Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Hourly GPP
2.2. Caculation of Hourly Re
2.3. Parameter Calibration and Model Validation at the Site Level
2.4. Hourly GPP and Re Modeling at the Regional Scale
2.5. Estimation of Integrated Anthropogenic CO2 Emissions in the Greater Tokyo Area
3. Results
3.1. Hourly GPP at the Site Level
3.2. Hourly Re and NEE at the Site Level
3.3. Hourly GPP at the Regional Scale
3.4. Hourly Re at the Regional Scale
3.5. Comparison of Regional Scale Modeling Results and Satellite Data
3.6. Biogenic CO2 Fluxes and Anthropogenic CO2 Emissions in the Greater Tokyo Area
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization. The state of greenhouse gases in the atmosphere based on global observations through 2018. In WMO Greenhouse Gas Bulletin; WMO: Geneva, Switzerland, 2019. [Google Scholar]
- Friedlingstein, P.; Jones, M.; O’sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; Bakker, O.D. Global carbon budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- De Cola, P.; Secretariat, W.M.O. An integrated global greenhouse gas information system (IG3IS). WMO Bull. 2017, 66, 38–45. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Creutzig, F.; Lohrey, S.; Bai, X.; Baklanov, A.; Dawson, R.; Dhakal, S.; Walsh, B. Upscaling urban data science for global climate solutions. Glob. Sustain. 2019. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Bai, X.; Brondizio, E.S.; Iwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. [Google Scholar] [CrossRef]
- Arioli, M.S.; Márcio de Almeida, D.A.; Amaral, F.G.; Cybis, H.B.B. The evolution of city-scale GHG emissions inventory methods: A systematic review. Environ. Impact Assess. 2020, 80, 106316. [Google Scholar] [CrossRef]
- City of Los Angeles. 2017 Municipal Greenhouse Gas Emissions Inventory; LA Sanitation & Environment Regulatory Affairs Division, Climate Action Program: Los Angeles, CA, USA, 2017. [Google Scholar]
- Ville de Paris. Bilan des Emissions de Gaz à Effet de Serre de Paris; l’Agence d’Écologie Urbaine de la Direction des Espaces Verts et de l’Environnement: Paris, France, 2020. [Google Scholar]
- Bureau of Environment, Tokyo Metropolitan Government. Final Energy Consumption and Greenhouse Gas Emissions in Tokyo (FY2017); Bureau of Environment, Tokyo Metropolitan Government: Tokyo, Japan, 2020.
- Gurney, K.R.; Razlivanov, J.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of fossil fuel CO2 emissions on the building/street scale for a large US city. Environ. Sci. Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Zhang, Q. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Nangini, C.; Peregon, A.; Ciais, P.; Weddige, U.; Vogel, F.; Wang, J.; Yamagata, Y. A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Sci. Data 2019, 6, 180280. [Google Scholar] [CrossRef]
- Dodman, D. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 2009, 21, 185–201. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Barau, A.S.; Dhakal, S.; Schultz, S. Six research priorities for cities and climate change. Nat. Comment 2018. [Google Scholar] [CrossRef]
- Buendia, E.C.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Federici, S. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 5, p. 194. [Google Scholar]
- Saeki, T.; Maksyutov, S.; Saito, M.; Valsala, V.; Oda, T.; Morino, I. Inverse modeling of CO2 fluxes using GOSAT data and multi-year ground-based observations. Sola 2013, 9, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Houweling, S.; Baker, D.; Basu, S.; Boesch, H.; Butz, A.; Chevallier, F.; Hasekamp, O. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. Atmos. 2015, 120, 5253–5266. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Baker, D.F.; Chevallier, F.; Patra, P.K.; Liu, J.J.; Miller, J.B. The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2. Atmos. Chem. Phys. 2018, 18, 7189–7215. [Google Scholar] [CrossRef] [Green Version]
- McKain, K.; Wofsy, S.C.; Nehrkorn, T.; Eluszkiewicz, J.; Ehleringer, J.R.; Stephens, B.B. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA 2012, 109, 8423–8428. [Google Scholar] [CrossRef] [Green Version]
- Nehrkorn, T.; Henderson, J.; Leidner, M.; Mountain, M.; Eluszkiewicz, J.; McKain, K.; Wofsy, S. WRF simulations of the urban circulation in the Salt Lake City area for CO2 modeling. J. Appl. Meteorol. Clim. 2013, 52, 323–340. [Google Scholar] [CrossRef]
