Multi-Scale Geophysical Methodologies Applied to Image Archaeological Ruins at Various Depths in Highly Terraneous Sites
Abstract
:1. Introduction
2. Site Description
3. Geological and Archaeological Context
4. Methodology
4.1. Survey Procedure and Field Setup
4.2. Data Processing and Inversion
5. Results and Discussion
5.1. Area Around Spot A
5.2. Area Around Spot B
5.3. Area Around Spot C
5.4. Area Around Spot D
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appreciation
References
- Campana, S.; Piro, S. Seeing the Unseen. Geophysics and Landscape Archaeology; Taylor & Francis: London, UK, 2009; p. 376. [Google Scholar]
- Belvedere, O. Archaeological Survey in Italy between Ancient Topography and Landscape Archaeology. In Göttinger Studien zur Mediterranen Archäologie Bd. 8; Verlag Marie Leidorf GmbH: Rahden, Germany, 2017; ISBN 978-3-86757-507-2. [Google Scholar]
- Trinks, I.; Neubauer, W.; Doneus, M. Prospecting Archaeological Landscapes; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–29. [Google Scholar]
- Trinks, I.; Neubauer, W.; Hinterleitner, A. First high-resolution GPR and magnetic archaeological prospection at the Viking age settlement of birka in Sweden. Archaeol. Prospect. 2014, 21, 185–199. [Google Scholar] [CrossRef]
- Gustavsen, L.; Stamnes, A.A.; Fretheim, S.E.; Gjerpe, L.E.; Nau, E. The Effectiveness of Large-Scale, High-Resolution Ground-Penetrating Radar Surveys and Trial Trenching for Archaeological Site Evaluations—A Comparative Study from Two Sites in Norway. Remote. Sens. 2020, 12, 1408. [Google Scholar] [CrossRef]
- Cardarelli, E.; Di Filippo, G. Integrated geophysical methods for the characterisation of an archaeological site (Massenzio Basilica—Roman forum, Rome, Italy). J. Appl. Geophys. 2009, 68, 508–521. [Google Scholar] [CrossRef]
- Hegyi, A.; Diaconescu, D.; Urdea, P.; Sarris, A.; Pisz, M.; Onaca, A. Using Geophysics to Characterize a Prehistoric Burial Mound in Romania. Remote. Sens. 2021, 13, 842. [Google Scholar] [CrossRef]
- Drahor, M.G.; Berge, M.A.; Öztürk, C. Integrated geophysical surveys for the subsurface mapping of buried structures under and surrounding of the Agios Voukolos Church in İzmir, Turkey. J. Archaeol. Sci. 2011, 38, 2231–2242. [Google Scholar] [CrossRef]
- Küçükdemirci, M.; Piro, S.; Ozer, E.; Baydemir, N.; Zamuner, D. An integrated Geophysical Survey at Aizanoi Archaeological site (Turkey). In Proceedings of the 11th International Conference on Archaeological Prospection ICAP2015, Warsaw, Poland, 15–19 September 2015; Archaeologia Polona. pp. 477–479, ISSN: 0066-5924. [Google Scholar]
- Küçükdemirci, M.; Özer, E.; Piro, S.; Baydemir, N.; Zamuner, D. An application of integration approaches for archaeo-geophysical data: Case study from Aizanoi. Archaeol. Prospect. 2018, 25, 33–44. [Google Scholar] [CrossRef]
- Abu Zeid, N.; Corradini., E.; Bignardi, S.; Morandi, N.; Nizzo, V. The passive seismic technique “HVSR” as a reconnaissance tool for mapping paleo-soils: The case of the Pilastri archaeological site, Northern Italy. Archaeol. Prospect. 2017, 24, 245–258. [Google Scholar] [CrossRef]
- Deiana, R.; Bonetto, J.; Mazzariol, A. Integrated Electrical Resistivity Tomography and Ground Penetrating Radar Measurements Applied to Tomb Detection. Surv. Geophys. 2018, 39, 1081–1105. [Google Scholar] [CrossRef]
- Arka, I.; Balkaya, Ç.; Pülz, A.; Alanyali, H.S.; Kaya, M.A. Integrated geophysical investigations to reconstruct the archaeological features in the episcopal district of side (Antalya, southern Turkey). J. Appl. Geophys. 2019, 163, 22–30. [Google Scholar] [CrossRef]
- Abu Zeid, N.M.; Bignardi, S.; Russo, P.; Peresani, M. Deep in a Paleolithic archive: Integrated geophysical investigations and laser-scanner reconstruction at Fumane Cave, Italy. J. Archaeol. Sci. Rep. 2019, 27, 1–10. [Google Scholar] [CrossRef]
