Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Collection and Image Pre-Processing
2.3. Ground Observation Data
- (i)
- seasonal crop type
- (ii)
- irrigation practices (e.g., number of irrigation events)
- (iii)
- crop sowing dates
- (iv)
- crop harvest dates
- (v)
- whether the crop was irrigated, rainfed, or partially irrigated
- (vi)
- source of irrigation water (own borewell or neighbor’s borewell)
- (i)
- annually irrigated croplands (irrigated in all three cropping seasons)
- (ii)
- others (rainfed, partially irrigated, and left fallow for one cropping season)
2.4. Rainfall Monitoring in the Berambadi Watershed
2.5. Method Developed
2.5.1. NDVI Value Estimation and Correction
- (i)
- differences in spectral responses of different sensors;
- (ii)
- surface and atmospheric differences among pass dates of the satellite sensors;
- (iii)
- bi-directional reflectance effects.
2.5.2. SVM Image Classification
3. Results and Discussion
3.1. Temporal Growth Curves of the Major Crops Cultivated in the Watershed
3.2. Irrigated Cropland Classification for 2014–2015
3.3. Irrigated Cropland Classification for 2015–2016
3.4. Irrigated Cropland Classification for Summer 2016
3.5. Synthesizing of Irrigated Cropland Areas Estimation
- tree plantations (coconuts, mangoes, silver oak) and annual crops such as sugarcane and banana;
- eight-month duration crops (dual season crops such as turmeric) followed by a single-season crop such as onion, garlic, beetroot, cabbage, or other vegetables;
- three individual single-season crops such as onion, garlic, beetroot, cabbage, or other vegetables.
3.6. Validation of Irrigated Cropland Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.; States, U.; Survey, G.; Turral, H.; Biradar, C.M. Remote Sensing of Global Croplands for Food Security; CRC Press: Boca Raton, FL, USA, 2009; p. 6579. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Reddy, G.P.O.; Cai, X.; Gumma, M.K.; Turral, H.; et al. A Global Irrigated Area Map (GIAM) using remote sensing at the end of the last millennium. In A Global Irrigated Area Map (GIAM) Using Remote Sensing at the End of the Last Millennium; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2008. [Google Scholar]
- Shah, T.; Hassan, M.U.; Khattak, M.Z.; Banerjee, P.S.; Singh, O.; Rehman, S.U. Is Irrigation Water Free? A Reality Check in the Indo-Gangetic Basin. World Dev. 2009, 37, 422–434. [Google Scholar] [CrossRef]
- Taylor, R. When wells run dry. Nature 2014, 516, 179–180. [Google Scholar] [CrossRef]
- Petra, D. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar]
- Siebert, S.; Portmann, F.T.; Döll, P. Global Patterns of Cropland Use Intensity. Remote Sens. 2010, 2, 1625–1643. [Google Scholar] [CrossRef] [Green Version]
- Shah, T. Crop per Drop of Diesel? Energy Squeeze on India’s Smallholder Irrigation. Econ. Polit. Wkly. 2007, 42, 4002–4009. [Google Scholar]
- Narayanamoorthy, A. Development and composition of irrigation in India: Temporal trends and regional patterns. Irrig. Drain. 2010, 60, 431–445. [Google Scholar] [CrossRef]
- Sriramulu, B.; Riotte, J.; Sekhar, M.; Kumar, M.S.M.; Kumar, A.; Louis, J.; Audry, S.; Giriraja, P.R.; Praveenkumarreddy, Y.; Moger, H.; et al. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer. Sci. Total Environ. 2017, 579, 838–847. [Google Scholar]
- Buvaneshwari, S.; Riotte, J.; Sekhar, M.; Sharma, A.K.; Helliwell, R.; Kumar, M.S.M.; Braun, J.J.; Ruiz, L. Potash fertilizer promotes incipient salinization in groundwater irrigated semi-arid agriculture. Sci. Rep. 2020, 10, 3691. [Google Scholar] [CrossRef]
- Sriramulu, B.; Riotte, J.; Ruiz, L.; Sekhar, M.; Mohan Kumar, M.S.; Kumar Sharma, A.; Louis Duprey, J.; Audry, S.; Praveen, Y.; Hemanth, M.; et al. High spatial variability of nitrate in the hard rock aquifer of an irrigated catchment: Implications for water resource assessment and vulnerability. Gen. Assem. Conf. Abstr. 2016, 18, EGU2016–EGU5430. [Google Scholar]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Data Descriptor: Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Jain, M.; Robertson, A.W.; Galford, G.L.; Small, C.; DeFries, R.S. Winter crop sensitivity to inter-annual climate variability in central India. Clim. Chang. 2014, 126, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nat. Cell Biol. 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Srivastava, A.K.; Joon, R.K.; McDonald, A.; Royal, K.; Lisaius, M.C.; Lobell, D.B. Mapping smallholder wheat yields and sowing dates using micro-satellite data. Remote Sens. 2016, 8, 860. [Google Scholar] [CrossRef] [Green Version]