- Brioude, J.; Angevine, W.M.; Ahmadov, R.; Kim, S.W.; Evan, S.; McKeen, S.A.; Peischl, J. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NOx and CO2 and their impacts. Atmos. Chem. Phys. 2013, 13, 3661–3677. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Lauvaux, T.; Newman, S.; Rao, P.; Ahmadov, R.; Deng, A.; Gurney, K.R. Los Angeles megacity: A high-resolution land–atmosphere modelling system for urban CO2 emissions. Atmos. Chem. Phys. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, J.C.; Sweeney, C.; Karion, A.; Newberger, T.; Lehman, S.J.; Tans, P.P.; Cambaliza, M.O. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment. J. Geophys. Res. Atmos. 2015, 120, 292–312. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Song, Y. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, J.C.; Karion, A.; Davis, K.J.; Lauvaux, T.; Miles, N.L.; Richardson, S.J.; Patarasuk, R. Synthesis of urban CO2 emission estimates from multiple methods from the Indianapolis Flux Project (INFLUX). Environ. Sci. Technol. 2018, 53, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sargent, M.; Barrera, Y.; Nehrkorn, T.; Hutyra, L.R.; Gately, C.K.; Jones, T.; Wang, J.A. Anthropogenic and biogenic CO2 fluxes in the Boston urban region. Proc. Natl. Acad. Sci. USA 2018, 115, 7491–7496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Griffis, T.J.; Lee, X.; Millet, D.B.; Chen, Z.; Baker, J.M.; Xiao, K. Top-down constraints on anthropogenic CO2 emissions within an agricultural-urban landscape. J. Geophys. Res. Atmos. 2018, 123, 4674–4694. [Google Scholar] [CrossRef]
- Lopez-Coto, I.; Ren, X.; Salmon, O.E.; Karion, A.; Shepson, P.B.; Dickerson, R.R.; Whetstone, J.R. Wintertime CO2, CH4, and CO Emissions Estimation for the Washington, DC–Baltimore Metropolitan Area Using an Inverse Modeling Technique. Environ. Sci. Technol. 2020, 54, 2606–2614. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Richardson, S.J.; Deng, A.; Stauffer, D.R.; Davis, K.J.; DeCola, P.L. Urban emissions of CO2 from Davos, Switzerland: The first real-time monitoring system using an atmospheric inversion technique. J. Appl. Meteorol. Clim. 2013, 52, 2654–2668. [Google Scholar] [CrossRef]
- Bréon, F.M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Ciais, P. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Staufer, J.; Broquet, G.; Bréon, F.M.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Perrussel, O. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion. Atmos. Chem. Phys. 2016, 16, 14703–14726. [Google Scholar] [CrossRef] [Green Version]
- Pillai, D.; Buchwitz, M.; Gerbig, C.; Koch, T.; Reuter, M.; Bovensmann, H.; Burrows, J.P. Tracking city CO2 emissions from space using a high-resolution inverse modeling approach: A case study for Berlin, Germany. Atmos. Chem. Phys. 2016, 16, 9591–9610. [Google Scholar] [CrossRef] [Green Version]
- Klausner, T.; Mertens, M.; Huntrieser, H.; Galkowski, M.; Kuhlmann, G.; Baumann, R.; Helmig, D. Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO2 and CH4 in situ observations in summer 2018. Elem. Sci. Anthr. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Boon, A.; Broquet, G.; Clifford, D.J.; Chevallier, F.; Butterfield, D.M.; Pison, I.; Ciais, P. Analysis of the potential of near-ground measurements of CO2 and CH4 in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model. Atmos. Chem. Phys. 2016, 16, 6735–6756. [Google Scholar] [CrossRef] [Green Version]
- Nickless, A.; Rayner, P.J.; Engelbrecht, F.; Brunke, E.G.; Erni, B.; Scholes, R.J. Estimates of CO2 fluxes over the City of Cape Town, South Africa, through Bayesian inverse modelling. Atmos. Chem. Phys. 2018, 18, 4765–4801. [Google Scholar] [CrossRef] [Green Version]
- Moriwaki, R.; Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 2004, 43, 1700–1710. [Google Scholar] [CrossRef]
- Bergeron, O.; Strachan, I.B. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos. Environ. 2011, 45, 1564–1573. [Google Scholar] [CrossRef]
- Menzer, O.; McFadden, J.P. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components. Atmos. Environ. 2017, 170, 319–333. [Google Scholar] [CrossRef]