- Gaber, A.; Gemail, K.S.; Kamel, A.; Atia, H.M.; Ibrahim, A. Integration of 2D/3D ground penetrating radar and electrical resistivity tomography surveys as enhanced imaging of archaeological ruins: A case study in San El-Hager (Tanis) site, northeastern Nile Delta, Egypt. Archaeol. Prospect. 2021. [Google Scholar] [CrossRef]
- Schmidt, A. Electrical and magnetic methods in archaeological prospection. In Seeing the Unseen. Geophysics and Landscape Archaeology; Campana, S., Piro, S., Eds.; Taylor and Francis Group: London, UK, 2009; pp. 67–81. [Google Scholar]
- Salvatore, P.; Enrico, P.; Daniela, Z.; Melda, K. Multimethodological approach to investigate urban and suburban archaeological sites. In Innovation in Near-Surface Geophysics; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 461–504. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Hansen, R.O. On the use of complex attributes and the inferred source parameter estimates in the exploration of archaeological sites. Archaeol. Prospect. 2000, 7, 17–30. [Google Scholar] [CrossRef]
- Dabas, M.; Anest, A.; Thiesson, J.; Tabbagh, A. Slingram EMI Devices for Characterizing Resistive Features Using Apparent Conductivity Measurements: Check of the DualEM-421S Instrument and Field Tests. Archaeol. Prospect. 2016, 23, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, C.; Gater, J.A.; Ovenden, S.M. The Use of Geophysical Techniques in Archaeological Evaluations; IFA Technical Paper 6; Reading Institute of Field Archaeologists, University of Reading: Reading, UK, 2002; ISBN 0 948393 16 3. [Google Scholar]
- Chianese, D.V.; Lapenna, S.; Di Salvia, S.; Perrone, A.; Rizzo, E. Joint geophysical measurements to investigate the Rossano of Vaglio archaeological site (Basilicata region, southern Italy). J. Archaeol. Sci. 2010, 37, 2237–2244. [Google Scholar] [CrossRef]
- Danielsen, B.E.; Dahlin, T. Comparison of geoelectrical imaging and tunnel documentation. Eng. Geol. 2009, 107, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Rønning, J.S.; Ganerød, G.V.; Dalsegg, E.; Reiser, F. Resistivity mapping as a tool for identification and characterisation of weakness zones in crystalline bedrock: Definition and testing of an interpretational model. Bull. Eng. Geol. Environ. 2014, 73, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Eppelbaum, L.V. Study of magnetic anomalies over archaeological targets in urban conditions. Phys. Chem. Earth 2011, 36, 1318–1330. [Google Scholar] [CrossRef]
- Lapenna, V. Resilient and sustainable cities of tomorrow: The role of applied geophysics. Boll. Geofis. Teor. Appl. 2017, 58, 237–251. [Google Scholar] [CrossRef]
- Smriglio, F.; Papale, E.; Verga, F.; Piro, S. Noninvasive geophysical integrated survey at Madonna del Giglio (Sabine necropolis, Magliano Sabina, Latium, Central Italy). Archaeol. Anthr. Sci. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Krauss, L.; Klasen, N.; Schulte, P.; Lehmkuhl, F. New results concerning the pedo- and chronostratigraphy of the loess–palaeosol sequence Attenfeld (Bavaria, Germany) derived from a multi-methodological approach. J. Quat. Sci. 2021. [Google Scholar] [CrossRef]
- Welc, F.; Mieszkowski, R.; Vrkljan, G.L.; Konestra, A. An Attempt to Integration of Different Geophysical Methods (Magnetic, GPR and ERT); A Case Study From the Late Roman Settlement On the Island of Rab in Croatia. Stud. Quat. 2017, 34, 47–59. [Google Scholar] [CrossRef]
- Florio, G.; Cella, F.; Speranza, L.; Castaldo, R.; Benoit, R.P.; Palermo, R. Multiscale techniques for 3D imaging of magnetic data for archaeo-geophysical investigations in the Middle East: The case of Tell Barri (Syria). Archaeol. Prospect. 2019, 26, 379–395. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Yang, J.; Xie, S. Integrated geophysical study in the cemetery of Marquis of Haihun. Archaeol. Prospect. 2021, 1, 13. [Google Scholar] [CrossRef]
- Clark, A. Seeing Beneath the Soil: Prospecting Methods in Archaeology, 2nd ed.; B.T. Batsford: London, UK, 1996. [Google Scholar]
