Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR
Abstract
:1. Introduction
2. Methodology
2.1. A Brief Description of WRF-3DVAR
2.2. WRF Model Configuration
3. Case Study and Data
3.1. Study Area and Storm Events
3.2. Data Assimilation Experiments
3.2.1. Weather Radar Data
3.2.2. GTS Data
4. Results
4.1. Effect of Data Assimilation on Temporal Rainfall Distributions
4.2. Effect of Data Assimilation on Spatial Rainfall Distributions
4.3. Evaluation on the Storm Process Improvements
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fritsch, J.M.; Carbone, R.E. Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, J.M.; Houze, R.A.; Adler, R.; Bluestein, H.; Bosart, L.; Brown, J.; Carr, F.; Davis, C.; Johnson, R.H.; Junker, N.; et al. Quantitative Precipitation Forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Am. Meteorol. Soc. 1998, 79, 285–299. [Google Scholar] [CrossRef]
- Kryza, M.; Werner, M.; Waszek, K.; Dore, A.J. Application and evaluation of the WRF model for high-resolution forecasting of rainfall—A case study of SW Poland. Meteorol. Z. 2013, 22, 595–601. [Google Scholar] [CrossRef]
- Hamill; Thomas, M. Performance of Operational Model Precipitation Forecast Guidance during the 2013 Colorado Front-Range Floods. Mon. Weather Rev. 2012, 142, 2609–2618. [Google Scholar] [CrossRef]
- Sugimoto, S.; Crook, N.A.; Sun, J.; Xiao, Q.; Barker, D.M. An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments. Mon. Weather Rev. 2009, 137, 4011–4029. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Le Dimet, F.O.X.; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus Dyn. Meteorol. Oceanogr. 1986, 38, 97–110. [Google Scholar] [CrossRef]
- Lewis, J.M.; Derber, J.C. The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus 1985, 37A, 309–322. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Ocean. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Sun, J.; Flicker, D.W.; Lilly, D.K. Recovery of Three-Dimensional Wind and Temperature Fields from Simulated Single-Doppler Radar Data. J. Atmos. Sci. 1991, 48, 876–890. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Crook, N.A. Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. J. Atmos. 1998, 55, 835–852. [Google Scholar] [CrossRef]
- Yang, J.; Duan, K.; Wu, J.; Qin, X.; Shi, P.; Liu, H.; Xie, X.; Zhang, X.; Sun, J. Effect of Data Assimilation Using WRF-3DVAR for Heavy Rain Prediction on the Northeastern Edge of the Tibetan Plateau. Adv. Meteorol. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Gan, R.; Yang, Y.; Xie, Q.; Lin, E.; Wang, Y.; Liu, P. Assimilation of Radar and Cloud-to-Ground Lightning Data Using WRF-3DVAR Combined with the Physical Initialization Method—A Case Study of Mesoscale Convective System. J. Meteorol. Res. 2020, 34, 1–14. [Google Scholar] [CrossRef]
- Vendrasco, E.P.; Sun, J.; Herdies, D.L.; Carlos, F.D.A. Constraining a 3DVAR Radar Data Assimilation System with Large-Scale Analysis to Improve Short-Range Precipitation Forecasts. J. Appl. Meteorol. Clim. 2016, 55, 673–690. [Google Scholar] [CrossRef]
- Chung, K.S.; Zawadzki, I.; Yau, M.K.; Fillion, L. Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single-Doppler Radar Observations. Mon. Weather Rev. 2009, 137, 4115–4135. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M.; Gao, J.; Brewster; Keith. 3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR. Mon. Weather Rev. 2004, 134, 699–721. [Google Scholar] [CrossRef]
- Rennie, S.J.; Dance, S.L.; Illingworth, A.J.; Ballard, S.P.; Simonin, D. 3D-Var Assimilation of Insect-Derived Doppler Radar Radial Winds in Convective Cases Using a High-Resolution Model. Mon. Weather Rev. 2011, 139, 1148–1163. [Google Scholar] [CrossRef]
- Tai, S.L.; Liou, Y.C.; Sun, J.; Chang, S.F.; Kuo, M.C. Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan. Weather Forecast. 2011, 26, 975–992. [Google Scholar] [CrossRef]
- Routray, A.; Mohanty, U.C.; Osuri, K.K. Improvement of Monsoon Depressions Forecast with Assimilation of Indian DWR Data Using WRF-3DVAR Analysis System. Pure Appl. Geophys. 2013, 170, 2329–2350. [Google Scholar] [CrossRef]
- Govindankutty, M.; Chandrasekar, A.; Pradhan, D. Impact of 3DVAR assimilation of Doppler Weather Radar wind data and IMD observation for the prediction of a tropical cyclone. Int. J. Remote Sens. 2010, 31, 6327–6345. [Google Scholar] [CrossRef]
- Abhilash, S.; Sahai, A.K.; Mohankumar, K.; George, J.P.; Das, S. Assimilation of Doppler Weather Radar Radial Velocity and Reflectivity Observations in WRF-3DVAR System for Short-Range Forecasting of Convective Storms. Pure Appl. Geophys. 2012, 169, 2047–2070. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Niyogi, D. Improved Prediction of Bay of Bengal Tropical Cyclones through Assimilation of Doppler Weather Radar Observations. Mon. Weather Rev. 2015, 143, 1171093873. [Google Scholar] [CrossRef]