- Velasco, E.; Roth, M.; Tan, S.H.; Quak, M.; Nabarro, S.D.A.; Norford, L. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmos. Chem. Phys. 2013, 13, 10185–10202. [Google Scholar] [CrossRef] [Green Version]
- Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Koerner, S.; Neininger, B.; Dolman, A.J.; Sarrat, C. Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Boussetta, S.; Balsamo, G.; Beljaars, A.; Panareda, A.A.; Calvet, J.C.; Jacobs, C.; Jarlan, L. Natural land carbon dioxide exchanges in the ECMWF Integrated Forecasting System: Implementation and offline validation. J. Geophys. Res. Atmos. 2013, 118, 5923–5946. [Google Scholar] [CrossRef]
- Kowalczyk, E.A.; Wang, Y.P.; Law, R.M.; Davies, H.L.; McGregor, J.L.; Abramowitz, G. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. Csiro Mar. Atmos. Res. Pap. 2006, 13, 42. [Google Scholar] [CrossRef]
- Wang, Y.P.; Kowalczyk, E.; Leuning, R.; Abramowitz, G.; Raupach, M.R.; Pak, B.; Luhar, A. Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J. Geophys. Res. Biogeo. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, H.; Pak, B.; Wang, Y.P.; Zhou, X.; Zhang, Y.; Zhang, L. Evaluating surface water cycle simulated by the Australian community land surface model (CABLE) across different spatial and temporal domains. J. Hydrometeorol. 2013, 14, 1119–1138. [Google Scholar] [CrossRef]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef] [Green Version]
- Hardiman, B.S.; Wang, J.A.; Hutyra, L.R.; Gately, C.K.; Getson, J.M.; Friedl, M.A. Accounting for urban biogenic fluxes in regional carbon budgets. Sci. Total Environ. 2017, 592, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Worthy, D.E. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107, ACL-2. [Google Scholar] [CrossRef] [Green Version]
- Dye, D.G. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Wang, Q.; Tenhunen, J.; Schmidt, M.; Kolcun, O.; Droesler, M.; Reichstein, M. Estimation of total, direct and diffuse PAR under clear skies in complex alpine terrain of the National Park Berchtesgaden, Germany. Ecol. Model. 2006, 196, 149–162. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Tymvios, F.S.; Assimakopoulos, V.D.; Kaltsounides, N.A. The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agr. For. Meteorol. 2007, 143, 277–287. [Google Scholar] [CrossRef]
- de Pury, D.G.G.; Farquhar, G.D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. PlantCell Environ. 1997, 20, 537–557. [Google Scholar] [CrossRef]
- Urban, O.; Janouš, D.; Acosta, M.; Czerný, R.; Markova, I.; Navratil, M.; Špunda, V. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob. Chang. Biol. 2007, 13, 157–168. [Google Scholar] [CrossRef]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Luo, X.; Chen, J.M.; Liu, J.; Black, T.A.; Croft, H.; Staebler, R.; Gonsamo, A. Comparison of big-leaf, two-big-leaf, and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling. J. Geophys. Res. Biogeosciences 2018, 123, 207–225. [Google Scholar] [CrossRef]
- Ryu, Y.; Jiang, C.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 2018, 204, 812–825. [Google Scholar] [CrossRef]
- Hirano, T.; Sugawara, H.; Murayama, S.; Kondo, H. Diurnal variation of CO2 flux in an urban area of Tokyo. SOLA 2015, 11, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Imasu, R.; Tanabe, Y. Diurnal and seasonal variations of carbon dioxide (CO2) concentration in urban, suburban, and rural areas around Tokyo. Atmosphere 2018, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H. The thermally induced local wind and surface inversion over the Kanto plain on calm winter nights. J. Appl. Meteorol. 1995, 34, 1439–1448. [Google Scholar] [CrossRef]
- Kondo, H.; Saigusa, N.; Murayama, S.; Yamamoto, S.; Kannari, A. A Numerical Simulation of the Daily Variation of CO2 in the Central Part of Japan—Summer Case—. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology, 2nd ed.; Springer-Verlag: New York, NY, USA, 2011. [Google Scholar]
- Ito, A.; Oikawa, T. Global mapping of terrestrial primary productivity and light-use efficiency with a process-based model. In Global Environmental Change in the Ocean and on Land; TERRAPUB: Tokyo, Japan, 2004; pp. 343–358. [Google Scholar]
