Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing
Abstract
:1. Introduction
2. Model and Data
2.1. Description of RMAPS-NOW
2.2. Data Assimilation Method
2.3. The Lightning DA Method
2.4. Descriptions of the Data Used for DA Experiments
3. Brief Description of the Mesoscale Convection System and Experimental Design
3.1. The Mesoscale Convection System
3.2. Description and Configuration of DA Experiments
4. Results and Discussion
4.1. Verification Index
4.2. Improvement of LDA with BLNET Lightning Data on Precipitation Nowcasting
4.3. Impact of LDA on the Initial Fields
4.4. DA Metrics of 4DVAR Analysis Experiments with Successive Cycling
5. Sensitivity Test for the BLNET-Based LDA Experiments to the Prespecified Parameters
5.1. Sensitivity of LDA to the Frequency of Lightning Data and Horizontal Influence Radius
5.2. Sensitivity of LDA to Updraft Motion Profile from Different Cloud Types
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lilly, D.K. Numerical prediction of thunderstorms—Has its time come? Q. J. Roy. Meteor. Soc. 1990, 116, 779–798. [Google Scholar]
- Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.-W.; Golding, B.; et al. Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, S.J.; Sun, J.; Golding, B.; Joe, P.; Dudhia, J.; Caumont, O.; Gouda, K.C.; Steinle, P.; Vincendon, B.; Wang, J.; et al. Multiscale Forecasting of High-Impact Weather: Current Status and Future Challenges. Bull. Am. Meteorol. Soc. 2021, 102, E635–E659. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M. Impact of Configurations of Rapid Intermittent Assimilation of WSR-88D Radar Data for the 8 May 2003 Oklahoma City Tornadic Thunderstorm Case. Mon. Weather Rev. 2007, 135, 507–525. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.A.; MacGorman, D.R.; Calhoun, K.M. Lightning in the Anvils of Supercell Thunderstorms. Mon. Weather Rev. 2012, 140, 2064–2079. [Google Scholar] [CrossRef]
- Qie, X.; Zhu, R.; Yuan, T.; Wu, X.; Li, W.; Liu, D. Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model. Atmos. Res. 2014, 145–146, 255–266. [Google Scholar] [CrossRef]
- Kong, R.; Xue, M.; Fierro, A.O.; Jung, Y.; Liu, C.; Mansell, E.R.; MacGorman, D.R. Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI EnKF for the Analysis and Short-Term Forecast of a Mesoscale Convective System. Mon. Weather Rev. 2020, 148, 2111–2133. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Y.; Zhao, T.; Liu, Y.; Xu, M.; Shen, S.; Jiang, Y.; Yang, H.; Feng, S. Continuous Assimilation of Lightning Data Using Time-Lagged Ensembles for a Convection-Allowing Numerical Weather Prediction Model. J. Geophys. Res. Atmos. 2018, 123, 9652–9673. [Google Scholar] [CrossRef]
- Pessi, A.; Businger, S. The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Weather Rev. 2009, 137, 3177–3195. [Google Scholar] [CrossRef] [Green Version]
- Marchand, M.R.; Fuelberg, H.E. Assimilation of Lightning Data Using a Nudging Method Involving Low-Level Warming. Mon. Weather Rev. 2014, 142, 4850–4871. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Chronis, T.G.; Anagnostou, E.N. Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Weather Rev. 2005, 133, 1961–1977. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, J.; Qie, X.; Zhang, Y.; Ying, Z.; Xiao, X.; Cao, D. A Method to Update Model Kinematic States by Assimilating Satellite-Observed Total Lightning Data to Improve Convective Analysis and Forecasting. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, J.; Qie, X.; Ying, Z.; Ji, L.; Chen, M.; Zhang, L. Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting. Mon. Weather Rev. 2021, 149, 353–373. [Google Scholar] [CrossRef]
- Qie, X.; Yuan, S.; Chen, Z.; Wang, D.; Liu, D.; Sun, M.; Sun, Z.; Srivastava, A.; Zhang, H.; Lu, J.; et al. Understanding the dynamical-microphysical-electrical processes associated with severe thunder-storms over the Beijing metropolitan region. Sci. China Earth Sci. 2021, 64, 10–26. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.; Wang, D.; Sun, Z.; Yuan, S.; Wang, Y.; Chen, Z.; Xu, W.; Zhang, H.; et al. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.; Wang, Y. A Frequent-Updating Analysis System Based on Radar, Surface, and Mesoscale Model Data for the Beijing 2008 Forecast Demonstration Project. Weather Forecast. 2010, 25, 1715–1735. [Google Scholar] [CrossRef]
