Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation
Abstract
:1. Introduction
1.1. Sampling Background
- Attributing a value to a population of regular shaped blocks based on some auxiliary variable;
- Stratifying the population of blocks according to the attributed value into several strata and selecting a random sample of these blocks from each stratum;
- Mapping the land-cover change of the target variable over a defined time period using historical satellite imagery;
- Producing statistical estimates and uncertainties of target variable area and/or area change over the entire population and conducting validation fieldwork where appropriate.
1.2. Satellite Imagery
1.3. Study Objectives
2. Materials and Methods
2.1. Description
2.2. Sample Design
2.2.1. Pakistan Sampling
2.2.2. Peru Sampling
2.3. Reference Data
2.4. Block Mapping
2.5. Area Estimates
3. Results
3.1. Wheat Mapping in Punjab, Pakistan
3.2. Tree-Cover Loss Mapping in Peru
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lam, N.S.N. Methodologies for Mapping Land Cover/Land Use and its Change. In Advances in Land Remote Sensing; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Intergovernmental Panel on Climate Change. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; Institute for Global Environmental Strategies for the IPCC: Kanagawa, Japan, 2003. [Google Scholar]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Broich, M.; Stehman, S.V.; Hansen, M.C.; Potapov, P.V.; Shimabukuro, Y.E. A comparison of sampling designs for estimating deforestation from Landsat imagery: A case study of the Brazilian Legal Amazon. Remote Sens. Environ. 2009, 113, 2448–2454. [Google Scholar] [CrossRef]
- Steininger, M.K. Effects of systematic sampling on satellite estimates of deforestation rates. Environ. Res. Lett. 2009, 4, 34715. [Google Scholar] [CrossRef]
- Pickering, J.; Stehman, S.V.; Tyukavina, A.; Potapov, P.V.; Watt, P.; Jantz, S.; Bholanath, P.; Hansen, M.C. Quantifying the trade-off between cost and precision in estimating area of forest loss and degradation using probability sampling in Guyana. Remote Sens. Environ. 2019, 221, 122–135. [Google Scholar] [CrossRef]
- Potapov, P.V.; Siddiqui, B.N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; et al. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000–2014. Environ. Res. Lett. 2017, 12, 104015. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Okpa, C.; Stehman, S.V.; Kommareddy, I.; Turubanova, S. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 2018, 4, 2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olofsson, P.; Foody, M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Song, X.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- King, L.; Adusei, B.; Stehman, S.V.; Potapov, P.V.; Song, X.; Krylov, A.; Di Bella, C.M.; Loveland, T.; Johnson, D.; Hansen, M.C. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens. Environ. 2017, 195, 13–29. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.; Adusei, B.; Okpa, C.; Aguilar, R.; et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl. Acad. Sci. USA 2018, 116, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinario, G.; Hansen, M.C.; Potapov, P.V. Forest cover dynamics of shifting cultivation in the Democratic Republic of Congo: A remote sensing-based assessment for 2000–2010. Environ. Res. Lett. 2015, 10, 094009. [Google Scholar] [CrossRef]
- Turubunova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 74028. [Google Scholar] [CrossRef] [Green Version]
- Francini, S.; McRoberts, R.E.; Gianetti, F.; Mencucci, M.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Planet Imagery and Archive. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 31 March 2021).
- Dos Reis, A.A.; Silva, B.C.; Werner, J.P.S.; Silva, Y.F.; Rocha, J.V.; Figueiredo, G.K.D.A.; Antunes, J.F.G.; Esquerdo, J.C.D.M.; Coutinho, A.C.; Lamparelli, R.A.C.; et al. Exploring the Potential of High-Resolution PlanetScope Imagery for Pasture Biomass Estimation in an Integrated Crop-Livestock System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 3. [Google Scholar]
- Khan, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Chatta, A.A. Landsat-based wheat mapping in the heterogeneous cropping system of Punjab, Pakistan. Int. J. Remote Sens. 2016, 37, 1391–1410. [Google Scholar] [CrossRef]
- Khan, A.; Hansen, M.C.; Potapov, P.V.; Adusei, B.; Pickens, A.; Krylov, A.; Stehman, S.V. Evaluating Landsat and RapidEye Data for Winter wheat mapping and area estimation in Punjab, Pakistan. Remote Sens. 2018, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution global maps of 21st-Century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: Toronto, ON, Canada, 1977. [Google Scholar]
Stratum | % Wheat per Block | Area of Wheat (% from Total) | Total Blocks (Nh) | Sample Size (n) |
---|---|---|---|---|
Wheat | 8–96% | 98.8% | 5562 | 25 |
No Wheat | 0–8% | 1.2% | 2736 | - |
Stratum | % Loss per Block | Area of Loss (% from Total) | Total Blocks (Nh) | Sample Size (n) |
---|---|---|---|---|
No loss | 0 | 0 | 13,314 | 20 |
Low loss | 0–2.1% | 26.9 | 14,767 | 30 |
High loss | 2.1–31.2% | 73.1 | 3563 | 30 |
Direct Estimate | Regression Estimate | |||||
---|---|---|---|---|---|---|
Area (km2) | SE (km2) | SE (%) | Area (km2) | SE (km2) | SE (%) | |
Field Data Based | 53,284 | 6322 | 11.9 | 54,289 | 4035 | 7.4 |
Planet Data Based | 55,947 | 5019 | 9.0 | 56,884 | 2043 | 3.6 |
Direct Estimate | Regression Estimate | |||||
---|---|---|---|---|---|---|
Area (km2) | SE (km2) | SE (%) | Area (km2) | SE (km2) | SE (%) | |
All tree-cover loss | 5398 | 491 | 9.1 | 5121 | 263 | 5.1 |
Anthropogenic loss | 4799 | 392 | 8.2 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickering, J.; Tyukavina, A.; Khan, A.; Potapov, P.; Adusei, B.; Hansen, M.C.; Lima, A. Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation. Remote Sens. 2021, 13, 2191. https://doi.org/10.3390/rs13112191
Pickering J, Tyukavina A, Khan A, Potapov P, Adusei B, Hansen MC, Lima A. Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation. Remote Sensing. 2021; 13(11):2191. https://doi.org/10.3390/rs13112191
Chicago/Turabian StylePickering, Jeffrey, Alexandra Tyukavina, Ahmad Khan, Peter Potapov, Bernard Adusei, Matthew C. Hansen, and André Lima. 2021. "Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation" Remote Sensing 13, no. 11: 2191. https://doi.org/10.3390/rs13112191
APA StylePickering, J., Tyukavina, A., Khan, A., Potapov, P., Adusei, B., Hansen, M. C., & Lima, A. (2021). Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation. Remote Sensing, 13(11), 2191. https://doi.org/10.3390/rs13112191