- Lopez, G.; Rubio, M.A.; Martınez, M.; Batlles, F.J. Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agr. For. Meteorol. 2001, 107, 279–291. [Google Scholar] [CrossRef]
- Tymvios, F.S.; Jacovides, C.P.; Michaelides, S.C.; Scouteli, C. Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol. Energy 2005, 78, 752–762. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energ. 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Sasai, T.; Ichii, K.; Yamaguchi, Y.; Nemani, R. Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approaches using satellite data” (BEAMS). J. Geophys. Res. Biogeosciences 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Sasai, T.; Obikawa, H.; Murakami, K.; Kato, S.; Matsunaga, T.; Nemani, R.R. Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10 km grid-scale resolution. J. Geophys. Res. Biogeosciences 2016, 121, 1484–1502. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Collatz, G.J.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agr. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B.; Hall, F.G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992, 42, 187–216. [Google Scholar] [CrossRef]
- Wullschleger, S.D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot. 1993, 44, 907–920. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology: Concepts and applications; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Leuning, R. Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis. Funct. Plant Biol. 1990, 17, 159–175. [Google Scholar] [CrossRef]
- Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. PlantCell Environ. 1995, 18, 339–355. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hirose, T.; Werger, M.J.A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 1987, 72, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Kimball, J.S. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm. In MOD17 User’s Guide; NASA: Washington, DC, USA, 2003. [Google Scholar]
- Running, S.W.; Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm 2015. In MOD17 User’s Guide; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Friedlingstein, P.; Joel, G.; Field, C.B.; Fung, I.Y. Toward an allocation scheme for global terrestrial carbon models. Glob. Chang. Biol. 1999, 5, 755–770. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Townsend, A.R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kamnalrut, A. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B.; Hartman, M.D.; Parton, W.J.; Wieder, W.R. Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM 4). Glob. Chang. Biol. 2013, 19, 957–974. [Google Scholar] [CrossRef]
- Hashimoto, S.; Ugawa, S.; Morisada, K.; Wattenbach, M.; Smith, P.; Matsuura, Y. Potential carbon stock in Japanese forest soils–simulated impact of forest management and climate change using the CENTURY model. Soil Use Manag. 2012, 28, 45–53. [Google Scholar] [CrossRef] [Green Version]
- JapanFlux. Available online: http://www.japanflux.org (accessed on 2 December 2020).
- Forestry and Forest Products Research Institute FluxNet Database. Available online: http://www2.ffpri.affrc.go.jp/labs/flux/site_e.html (accessed on 2 December 2020).
- Gilberto, P.; Trotta, C.; Eleonora, C.; Housen, C.; Christianson, D.; You-Wei, C.; Isaac, P. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7. [Google Scholar] [CrossRef]
- Yamanoi, K.; Mizoguchi, Y.; Utsugi, H. Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan. Biogeosciences 2015, 12, 6837–6851. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, K.; Nakai, Y.; Suzuki, S.; Ohtani, Y.; Yamanoi, K.; Sakamoto, T. Interannual variability of net ecosystem production for a broadleaf deciduous forest in Sapporo, northern Japan. J. For. Res. 2012, 17, 323–332. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Ohtani, Y.; Takanashi, S.; Iwata, H.; Yasuda, Y.; Nakai, Y. Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan. J. For. Res. 2012, 17, 283–295. [Google Scholar] [CrossRef]
- Ohtani, Y.; Mizoguchi, Y.; Watanabe, T.; Yasuda, Y. Parameterization of NEP for gap filling in a cool-temperate coniferous forest in Fujiyoshida, Japan. J. Agric. Meteorol. 2005, 60, 769–772. [Google Scholar] [CrossRef] [Green Version]
- Mizoguchi, Y.; Ohtani, Y.; Nakai, Y.; Iwata, H.; Takanashi, S.; Yasuda, Y.; Nakano, T.; Yasuda, T.; Watanabe, T. Climatic characteristics of the Fujiyoshida forest meteorology research site. Mt. Fuji Res. 2011, 5, 1–6. [Google Scholar]