- Cammarano, F.; Di Fiore, B.; Patella, D.; Mauriello, P. Examples of application of electrical tomographies and radar profiling to cultural heritage. Ann. Geophys. 2000, 43, 309–324. [Google Scholar]
- Campana, S.; Dabas, M.; Marasco, L.; Piro, S.; Zamuner, D. Integration of remote sensing, geophysical surveys and archaeological excavation for the study of a medieval mound (Tuscany-Italy). Archaeol. Prospect. 2009, 16, 167–176. [Google Scholar] [CrossRef]
- El-Qady, G.; Metwaly, M.; Drahor, M.G. Geophysical Techniques Applied in Archaeology. In Natural Science in Archaeology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Pro, C.; Caldeira, B.; De Tena, M.T.; Charro, C.; Oliveira, R.J.; Borges, J.F.; Mayoral, V. Exploring the Consistency of Data Collected in Archaeological Geophysics: A Case Study from the Iron Age Hillfort of Villasviejas del Tamuja (Extremadura, Spain). Remote Sens. 2020, 12, 1989. [Google Scholar] [CrossRef]
- Edemsky, D.; Popov, A.; Prokopovich, I. Geophysical survey of Tunnug mound periphery, Tuva, Russia. J. Appl. Geophys. 2021, 189, 104326. [Google Scholar] [CrossRef]
- Gaffney, C.F.; Gater, J.A.; Linford, P.; Gaffney, V.L.; White, R. Large-scale systematic fluxgate gradiometry at the roman city of Wroxeter. Archaeol. Prospect. 2000, 7, 81–99. [Google Scholar] [CrossRef]
- Zhai, G.; Bian, G.; Huang, M. A new method to calculate the vertical derivatives of total field magnetic anomaly. Acta Geod. Cartogr. Sin. 2011, 40, 671–678. [Google Scholar]
- Li, Y.; Oldenburg, D.W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int. 2003, 152, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Von Der Osten-Woldenburg, H.; Chaume, B.; Reinhard, W. New archaeological discoveries through magnetic gradiometry: The early Celtic settlement on Mont Lassois, France. Geophysics 2006, 25, 46–48. [Google Scholar] [CrossRef]
- Loke, M.; Chambers, J.; Rucker, D.; Kuras, O.; Wilkinson, P. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Gemail, K.S. Application of 2D resistivity profiling for mapping and interpretation of geology in a till aquitard near Luck Lake, Southern Saskatchewan, Canada. Environ. Earth Sci. 2015, 73, 923–935. [Google Scholar] [CrossRef]
- Fischanger, F.; Catanzariti, G.; Comina, C.; Sambuelli, L.; Morelli, G.; Barsuglia, F.; Ellaithy, A.; Porcelli, F. Geophysical anomalies detected by electrical resistivity tomography in the area surrounding Tutankhamun’s tomb. J. Cult. Herit. 2019, 36, 63–71. [Google Scholar] [CrossRef]
- Abu Salem, H.; Gemail, K.S.; Nosair, A.M. A multidisciplinary approach for delineating wastewater flow paths in shallow groundwater aquifers: A case study in the southeastern part of the Nile Delta, Egypt. J. Contam. Hydrol. 2021, 236, 103701. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.H.; Barker, R.D. Electrical Imaging in Archaeology. J. Archaeol. Sci. 1994, 21, 153–158. [Google Scholar] [CrossRef]
- Schmidt, A. Archaeology, magnetic methods. In Encyclopedia of Geomagnetism and Paleomagnetism; Encyclopedia of Earth Sciences Series; Gubbins, D., Herrero-Bervera, E., Eds.; Springer: Heidelberg, NY, USA, 2007. [Google Scholar]
- Masini, N.; Capozzoli, L.; Romano, G.; Sieczkowska, D.; Sileo, M.; Bastante, J.; Victoria, F.A.; Ziolkowski, M.; Lasaponara, R. Archaeogeophysical-Based Approach for Inca Archaeology: Overview and one operational application. Surv. Geophys. 2018, 39, 1239–1262. [Google Scholar] [CrossRef]
- Gemail, K.S.; El Alfy, M.; Ghoneim, M.F.; Shishtawy, A.M.; El-Bary, M.A. Comparison of DRASTIC and DC resistivity modeling for assessing aquifer vulnerability in the central Nile Delta, Egypt. Environ. Earth Sci. 2017, 76, 350. [Google Scholar] [CrossRef]
- Brissaud, A.; Desbordes, C. Activity Report—2019 Campaign, MATD, Mission of Archaeology at Tell Dibgou, No 33, 23P. 2019. Available online: http://www.telldibgou.fr/index.php/rapports-d-activite/2019 (accessed on 1 March 2020).