- Hsiao, L.; Chen, D.; Kuo, Y.; Guo, Y.; Yeh, T.; Hong, J.; Fong, C.; Lee, C. Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches. Weather Forecast. 2012, 27, 1249–1263. [Google Scholar] [CrossRef]
- Hodur, R.M. Evaluation of a Regional Model with an Update Cycle. Mon. Weather Rev. 1987, 115, 2707–2718. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Kuo, Y.H.; Sun, J.; Lee, W.C.; Lim, E.; Guo, Y.R.; Barker, D.M. Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. J. Appl. Meteorol. 2005, 44, 768–788. [Google Scholar] [CrossRef]
- Liu, J.; Tian, J.; Yan, D.; Li, C.; Yu, F.; Shen, F. Evaluation of Doppler radar and GTS data assimilation for NWP rainfall prediction of an extreme summer storm in northern China: From the hydrological perspective. Hydrol. Earth Syst. Sci. 2018, 22, 4329–4348. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Liu, J.; Yan, D.; Li, C.; Chu, Z.; Yu, F. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts. Atmos. Res. 2017, 198, 132–144. [Google Scholar] [CrossRef]
- Thiruvengadam, P.; Indu, J.; Ghosh, S. Assimilation of Doppler Weather Radar data with a regional WRF-3DVAR system: Impact of control variables on forecasts of a heavy rainfall case. Adv. Water Resour. 2019, 126, 24–39. [Google Scholar] [CrossRef]
- Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.W.; Golding, B. Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Li, G.; Sun, J.; Tang, X.; Zhang, Y. Design Strategies of an Hourly Update 3DVAR Data Assimilation System for Improved Convective Forecasting. Weather Forecast. 2016, 31, 1673–1695. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Xue, M. Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble-3DVAR System for the Prediction of Hurricane Ike (2008). Mon. Weather Rev. 2012, 140, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, T.; Seko, H.; Saito, K.; Kuroda, T.; Wakazuki, Y. An Assimilation and Forecasting Experiment of the Nerima Heavy Rainfa11 with a Cloud-Resolving Nonhydrostatic 4-Dimensional Variational Data Assimilation System. J. Meteorol. Soc. Jpn. Ser. II 2007, 85, 255–276. [Google Scholar] [CrossRef] [Green Version]
- Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C. Unified Notation for Data Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice). J. Meteorol. Soc. Jpn. Ser. II 1997, 75, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. Roy. Meteor. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Brewster, K.; Droegemeier, K.K. A Three-Dimensional Variational Data Analysis Method with Recursive Filter for Doppler Radars. J. Atmos. Ocean. Technol. 2004, 21, 457–469. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, F. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study. Mon. Weather Rev. 2008, 136, 522–540. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Qian, Y. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia Pac. J. Atmos. Sci. 2012, 48, 227–241. [Google Scholar] [CrossRef]
- Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. J. Appl. Meteorol. Climatol. 2012, 51, 285–299. [Google Scholar] [CrossRef]
- Aligo, E.A.; Gallus, W.A.; Segal, M. On the Impact of WRF Model Vertical Grid Resolution on Midwest Summer Rainfall Forecasts. Weather Forecast. 2009, 24, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.S.; Kain, J.S.; Weiss, S.J.; Xue, M.; Bright, D.R.; Kong, F.; Thomas, K.W.; Levit, J.J.; Coniglio, M.C. Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing. Mon. Weather Rev. 2009, 137, 3351–3372. [Google Scholar] [CrossRef]
- Liu, J.; Bray, M.; Han, D. Exploring the effect of data assimilation by WRF-3DVar for numerical rainfall prediction with different types of storm events. Hydrol. Process. 2012, 27, 3627–3640. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Pan, S.; Tang, K.; Li, C.; Han, D. A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Nat. Hazards 2015, 77, 1161–1182. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Wang, J.; Li, C.; Yu, F.; Chu, Z. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China. Atmos. Res. 2017, 191, 141–155. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Yan, D.; Li, C.; Yu, F. Numerical rainfall simulation with different spatial and temporal evenness by using a WRF multiphysics ensemble. Nat. Hazard Earth Sys. 2017, 17, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Lim, J.O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia; Jimy. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Janji, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; NCEP Office Note; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2001; Volume 43.