- Zhou, G.; Yan, J. (2003–2005) FLUXNET2015 CN-Din Dinghushan. Dataset 2016. [Google Scholar] [CrossRef]
- Dong, G. (2007–2010) FLUXNET2015 CN-Cng Changling. Dataset 2016. [Google Scholar] [CrossRef]
- Ono, K.; Yasuda, Y.; Matsuo, T.; Hoshino, D.; Chiba, Y.; Mori, S. Estimating forest biomass using allometric model in a cool-temperate Fagus crenata forest in the Appi Highlands, Iwate, Japan. Bull. Ffpri 2013, 12, 125–141. [Google Scholar]
- Yasuda, Y.; Saito, T.; Hoshino, D.; Ono, K.; Ohtani, Y.; Mizoguchi, Y.; Morisawa, T. Carbon balance in a cool–temperate deciduous forest in northern Japan: Seasonal and interannual variations, and environmental controls of its annual balance. J. For. Res. 2012, 17, 253–267. [Google Scholar] [CrossRef]
- Ishizuka, S.; Sakata, T.; Sawata, S.; Ikeda, S.; Takenaka, C.; Tamai, N.; Takahashi, M. High potential for increase in CO2 flux from forest soil surface due to global warming in cooler areas of Japan. Ann. For. Sci. 2006, 63, 537–546. [Google Scholar] [CrossRef]
- Hashimoto, T.; Miura, S.; Ishizuka, S. Temperature controls temporal variation in soil CO2 efflux in a secondary beech forest in Appi Highlands, Japan. J. For. Res. 2009, 14, 44–50. [Google Scholar] [CrossRef]
- Wang, H.; Fu, X. (2003–2005) FLUXNET2015 CN-Qia Qianyanzhou. Dataset 2016. [Google Scholar] [CrossRef]
- Kosugi, S.; Takanashi, S. (2003–2009) FLUXNET2015 MY-PSO Pasoh Forest Reserve (PSO). Dataset 2016. [Google Scholar] [CrossRef]
- Chen, S. (2006–2008) FLUXNET2015 CN-Du2 Duolun_grassland (D01). Dataset 2016. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MCD15A3H MODIS/Terra + Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43A3 MODIS/Terra + Aqua BRDF/Albedo Daily L3 Global—500m V006. NASA EOSDIS Land Processes DAAC 2015. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Guevara, M.A. SoilGrids250m: Global gridded soil information based on machine learning. PloS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- MSM-GPV Weather Forecasting Data. Available online: http://www.jmbsc.or.jp/jp/online/file/f-online10200.html (accessed on 2 December 2020).
- Kominami, Y.; Jomura, M.; Dannoura, M.; Goto, Y.; Tamai, K.; Miyama, T.; Ohtani, Y. Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan. Agr. For. Meteorol. 2008, 148, 723–737. [Google Scholar] [CrossRef]
- Goto, Y.; Kominami, Y.; Miyama, T.; Tamai, K.; Kanazawa, Y. Above ground biomass and net primary production of broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan. Bull. For. For. Prod. Res. Inst. 2003, 387, 115–147. [Google Scholar]
- Kominami, Y.; Miyama, T.; Tamai, K.; Nobuhiro, T.; Goto, Y. Characteristics of CO2 flux over a forest on complex topography. TellusB. 2003, 55, 313–321. [Google Scholar] [CrossRef]
- Ugawa, S.; Takahashi, M.; Morisada, K.; Takeuchi, M.; Matsuura, Y.; Yoshinaga, S.; Kaneko, S. Carbon stocks of dead wood, litter, and soil in the forest sector of Japan: General description of the National Forest Soil Carbon Inventory. Bull. For. For. Prod. Res. Inst. Ibaraki 2012, 425, 207–221. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2019. [Google Scholar] [CrossRef]
- Dimiceli, C.; Carroll, M.; Sohlberg, R.; Kim, D.H.; Kelly, M.; Townshend, J.R.G. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Friedl, M.; Gray, J.; Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2019. [Google Scholar] [CrossRef]
- Reichle, R.; De Lannoy, G.; Koster, R.D.; Crow, W.T.; Kimball, J.S. SMAP L4 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data; Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [CrossRef]
- HDF-EOS to GeoTIFF Converter (HEG-C); v2.14; Earth Science Data and Information System (ESDIS) Project; Earth Science Projects Division (ESPD); Flight Projects Directorate; Goddard Space Flight Center (GSFC) National Aeronautics and Space Administration (NASA): Greenbelt, MD, USA, 2017.
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library; Open Source Geospatial Foundation: Beaverton, OR, USA, 2020; Available online: https://gdal.org (accessed on 2 December 2020).
- Wgrib2: Wgrib for GRIB-2. Available online: https://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/ (accessed on 2 December 2020).