- Meiyappan, P.; Roy, P.S.; Sharma, Y.; Ramachandran, R.M.; Joshi, P.K.; DeFries, R.S.; Jain, A.K. Dynamics and determinants of land change in India: Integrating satellite data with village socioeconomics. Reg. Environ. Chang. 2016, 17, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Hubert-Moy, L.; Buvaneshwari, S.; Sekhar, M.; Ruiz, L.; Bandyopadhyay, S.; Corgne, S. Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India. Remote Sens. 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Dheeravath, V.; Biradar, C.M.; Gangalakunta, O.R.P.; Noojipady, P.; Gurappa, C.; Velpuri, M.; Gumma, M.; Li, Y. Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics. Remote Sens. 2009, 1, 50–67. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Ozelkan, E.; Chen, G.; Ustundag, B.B. Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 159–170. [Google Scholar] [CrossRef]
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef] [Green Version]
- Biggs, T.W.; Thenkabail, P.S.; Gumma, M.K.; Scott, C.A.; Parthasaradhi, G.R.; Turral, H.N. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Nelson, A. Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India). Water 2011, 3, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. International Journal of Applied Earth Observation and Geoinformation A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Saadi, S.; Simonneaux, V.; Boulet, G.; Raimbault, B.; Mougenot, B.; Fanise, P.; Ayari, H.; Lili-Chabaane, Z. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). Remote Sens. 2015, 7, 13005–13028. [Google Scholar] [CrossRef] [Green Version]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Siebert, S.; Hoogeveen, J.; Faures, J.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 2, 1299–1327. [Google Scholar]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2005, 95, 317–341. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.; Asner, G. Comparison of earth observing-1 ali and landsat etm+ for crop identification and yield prediction in mexico. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1277–1282. [Google Scholar] [CrossRef]
- Vrieling, A.; Skidmore, A.K.; Wang, T.; Meroni, M.; Ens, B.J.; Oosterbeek, K.; O’Connor, B.; Darvishzadeh, R.; Heurich, M.; Shepherd, A.; et al. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 19–30. [Google Scholar] [CrossRef]
- Sekhar, M.; Ruiz, L. IFCPAR/CEFIPRA PROJECT-Adaptation of Irrigated Agriculture to Climate Change (AICHA): Project Proposal; IFCPAR/CEFIPRA: New Delhi, India, 2010. [Google Scholar]
- Sekhar, M.; Riotte, J.; Ruiz, L.; Jouquet, J.; Braun, J.J. Influences of Climate and Agriculture on Water and Biogeochemical Cycles: Kabini Critical Zone Observatory. Proc. Indian Natl. Sci. Acad. 2016, 82, 833–846. [Google Scholar] [CrossRef]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; De Dreuzy, J.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French Network of Critical Zone Observatories. Vadose Zone J. 2018, 17, 180067. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Hubert-Moy, L.; Sriramulu, B.; Sekhar, M.; Ruiz, L.; Bandyopadhyay, S.; Mohan, S.; Corgne, S. Evaluation of Radarsat-2 quad-pol SAR time-series images for monitoring groundwater irrigation. Int. J. Digit. Earth 2019, 12, 1177–1197. [Google Scholar] [CrossRef]
- Tomer, S.K.; Al Bitar, A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Sreelash, K.; Sharma, A.K.; Corgne, S.; Kerr, Y. Retrieval and multi-scale validation of Soil Moisture from multi-temporal SAR Data in a semi-arid tropical region. Remote Sens. 2015, 7, 8128–8153. [Google Scholar] [CrossRef] [Green Version]
- Eswar, R.; Sekhar, M.; Bhattacharya, B.K. Disaggregation of LST over India: Comparative analysis of different vegetation indices. Int. J. Remote Sens. 2016, 37, 1035–1054. [Google Scholar] [CrossRef]
- Mangiarotti, S.; Sharma, A.; Corgne, S.; Hubert-Moy, L.; Ruiz, L.; Sekhar, M.; Kerr, Y. Can the global modeling technique be used for crop classification? Chaos Solitons Fractals 2018, 106, 363–378. [Google Scholar] [CrossRef]
- Sharma, A.K.; Ruiz, L.; Sriramulu, B.; Sekhar, M. Irrigated area estimation using Landsat satellite images in the Berambadi watershed. EGU Gen. Assem. Conf. Abstr. 2018, 20, 17445. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Landsat 8 Collection 1 (C1) Land Surface Reflectance Code (LaSRC) Product Guide; Department of the Interior, U.S. Geological Survey, USGS Press: Reston, VA, USA, 2020.
