||||||
B11 | |||||||||
B12 | |||||||||
20 m | |||||||||
60 m | - | ||||||||
All | - | ||||||||
SSIM ↑ | B1 | - | |||||||
B5 | |||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B9 | - | ||||||||
B11 | |||||||||
B12 | |||||||||
20 m | |||||||||
60 m | - | ||||||||
All | - | ||||||||
SRE [dB] ↑ | B1 | - | |||||||
B5 | |||||||||
B6 | |||||||||
B7 | |||||||||
B8A | |||||||||
B9 | - | ||||||||
B11 | |||||||||
B12 | |||||||||
20 m | |||||||||
60 m | - | ||||||||
All | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armannsson, S.E.; Ulfarsson, M.O.; Sigurdsson, J.; Nguyen, H.V.; Sveinsson, J.R. A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization. Remote Sens. 2021, 13, 2192. https://doi.org/10.3390/rs13112192
Armannsson SE, Ulfarsson MO, Sigurdsson J, Nguyen HV, Sveinsson JR. A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization. Remote Sensing. 2021; 13(11):2192. https://doi.org/10.3390/rs13112192
Chicago/Turabian StyleArmannsson, Sveinn E., Magnus O. Ulfarsson, Jakob Sigurdsson, Han V. Nguyen, and Johannes R. Sveinsson. 2021. "A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization" Remote Sensing 13, no. 11: 2192. https://doi.org/10.3390/rs13112192
APA StyleArmannsson, S. E., Ulfarsson, M. O., Sigurdsson, J., Nguyen, H. V., & Sveinsson, J. R. (2021). A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization. Remote Sensing, 13(11), 2192. https://doi.org/10.3390/rs13112192