- Running, S.; Mu, Q.; Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MYD17A2H MODIS/Aqua Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Running, S.; Zhao, M. MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2019. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. MYD17A3HGF MODIS/Aqua Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2019. [Google Scholar] [CrossRef]
- Available online: http://www.env.go.jp/press/files/jp/113762.pdf (accessed on 1 November 2020). brief English summary is available at http://www.env.go.jp/press/814.pdf but not all used data were mentioned.
- Kannari, A.; Tonooka, Y.; Baba, T.; Murano, K. Development of multiple-species 1km× 1km resolution hourly basis emissions inventory for Japan. Atmos. Environ. 2007, 41, 3428–3439. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Inoue, Y.; Olioso, A. Methods of estimating plant productivity and CO2 flux in agro-ecosystems-liking measurements, process models, and remotely sensed information. Glob. Environ. Chang. Ocean Land 2004, 73, 295–333. [Google Scholar]
- Bodesheim, P.; Jung, M.; Gans, F.; Mahecha, M.D.; Reichstein, M. Upscaled diurnal cycles of land-atmosphere fluxes: A new global half-hourly data product. Earth Syst. Sci. Data 2018, 10, 1327–1365. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wei, S. Global Vegetation Clumping Index Products (8-days,500 m) (LIS-CI-A1) from 2001–2016. Pangaea 2018. [Google Scholar] [CrossRef]
- Demarty, J.; Chevallier, F.; Friend, A.D.; Viovy, N.; Piao, S.; Ciais, P. Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Rüdiger, C.; Albergel, C.; Mahfouf, J.F.; Calvet, J.C.; Walker, J.P. Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Ling, X.L.; Fu, C.B.; Yang, Z.L.; Guo, W.D. Comparison of different sequential assimilation algorithms for satellite-derived leaf area index using the Data Assimilation Research Testbed (version Lanai). Geosci. Model Dev. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Wu, W. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agr. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agr. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, J.; He, B.; Arain, M.A.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 2018, 24, 3990–4008. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Yuen, K. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, J.; Fisher, J.B.; Baldocchi, D.D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 2021, 258, 112360. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Zhang, Y.; Wolf, S.; Zhou, S.; Joiner, J.; De Grandcourt, A. On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sens. Environ. 2018, 205, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agr. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Kosugi, Y.; Naoko, M. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 2006, 26, 1173–1184. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; van Ingen, C.; Li, J.; Black, T.A.; Roupsard, O. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Medlyn, B.E.; Badeck, F.W.; De Pury, D.G.G.; Barton, C.V.M.; Broadmeadow, M.; Ceulemans, R.; Laitat, E. Effects of elevated [CO2] on photosynthesis in European forest species: A meta-analysis of model parameters. PlantCell Environ. 1999, 22, 1475–1495. [Google Scholar] [CrossRef]
- Walker, A.P.; Beckerman, A.P.; Gu, L.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Woodward, F.I. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecol. Evol. 2014, 4, 3218–3235. [Google Scholar] [CrossRef] [Green Version]
- Ise, T.; Litton, C.M.; Giardina, C.P.; Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res. Biogeo. 2010, 115. [Google Scholar] [CrossRef]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Cuntz, M. TRY plant trait database–enhanced coverage and open access. Glob. Chang. Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [Green Version]
- Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S.G.; Badeck, F.; Barthel, M.; Bahn, M. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. Biogeosciences 2011, 8, 3457–3489. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Craine, J.M.; McLauchlan, K.; Schimel, J.P. Litter quality and the temperature sensitivity of decomposition. Ecology 2005, 86, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.; Rademacher, T.; Shafer, S.L.; Steinkamp, J.; Barichivich, J.; Beckage, B.; Thonicke, K. Understanding the uncertainty in global forest carbon turnover. Biogeosciences 2020, 17, 3961–3989. [Google Scholar] [CrossRef]
- Randerson, J.T.; Thompson, M.V.; Malmstrom, C.M.; Field, C.B.; Fung, I.Y. Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2. Glob. Biogeochem. Cycles 1996, 10, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Groffman, P.M.; Pouyat, R.V.; Cadenasso, M.L.; Zipperer, W.C.; Szlavecz, K.; Yesilonis, I.D.; Brush, G.S. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For. Ecol. Manag. 2006, 236, 177–192. [Google Scholar] [CrossRef]
- Sasai, T.; Nakai, S.; Setoyama, Y.; Ono, K.; Kato, S.; Mano, M.; Nasahara, K.N. Analysis of the spatial variation in the net ecosystem production of rice paddy fields using the diagnostic biosphere model, BEAMS. Ecol. Model. 2012, 247, 175–189. [Google Scholar] [CrossRef]
- Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plan. 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Park, C.; Gerbig, C.; Newman, S.; Ahmadov, R.; Feng, S.; Gurney, K.R.; Stutz, J. CO2 transport, variability, and budget over the Southern California Air Basin using the high-resolution WRF-VPRM model during the CalNex 2010 campaign. J. Appl. Meteorol. Clim. 2018, 57, 1337–1352. [Google Scholar] [CrossRef]
- Raciti, S.M.; Hutyra, L.R.; Rao, P.; Finzi, A.C. Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks. Ecol. Appl. 2012, 22, 1015–1035. [Google Scholar] [CrossRef]
- Crawford, B.; Christen, A. Spatial variability of carbon dioxide in the urban canopy layer and implications for flux measurements. Atmos. Environ. 2014, 98, 308–322. [Google Scholar] [CrossRef]
- Bjorkegren, A.B.; Grimmond, C.S.B.; Kotthaus, S.; Malamud, B.D. CO2 emission estimation in the urban environment: Measurement of the CO2 storage term. Atmos. Environ. 2015, 122, 775–790. [Google Scholar] [CrossRef]
- Goret, M.; Masson, V.; Schoetter, R.; Moine, M.P. Inclusion of CO2 flux modelling in an urban canopy layer model and an evaluation over an old European city centre. Atmos. Environ. X 2019, 3, 100042. [Google Scholar] [CrossRef]
- World Radiation Data Centre. Available online: http://wrdc.mgo.rssi.ru (accessed on 2 December 2020).
- Pisek, J.; Sonnentag, O.; Richardson, A.D.; Mõttus, M. Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? Agr. For. Meteorol. 2013, 169, 186–194. [Google Scholar] [CrossRef]
- Stenberg, P. A note on the G-function for needle leaf canopies. Agr. For. Meteorol. 2006, 136, 76–79. [Google Scholar] [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Moody, E.G.; King, M.D.; Platnick, S.; Schaaf, C.B.; Gao, F. Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. Ieee Trans. Geosci. Remote Sens. 2005, 43, 144–158. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Heald, C.L. Technical Description of Version 4.0 of the Community Land Model (CLM); Climate and Global Dynamics Division, National Center for Atmospheric Research: Boulder, CO, USA, 2010. [Google Scholar]
- Ito, A.; Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecol. Model. 2002, 151, 143–176. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Reichstein, M.; Carvalhais, N.; Lasslop, G.; Lange, H.; Seneviratne, S.I.; Janssens, I.A. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 2010, 329, 838–840. [Google Scholar] [CrossRef] [Green Version]
- Ise, T.; Moorcroft, P.R. The global-scale temperature and moisture dependencies of soil organic carbon decomposition: An analysis using a mechanistic decomposition model. Biogeochemistry 2006, 80, 217–231. [Google Scholar] [CrossRef]
- Cox, P.M. Description of the” TRIFFID” Dynamic Global Vegetation Model; Hadley Centre: Berks, UK, 2001. [Google Scholar]