- Chang, S.-F.; Liou, Y.-C.; Sun, J.; Tai, S.-L. The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. J. Atmos. Sci. 2016, 73, 1015–1038. [Google Scholar] [CrossRef]
- Barthe, C.; Deierling, W.; Barth, M.C. Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev. 1995, 123, 1921–1940. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qie, X.; Wang, D.; Liu, M. Beijing Lightning Network (BLNET): A research and operational system for com-prehensive lightning detection. Atmos. Res. 2016, 171, 121–132. [Google Scholar] [CrossRef]
- Rudlosky, S.D.; Peterson, M.J.; Kahn, D.T. GLD360 Performance Relative to TRMM LIS. J. Atmos. Ocean. Technol. 2017, 34, 1307–1322. [Google Scholar] [CrossRef]
- Lu, J.; Qie, X.; Jiang, R.; Xiao, X.; Liu, D.; Li, J.; Wang, D.; Yuan, S.; Chen, Z.; Tian, Y.; et al. Lightning activity during con-vective cell mergers in a squall line and corresponding dynamical and thermodynamical characteristics. Atmos. Res. 2021, 256, 105555. [Google Scholar] [CrossRef]
- Wilson, J.W.; Crook, N.A.; Mueller, C.K.; Sun, J.; Dixon, M. Nowcasting Thunderstorms: A Status Report. Bull. Am. Meteorol. Soc. 1998, 79, 2079–2099. [Google Scholar] [CrossRef]
- Schaefer, T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall line. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Sun, J.; Min, J.; Zhang, Y.; Ying, Z. A scheme to assimilate “no rain” observations from Doppler radar. Weather Forecast. 2018, 33, 71–88. [Google Scholar] [CrossRef]
Experiments | Description | Assimilated Data |
---|---|---|
RAD | Radar DA | Radar |
RADLTN-GLD | Radar plus lightning DA with climatological vertical profile | Radar and lightning (GLD360) |
RADLTN-BLN | Radar plus lightning DA with climatological vertical profile | Radar and lightning (BLNET) |
DxFy | Same as RADLTN, but with different lightning data frequencies (y) and horizontal interpolation radii (x) | Radar and lightning (BLNET) |
RADLTN-cumulus or storm | Same as RADLTN, but climatological vertical profile from different maximum reflectivity thresholds (18 or 40dBZ) | Radar and lightning (BLNET) |
Test Rain(mm) | Mean BIAS of Different Experiments | ||||||||||||
RAD | D3Y1 | D3Y3 | D3Y6 | D5Y1 | D5Y3 | D5Y6 | D7Y1 | D7Y3 | D7Y6 | D9Y1 | D9Y3 | D9Y6 | |
4 | −4.93 | −2.92 | −3.89 | −4.33 | −1.69 | −3.32 | −4.04 | −0.71 | −2.89 | −3.97 | 0.12 | −2.42 | −3.72 |
8 | −6.02 | −3.14 | −4.30 | −5.03 | −1.58 | −3.42 | −4.50 | −0.30 | −2.81 | −4.42 | 0.93 | −2.60 | −3.06 |
10 | −6.78 | −3.41 | −4.57 | −5.53 | −1.73 | −3.68 | −4.98 | -0.35 | −3.07 | −4.82 | 0.97 | −2.69 | −4.32 |
12 | −7.77 | −4.06 | −5.28 | −6.06 | −2.00 | −4.35 | −5.66 | −0.27 | −3.46 | −5.46 | 0.90 | −3.58 | −4.99 |
16 | −9.93 | −7.26 | −6.69 | −6.68 | −2.49 | −5.42 | −7.23 | −0.49 | −4.45 | −6.96 | 0.51 | −5.44 | −6.48 |
18 | −10.2 | −8.56 | −7.59 | −7.14 | −3.11 | −6.36 | −7.88 | −1.17 | −5.33 | −7.55 | 0.18 | −6.85 | −7.18 |
Mean ETS of Different Experiments | |||||||||||||
4 | 0.181 | 0.184 | 0.227 | 0.244 | 0.213 | 0.241 | 0.246 | 0.181 | 0.221 | 0.240 | 0.210 | 0.220 | 0.230 |
8 | 0.200 | 0.280 | 0.333 | 0.281 | 0.314 | 0.363 | 0.301 | 0.298 | 0.338 | 0.300 | 0.279 | 0.330 | 0.320 |
10 | 0.176 | 0.266 | 0.306 | 0.230 | 0.290 | 0.325 | 0.265 | 0.265 | 0.288 | 0.260 | 0.252 | 0.280 | 0.260 |
12 | 0.121 | 0.220 | 0.204 | 0.197 | 0.232 | 0.235 | 0.207 | 0.121 | 0.224 | 0.210 | 0.192 | 0.180 | 0.210 |
16 | 0.032 | 0.097 | 0.128 | 0.161 | 0.122 | 0.139 | 0.120 | 0.110 | 0.116 | 0.130 | 0.098 | 0.080 | 0.130 |
18 | 0.020 | 0.064 | 0.041 | 0.069 | 0.084 | 0.131 | 0.105 | 0.070 | 0.121 | 0.060 | 0.062 | 0.040 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Qie, X.; Chen, Z.; Lu, J.; Ji, L.; Wang, D.; Zhang, L.; Chen, M.; Chen, M. Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote Sens. 2021, 13, 2084. https://doi.org/10.3390/rs13112084
Xiao X, Qie X, Chen Z, Lu J, Ji L, Wang D, Zhang L, Chen M, Chen M. Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote Sensing. 2021; 13(11):2084. https://doi.org/10.3390/rs13112084
Chicago/Turabian StyleXiao, Xian, Xiushu Qie, Zhixiong Chen, Jingyu Lu, Lei Ji, Dongfang Wang, Lina Zhang, Mingxuan Chen, and Min Chen. 2021. "Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing" Remote Sensing 13, no. 11: 2084. https://doi.org/10.3390/rs13112084
APA StyleXiao, X., Qie, X., Chen, Z., Lu, J., Ji, L., Wang, D., Zhang, L., Chen, M., & Chen, M. (2021). Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote Sensing, 13(11), 2084. https://doi.org/10.3390/rs13112084