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Robert, M.; Thomas, A.; Sekhar, M.; Badiger, S.; Ruiz, L.; Willaume, M.; Leenhardt, D.; Bergez, J.-E. Farm Typology in the Berambadi Watershed (India): Farming Systems Are Determined by Farm Size and Access to Groundwater. Water 2017, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, B.; Yuan, Y.; Gao, X.; Zhang, T. A Temporal-Spatial Iteration Method to Reconstruct NDVI Time Series Datasets. Remote Sens. 2015, 7, 8906–8924. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Roy, D.P. Remote Sensing of Environment Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42–64. [Google Scholar] [CrossRef] [Green Version]
- Behera, M.; Tripathi, P.; Das, P.; Srivastava, S.; Roy, P.; Joshi, C.; Behera, P.; Deka, J.; Kumar, P.; Khan, M.; et al. Remote sensing based deforestation analysis in Mahanadi and Brahmaputra river basin in India since 1985. J. Environ. Manag. 2018, 206, 1192–1203. [Google Scholar] [CrossRef]
- Roy, D.; Kovalskyy, V.; Zhang, H.; Vermote, E.; Yan, L.; Kumar, S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Hwang, T.; Song, C.; Bolstad, P.V.; Band, L.E. Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sens. Environ. 2011, 115, 2499–2512. [Google Scholar] [CrossRef]
- Mathur, A.; Foody, G.M. Multiclass and Binary SVM Classification: Implications for Training and Classification Users. IEEE Geosci. Remote Sens. Lett. 2008, 5, 241–245. [Google Scholar] [CrossRef]
- Guidici, D.; Clark, M.L. One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California. Remote Sens. 2017, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef] [Green Version]
- Löw, F. Agricultural Crop Mapping from Multi-Scale Remote Sensing Data-Concepts and Applications in Heterogeneous Middle Asian Agricultural Landscapes. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 2013. [Google Scholar]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Cheng, S.; Shih, F.Y. An improved incremental training algorithm for support vector machines using active query. Pattern Recognit. 2007, 40, 964–971. [Google Scholar] [CrossRef]
- Pedregosa, F.; Weiss, R.; Brucher, M. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric. Water Manag. 2010, 97, 1541–1552. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Robert, M.; Thomas, A.; Sekhar, M.; Badiger, S.; Ruiz, L.; Raynal, H.; Bergez, J.-E. Adaptive and dynamic decision-making processes: A conceptual model of production systems on Indian farms. Agric. Syst. 2017, 157, 279–291. [Google Scholar] [CrossRef]
Year | Intensively Irrigated Fields | Other Cropland Fields | Total |
---|---|---|---|
2014–2015 | 182 | 446 | 628 |
2015–2016 | 218 | 513 | 731 |
2016 | 152 | 452 | 604 |
Cropping Season | Irrigated Area (km2) | Irrigated Area (%) | Error of Omission (%) | Error of Commission (%) | Kappa Coeff | Overall Acc. (%) |
---|---|---|---|---|---|---|
Summer 2014 | 2.87 | 6.27 | Irr = 9.17 | Irr = 2.87 | 0.90 | 94.87 |
Oth = 2.05 | Oth = 6.67 | |||||