- Said, R. The Geological Evolution of the River Nile; Springer: Berlin/Heidelberg, Germany, 1981; p. 151. [Google Scholar]
- Wit, H.E.; Stralen, L. Preliminary Results of the 1987 Palaeo-Geographical Survey; van der Brink, E.C.M., Ed.; The archaeology of the Nile Delta: Amsterdam, The Netherlands, 1988; pp. 135–139. [Google Scholar]
- Bietak, M. Tell el-Daba II; OCoLC 776782539; Verlag der Oṡterreichischen Akademie der Wissenschaften: Wien, Austria, 1975. [Google Scholar]
- Abu Al Izz, M.S. Landforms of Egypt; The American University Press: Lanham, MD, USA, 1977; p. 283. [Google Scholar]
- Elwan, A.A.; Harga, M.A.; El Kadi, H.A.; El Demerdash, S. Preliminary studies on the soil of North Sinai Peninsula on aerial photo interpretation. Egypt. J. Soil Sci. 1983, 23, 37. [Google Scholar]
- Reid, A.B. Aeromagnetic survey design. Geophysics 1980, 45, 973–976. [Google Scholar] [CrossRef]
- Reynolds, J.M. An introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley-Blackwell: New York, NY, USA, 2011; ISBN 978-0-471-48535-3. [Google Scholar]
- Loke, M.H. Rapid 2-D Resistivity and IP Inversion Using the Least-Squares Method. 2018. Available online: www.geotomosoft.com (accessed on 14 August 2018).
- Gharibi, M.; Bentley, L.R. Resolution of 3-D Electrical Resistivity Images from Inversions of 2-D Orthogonal Lines. J. Environ. Eng. Geophys. 2005, 10, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Berge, M.A.; Drahor, M.G. Electrical Resistivity Tomography Investigations of Multilayered Archaeological Settlements: Part II—A Case from Old Smyrna Höyük, Turkey. Archaeol. Prospect. 2011, 18, 291–302. [Google Scholar] [CrossRef]
- Rödder, T.; Kneisel, C. Permafrost mapping using quasi-3D resistivity imaging, Murtèl, Swiss Alps. Near Surf. Geophys. 2012, 10, 117–127. [Google Scholar] [CrossRef]
- Schwindt, D.; Kneisel, C. Optimisation of quasi-3D electrical resistivity imaging—Application and inversion for investigating heterogeneous mountain permafrost. Cryosphere Discuss. 2011, 5, 3383–3421. [Google Scholar]
- Papadopoulos, N.G.; Tsourlos, P.; Tsokas, G.N.; Sarris, A. Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeol. Prospect. 2006, 13, 163–181. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.; Dahlin, T. Methods to Reduce Banding Effects in 3-D Resistivity Inversion. In Proceedings of the Near Surface 2010—16th EAGE European Meeting of Environmental and Engineering Geophysics, Zurich, Switzerland, 6–8 September 2010. [Google Scholar] [CrossRef]
- Tejero-Andrade, A.; Cifuentes, G.; Chávez, R.E.; López-González, A.E.; Delgado-Solórzano, C. L- andCORNER-arrays for 3D electric resistivity tomography: An alternative for geophysical surveys in urban zones. Near Surf. Geophys. 2015, 13, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Bobachev, A.; Modin, I.; Shevinin, V. IPI2Win V2.0: User’s Guide; Moscow State University: Moscow, Russia, 2003; Available online: http://geophys.geol.msu.ru/ipi2win.htm (accessed on 10 January 2003).
- Koefoed, O. Geosounding Principles 1: Resistivity Sounding Measurements; Elsevier Science Publishing Company: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Van Overmeeren, R.A. Aquifer boundaries explored by geoelectrical measurements in the coastal plain of Yemen: A case of equivalence. Geophysics 1989, 54, 38–48. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prosp. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2D and 3D Electrical Imaging Surveys. 2020. Available online: http://www.geotomosoft.com/downloads.php (accessed on 7 August 2020).
- Farquharson, C.G. Constructing piecewise-constant models in multidimensional minimum structure inversions. Geophysics 2008, 73, K1–K9. [Google Scholar] [CrossRef]
- Geosoft. Oasis Montaj 8.3. Mapping and Application System; N5SIV6. Users’ Manual; Geosoft Inc.: West Toronto, ON, Canada, 2015; Available online: https://www.geosoft.com/products/oasis-montaj (accessed on 22 October 2018).