- Kain, J.S.; Kain, J. The Kain—Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, V.; Maiello, I.; Capozzi, V.; Budillon, G.; Ferretti, R. Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy. Adv. Sci. Res. 2017, 14, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Lea, B.; Loris, F.; Marco, G.; Ulrich, H. Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks. Remote Sens. 2018, 10, 939. [Google Scholar]
- Wang, J.; Dong, X.; Xi, B. Investigation of Liquid Cloud Microphysical Properties of Deep Convective Systems: 2. Parameterization of Raindrop Size Distribution and its Application for Convective Rain Estimation. J. Geophys. Res. Atmos. 2018, 123, 637–651. [Google Scholar] [CrossRef]
- Leutbecher, M.; Palmer, T.N. Ensemble forecasting. J. Comput. Phys. 2008, 227, 3515–3539. [Google Scholar] [CrossRef]
- Droegemeier, K.K.; Smith, J.D.; Businger, S.; Doswell, C., III; Doyle, J.; Duffy, C.; Foufoula-Georgiou, E.; Graziano, T.; James, L.D.; Krajewski, V.; et al. Hydrological Aspects of Weather Prediction and Flood Warnings: Report of the Ninth Prospectus Development team of the U.S. Weather Research Program. Bull. Am. Meteorol. Soc. 2000, 81, 2665–2680. [Google Scholar] [CrossRef] [Green Version]
Parameterization | Chosen Option | Reference |
---|---|---|
Microphysics scheme | WSM6 | [46] |
Longwave radiation | Rapid Radiative Transfer Model (RRTM) | [47] |
Shortwave radiation | Dudhia | [48] |
Land surface scheme | Noah | [49] |
Planetary boundary layer | Mellor-Yama-da-Janjic (MYJ) | [50] |
Cumulus convection | Kain-Fritsch (KF) | [51] |
Event ID | Catchment | Storm Start Time | Storm End Time | Accumulated Rainfall (mm) |
---|---|---|---|---|
I | Fuping | 29/07/2007 20:00 | 30/07/2007 20:00 | 63.38 |
II | Fuping | 30/07/2012 10:00 | 31/07/2012 10:00 | 50.48 |
III | Fuping | 11/08/2013 07:00 | 12/08/2013 07:00 | 30.82 |
IV | Zijingguan | 21/07/2012 04:00 | 22/07/2012 04:00 | 155.43 |
Event ID | I | II | III | IV |
---|---|---|---|---|
Spatial Cv | 0.3975 | 0.1927 | 0.7400 | 0.6098 |
Temporal Cv | 0.6011 | 1.0823 | 2.3925 | 1.8865 |
Parameters | Information |
---|---|
Location | 38.5°, 114.68° |
Administrative location | Shijiazhuang |
Antenna diameter | 1.3 m |
Emission frequency | 2.7~3.0 GHz |
Observation radius | 250 km |
Effective radius of observation | 230 km |
Spatial resolution | 1km |
Sweep time | 6 min |
Beam angles | 0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 6.0°, 9.9°, 14.6°, 19.5° |
Experiments | Domain Resolutions | Data Assimilation | Radar Data Assimilation Time Interval | GTS Data Assimilation Time Interval | Output Resolutions |
---|---|---|---|---|---|
NA_1km (=no assimilation) | Domain 1 (9 km) Domain 2 (3 km) Domain 3 (1 km) | no | no | no | 1 km (Domain 3) |
DA_1h_1km (=data assimilation with 1 h interval and output from 1 km domain) | Domain 1 (9 km) Domain 2 (3 km) Domain 3 (1 km) | Radar reflectivity in Domain 2 + GTS in Domain 1 | 1 h | 6 h | 1 km (Domain 3) |
DA_1h_3km (=data assimilation with 1 h interval and output from 3 km domain) | Domain 1 (9 km) Domain 2 (3 km) Domain 3 (1 km) | Radar reflectivity in Domain 2 + GTS in Domain 1 | 1 h | 6 h | 3 km (Domain 2) |