Kharif 2014 | 4.18 | 9.15 | Irr = 2.14 | Irr = 7.6 | 0.91 | 95.59 |
Oth = 6.15 | Oth = 1.71 | |||||
Rabi 2014–2015 | 7.18 | 15.72 | Irr = 4.52 | Irr = 7.65 | 0.89 | 94.62 |
Oth = 6.04 | Oth = 3.54 | |||||
Summer AND Kharif 2014 | 2.34 | 5.12 | Irr = 14.3 | Irr = 2.82 | 0.85 | 92.75 |
Oth = 1.9 | Oth = 9.99 | |||||
Kharif AND Rabi 2014–2015 | 3.17 | 6.95 | Irr = 10.57 | Irr = 5.19 | 0.87 | 93.31 |
Oth = 3.58 | Oth = 8.05 | |||||
Summer AND Kharif AND Rabi 2014–2015 | 2.09 | 4.57 | Irr = 18.39 | Irr = 2.96 | 0.81 | 90.28 |
Oth = 1.89 | Oth = 12.49 |
Cropping Season | Irrigated Area (km2) | Irrigated Area (%) | Error of Omission (%) | Error of Commission (%) | Kappa Coeff | Overall Acc. (%) |
---|---|---|---|---|---|---|
Summer 2015 | 7.16 | 15.86 | Irr =2 2.98 | Irr = 9.92 | 0.72 | 86.66 |
Oth = 6.25 | Oth = 15.29 | |||||
Kharif 2015 | 7.43 | 16.47 | Irr = 13.73 | Irr = 5.26 | 0.84 | 92.15 |
Oth = 3.53 | Oth = 9.48 | |||||
Rabi 2015–2016 | 6.43 | 13.98 | Irr = 21.43 | Irr = 7.32 | 0.76 | 88.28 |
Oth = 4.57 | Oth = 14.19 | |||||
Summer AND Kharif 2015 | 4.76 | 10.55 | Irr = 35.75 | Irr = 4.3 | 0.65 | 83.69 |
Oth = 2.11 | Oth = 21.05 | |||||
Kharif AND Rabi 2015–2016 | 4.23 | 9.43 | Irr = 35.56 | Irr = 1.88 | 0.67 | 84.47 |
Oth = 0.9 | Oth = 20.77 | |||||
Summer AND Kharif AND Rabi 2015–2016 | 3.27 | 7.28 | Irr = 41.06 | Irr = 1.3 | 0.62 | 82.34 |
Oth = 0.57 | Oth = 23.17 |
Cropping Season | Irrigated Area (km2) | Irrigated Area (%) | Error of Omission (%) | Error of Commission (%) | Kappa Coeff | Overall Acc. (%) |
---|---|---|---|---|---|---|
Summer 2016 | 5.88 | 12.78 | Irr = 0 | Irr = 0 | 1.0 | 100 |
Oth = 0 | Oth = 0 |
Cropping Season | Classification Developed | |
---|---|---|
Annually Irrigated Samples | Seasonal Irrigated Samples | |
Rabi 2015 | kappa = 0.76 | kappa = 0.80 |
OA = 88.3% | OA = 89.8% | |
Summer 2016 | kappa = 1.00 | kappa = 0.83 |
OA = 100.0% | OA = 91.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.K.; Hubert-Moy, L.; Buvaneshwari, S.; Sekhar, M.; Ruiz, L.; Moger, H.; Bandyopadhyay, S.; Corgne, S. Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images. Remote Sens. 2021, 13, 1960. https://doi.org/10.3390/rs13101960
Sharma AK, Hubert-Moy L, Buvaneshwari S, Sekhar M, Ruiz L, Moger H, Bandyopadhyay S, Corgne S. Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images. Remote Sensing. 2021; 13(10):1960. https://doi.org/10.3390/rs13101960
Chicago/Turabian StyleSharma, Amit Kumar, Laurence Hubert-Moy, Sriramulu Buvaneshwari, Muddu Sekhar, Laurent Ruiz, Hemanth Moger, Soumya Bandyopadhyay, and Samuel Corgne. 2021. "Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images" Remote Sensing 13, no. 10: 1960. https://doi.org/10.3390/rs13101960
APA StyleSharma, A. K., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Moger, H., Bandyopadhyay, S., & Corgne, S. (2021). Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images. Remote Sensing, 13(10), 1960. https://doi.org/10.3390/rs13101960