- Osono, T.; Takeda, H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 2004, 19, 593–602. [Google Scholar] [CrossRef]
Dataset | Site | Site Code | Longitude | Latitude | Plant Functional Type | Modeling Group | Extraction Period |
---|---|---|---|---|---|---|---|
FLUXNET2015 | Changeling | CNG | 123.5092E | 44.5934N | GRS | Calibration | 2007–2010 |
Dinghushan | DIN | 112.5361E | 23.1733N | EBF | Calibration | 2003–2005 | |
Duolun | DU2 | 116.2836E | 42.0467N | GRS | Validation | 2006–2008 | |
Pasoh forest reserve | PSO | 102.3062E | 2.9730N | EBF | Validation | 2003–2009 | |
Qianyanzhou | QIA | 115.0581E | 26.7414N | ENF | Validation | 2003–2005 | |
FFNet DB | Appi | API | 140.9375E | 40.0001N | DBF | Validation | 2010–2011 |
Fuji Yoshida | FJY | 138.76225E | 35.45454N | ENF | Calibration | 2010–2011 | |
Sapporo | SAP | 141.3853E | 42.9868N | DBF | Calibration | 2010–2014 | |
Yamashiro | YMS | 135.840884E | 34.7940252N | Mixed Forest | Validation | 2003–2011 |
Symbol | Parameter Name | Unit | GPPBEAMS Module | GPPTLM Module | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DBF | EBF | ENF | GRS | DBF | EBF | ENF | GRS | |||
fPAV | Fraction of APPFDt absorbed by photosynthetic active vegetation part | - | 0.85 | 0.765 | 0.85 | 0.85 | 0.36 | 0.33 | 0.56 | 0.85 |
Kb | Extinction coefficient of PPFDtdirect | - | 0.94 | 0.86 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.78 |
Kn | Extinction coefficient of leaf nitrogen content | - | - | - | - | - | 0.33 | 0.3 | 0.36 | 0.3 |
LUEmax | Maximal photosynthetic light use efficiency | - | 0.02 | 0.02 | 0.0293 | 0.022 | - | - | - | - |
Ntop | Leaf nitrogen content per leaf area at vegetation canopy top | g m−2 | - | - | - | - | 1.57 | 2.34 | 3.1 | 1.69 |
Vcmax25 | Maximal carboxylation rate at 25 °C | μmol m−2 s−1 | 57.7 | 31.9 | 68.7 | 86.0 | - | - | - | - |
Vcmax25top | Vcmax25 at the top of vegetation canopy | - | - | - | - | 42.0 | 31.9 | 62.5 | 46.2 | |
θleaf | Leaf response curvature to electron supply | - | 0.63 | 0.63 | 0.7 | 0.77 | 0.5 | 0.56 | 0.51 | 0.63 |
σ | Vegetation canopy reflection coefficient of PPFD | - | 0.09 | 0.08 | 0.07 | 0.09 | 0.1 | 0.11 | 0.07 | 0.11 |
τ | Vegetation canopy transmissivity of PPFD | - | 0.045 | 0.04 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.07 |
χn | Empirical coefficient of Vcmax25 variation attributable to Nleaf | m2 g−1 | - | - | - | - | 0.59 | 0.48 | 0.33 | 0.54 |
Plant Functional Type | Total Area 1 | Annual Averaged GPP | Annual Averaged Re | Integrated Annual GPP | Integrated Annual Re |
---|---|---|---|---|---|
km2 | gC m−2 Year 1 | gC m−2 Year 1 | 106 tonCO2 Year 1 | 106 tonCO2 Year 1 | |
DBF | 3131.06 ± 100.40 | 1254.42 ± 67.63 | 667.66 ± 73.21 | 14.39 ± 0.78 | 7.66 ± 0.84 |
EBF | 3669.55 ± 72.73 | 1484.26 ± 22.22 | 801.43 ± 82.38 | 19.96 ± 0.30 | 10.78 ± 1.11 |
ENF | 3337.77 ± 48.05 | 1834.27 ± 38.60 | 1035.43 ± 105.79 | 22.43 ± 0.47 | 12.66 ± 1.29 |
GRS | 159.22 ± 14.04 | 1409.33 ± 185.44 | 1308.89 ± 280.83 | 0.82 ± 0.11 | 0.76 ± 0.16 |
Partially vegetated URBAN (0 < LAI) | 1374.62 ± 134.05 | 1020.77 ± 93.59 | 393.85 ± 38.41 | 5.14 ± 0.47 | 1.98 ± 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Imasu, R.; Arai, Y.; Ito, S.; Mizoguchi, Y.; Kondo, H.; Xiao, J. Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area. Remote Sens. 2021, 13, 2037. https://doi.org/10.3390/rs13112037
Wang Q, Imasu R, Arai Y, Ito S, Mizoguchi Y, Kondo H, Xiao J. Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area. Remote Sensing. 2021; 13(11):2037. https://doi.org/10.3390/rs13112037
Chicago/Turabian StyleWang, Qiao, Ryoichi Imasu, Yutaka Arai, Satoshi Ito, Yasuko Mizoguchi, Hiroaki Kondo, and Jingfeng Xiao. 2021. "Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area" Remote Sensing 13, no. 11: 2037. https://doi.org/10.3390/rs13112037
APA StyleWang, Q., Imasu, R., Arai, Y., Ito, S., Mizoguchi, Y., Kondo, H., & Xiao, J. (2021). Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area. Remote Sensing, 13(11), 2037. https://doi.org/10.3390/rs13112037