DA_6h_3km (=data assimilation with 6 h interval and output from 3 km domain) | Domain 1 (9 km) Domain 2 (3 km) | Radar reflectivity in Domain 2 + GTS in Domain 1 | 6 h | 6 h | 3 km (Domain 2) |
Prediction/Observation | Yes (>0.01 mm) | No |
---|---|---|
Yes | hits (H) | misreports (R) |
No | misses (S) | / |
Letter | For the Spatial Dimension | For the Temporal Dimension |
---|---|---|
Qi′ | Observation of 24 h rainfall accumulations at each rain gauge | average areal rainfall of observation |
Qi | Prediction of 24 h rainfall accumulations at each rain gauge | average areal rainfall of prediction |
i | Rain gauge ID | each time step |
M | Total numbers of rain gauges | 24 h |
Events | Experience Scheme | Temporal Dimension | Spatial Dimension | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MBE | CSI | CSI/RMSE | RMSE | MBE | CSI | CSI/RMSE | ||
I | NA_1km | 2.3393 | −1.9322 | 0.7519 | 0.3214 | 1.7908 | −1.7003 | 0.7478 | 0.4176 |
DA_1h_1km | 1.7816 | −1.4615 | 0.6820 | 0.3828 | 1.1295 | −1.0476 | 0.7835 | 0.6936 | |
DA_1h_3km | 1.7967 | −1.4837 | 0.8153 | 0.4538 | 1.1343 | −0.9890 | 0.8155 | 0.7189 | |
DA_6h_3km | 2.1320 | −1.6189 | 0.7872 | 0.3692 | 1.7171 | −1.6280 | 0.6719 | 0.3913 | |
II | NA_1km | 2.3752 | −1.5909 | 0.5729 | 0.2412 | 2.5884 | −2.5600 | 0.5729 | 0.2213 |
DA_1h_1km | 1.9468 | 1.3097 | 0.5791 | 0.2974 | 0.9473 | 0.9425 | 0.5744 | 0.6063 | |
DA_1h_3km | 1.9584 | 1.3263 | 0.5759 | 0.2940 | 0.9523 | 0.8136 | 0.5729 | 0.6016 | |
DA_6h_3km | 1.9360 | 1.2940 | 0.5791 | 0.2991 | 0.9047 | 0.6404 | 0.5744 | 0.6349 | |
III | NA_1km | 3.4189 | −1.7446 | 0.1180 | 0.0345 | 2.8849 | −2.4168 | 0.1910 | 0.0662 |
DA_1h_1km | 2.0987 | −1.0273 | 0.1038 | 0.0495 | 1.0594 | −1.0353 | 0.1875 | 0.1770 | |
DA_1h_3km | 2.1185 | −1.0381 | 0.1676 | 0.0791 | 1.2250 | −1.1401 | 0.1667 | 0.1361 | |
DA_6h_3km | 2.2778 | −1.2869 | 0.2004 | 0.0880 | 1.4068 | −1.2895 | 0.1806 | 0.1283 | |
IV | NA_1km | 8.5700 | −5.8656 | 0.6601 | 0.0770 | 12.6979 | −10.4946 | 0.5524 | 0.0435 |
DA_1h_1km | 5.9530 | −4.0378 | 0.5449 | 0.0915 | 8.7782 | −3.5646 | 0.5524 | 0.0629 | |
DA_1h_3km | 5.9566 | −4.0304 | 0.5648 | 0.0948 | 8.8033 | −3.6767 | 0.5131 | 0.0583 | |
DA_6h_3km | 6.6525 | −4.3429 | 0.6601 | 0.0992 | 9.3979 | −5.4607 | 0.4270 | 0.0454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, J.; Li, C.; Yu, F.; Wang, W. Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR. Remote Sens. 2021, 13, 2103. https://doi.org/10.3390/rs13112103
Liu Y, Liu J, Li C, Yu F, Wang W. Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR. Remote Sensing. 2021; 13(11):2103. https://doi.org/10.3390/rs13112103
Chicago/Turabian StyleLiu, Yuchen, Jia Liu, Chuanzhe Li, Fuliang Yu, and Wei Wang. 2021. "Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR" Remote Sensing 13, no. 11: 2103. https://doi.org/10.3390/rs13112103
APA StyleLiu, Y., Liu, J., Li, C., Yu, F., & Wang, W. (2021). Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR. Remote Sensing, 13(11), 2103. https://doi.org/10.3390/rs13112103