- Auken, E.; Foged, N.; Sørensen, K.I. Model Recognition by 1-D Laterally Constrained Inversion of Resistivity Data. In Proceedings of the 9th Meeting, Environmental and Engineering Geophysical Society—European Section, Prague, Czech Republic, 8 September 2002; pp. 241–244. [Google Scholar] [CrossRef]
- Brissaud, A.; Desbordes, C. Bulletin de la Société Française des Fouilles de Tanis. Activity Report—2018 Campaign, MATD, Mission of Archaeology at Tell Dibgou, No 32, 21P. 2018. Available online: http://www.telldibgou.fr/index.php/rapports-d-activite/2018 (accessed on 1 February 2019).
- Dahlin, T.; Loke, M.H. Quasi-3D resistivity imaging-mapping of three dimensional structures using two dimensional DC resistivity techniques. In Proceedings of the 3rd EEGS Meeting; European Association of Geoscientists & Engineers, Houten, The Netherlands, 11–13 August 1997; pp. 143–146. [Google Scholar]
- Salem, A.; Williams, S.; Fairhead, J.; Ravat, D.; Smith, R. Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. Lead. Edge 2007, 26, 1502–l505. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Enhancing potential field data using filters based on the local phase. Comput. Geosci. 2006, 32, 1585–1591. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Edge enhancement of potential-field data using normalized statistics. Geophysics 2008, 73, 1–4. [Google Scholar] [CrossRef]
- Cooper, G.R.J. Balancing images of potential field data. Geophysics 2009, 74, 17–20. [Google Scholar] [CrossRef]
Geophysical Surveys | Area of Investigation | ||||||
---|---|---|---|---|---|---|---|
Area (A) | Area (B) | Area (C) | Area (D) | ||||
Geoelectric Survey | VES | Number of sounding points | 22 | ------ | ------ | ------ | |
2D ERT survey parameters | Electrode array | WB | DD | DD | WB | ------ | |
Number of profiles | 1 | 1 | 2 | 5 | ------ | ||
Profile length | 235 m | 235 m | 30 m | 30 m | ------ | ||
Number of electrodes | 48 | 48 | 31 | 31 | ------ | ||
Unit electrode separation (a) | 5 m | 5 m | 1 & 2 m | 1 m | ------ | ||
Depth levels (n) | 7 | 15 | 6 | 9 | ------ | ||
Number of measured data | 360 | 332 | 492 | 675 | ------ | ||
Profile heading | NW-SE | NW-SE | NW-SE | S-N | |||
Magnetic Survey | Type of survey | ------ | Total and gradient | Total and gradient | Total Field | ||
Covered area | ------ | 384 m2 | 525 m2 | 160 m2 | |||
Sampling interval | ------ | 0.5 m | 0.5 m | 0.5 m | |||
Bottom sensor height | ------ | 1.2 m | 0.6 m | 1.2 m | |||
Top sensor height | ------ | 2.4 m | 1.2 m | ------ | |||
Traverse heading | ------ | S-N | NW-SE | N-S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Gemail, K.S.; Abdelrahman, K.; Al-Otaibi, N.; Ibrahim, E.; Saada, S.A. Multi-Scale Geophysical Methodologies Applied to Image Archaeological Ruins at Various Depths in Highly Terraneous Sites. Remote Sens. 2021, 13, 2055. https://doi.org/10.3390/rs13112055
Ibrahim A, Gemail KS, Abdelrahman K, Al-Otaibi N, Ibrahim E, Saada SA. Multi-Scale Geophysical Methodologies Applied to Image Archaeological Ruins at Various Depths in Highly Terraneous Sites. Remote Sensing. 2021; 13(11):2055. https://doi.org/10.3390/rs13112055
Chicago/Turabian StyleIbrahim, Amin, Khaled S. Gemail, Kamal Abdelrahman, Naif Al-Otaibi, Elkhedr Ibrahim, and Saada A. Saada. 2021. "Multi-Scale Geophysical Methodologies Applied to Image Archaeological Ruins at Various Depths in Highly Terraneous Sites" Remote Sensing 13, no. 11: 2055. https://doi.org/10.3390/rs13112055
APA StyleIbrahim, A., Gemail, K. S., Abdelrahman, K., Al-Otaibi, N., Ibrahim, E., & Saada, S. A. (2021). Multi-Scale Geophysical Methodologies Applied to Image Archaeological Ruins at Various Depths in Highly Terraneous Sites. Remote Sensing, 13(11), 2055. https://doi.org/10.3390/rs13112055