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Abstract: Accurate geospatial information on the extent of irrigated land improves our 

understanding of agricultural water use, local land surface processes, conservation or 

depletion of water resources, and components of the hydrologic budget. We have 

developed a method in a geospatial modeling framework that assimilates irrigation 

statistics with remotely sensed parameters describing vegetation growth conditions in areas 

with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the 

conterminous United States for 2002. The geospatial model result, known as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), 

identified irrigated lands with reasonable accuracy in California and semiarid Great Plains 

states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, 

respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has 

not yet been conducted, and qualitative assessment shows that model improvements are 

needed for the humid eastern regions where the distinction in annual peak NDVI between 

irrigated and non-irrigated crops is minimal and county sizes are relatively small. This 

modeling approach enables consistent mapping of irrigated lands based upon USDA 

irrigation statistics and should lead to better understanding of spatial trends in irrigated 

lands across the conterminous United States. An improved version of the model with 

revised datasets is planned and will employ 2007 USDA irrigation statistics. 
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1. Introduction  

Irrigated agriculture has played a vital role in the economic and social development of the United 

States. The current areal extent of irrigated lands in the United States is around 22.7 million ha, 

roughly 14% of the country’s total cropland [1]. The county-level irrigated area acreage has been well 

documented on a regular basis in the Census of Agriculture by the U.S. Department of Agriculture 

(USDA) National Agricultural Statistics Service (NASS). However, geographic information on the 

location and spatial distribution of irrigated areas within each county has not been regularly mapped 

with sub-county detail. Here we present a methodology for nationally consistent mapping of irrigated 

croplands directly tied to the 2002 USDA-NASS statistics at a 250-m resolution [2]. This resolution 

enables more detailed map results than previous irrigation mapping attempts and represents actual field 

sizes across much of the country. 

Accurate, detailed, geospatial information on irrigated croplands is essential for answering many 

Earth system science, climate change, and water supply questions [3]. Irrigation increases the 

evapotranspiration and soil moisture and modifies properties that influence the interaction between the 

land and atmosphere [4], which in turn influences the energy budget at the land-atmosphere 

interface [5]. In a changing environment and with a growing population, fresh water may become a 

limited resource due to rising urban demand and water conservation efforts. In the United States 

requirements for irrigation water will likely increase to feed a rising population and support the 

production of biofuels for energy (e.g., production of ethanol from corn). Climate change may put 

further strain on a limited freshwater resource. Although the irrigation water use in the United States 

has been relatively stable since 1980, it remains the second largest use of water after thermoelectric. 

Irrigation water use accounted for 31% (484.5 million m
3
 per day) of the total water withdrawals in 

2005 [6]. In a warmer climate, changes in precipitation will have a major impact on the hydrologic 

cycle and, subsequently, on the agricultural food production both from irrigated and rain-fed crops [7]. 

Future changes in precipitation are projected and many models predict increases in extreme events 

rather than a change in average precipitation amounts [8-10]. Accurate knowledge of the spatial 

distribution of irrigated lands at the national scale is essential to assess probable impacts of these 

extreme events on agricultural food production. 

During the last decade, several national-scale irrigation maps have been created.  Some were 

produced as part of global irrigated area mapping efforts using country-level statistics that were often 

outdated or mapped area equipped for irrigation rather than actual area irrigated [11,12]. Other maps 

used coarse-resolution (10-km to 500-m) multi-sensor satellite and climate data with methods 

optimized for global classification [3,13]. Although multiple global land cover classification 

efforts [14-16] have mapped national-level agricultural croplands, they were derived from coarse 

resolution (1-km
 
or coarser) remotely sensed data and many did not differentiate irrigated lands from 
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general agricultural land cover. For the conterminous United States, a finer resolution (30-m) National 

Land Cover Dataset (NLCD) [17] also did not identify irrigated agriculture as a separate class. 

Satellite observations provide reliable, economical, and synoptic data of the Earth’s surface. These 

data contribute to mapping land cover, including agricultural lands. Existing methods for agricultural 

land cover characterization have often been derived through image classification techniques. However, 

the variety of irrigated crops and the spatial patterns of their phenology require multi-temporal, 

consistent, composite vegetation growth information with sufficient spatial detail, along with a rich 

library of field reference training and ancillary data (e.g., climate and topography), to classify irrigated 

lands using satellite observations. Obtaining these parameters consistently at national scale is a major 

challenge. In this paper, we describe a method that assimilates reliable published acreage statistics for 

irrigated agriculture collected and documented by USDA-NASS with annual satellite-derived 

vegetation index information derived from 250-m Moderate Resolution Imaging Spectroradiometer 

(MODIS) to spatially map irrigated areas by county for the conterminous United States. We also 

present comparisons of the resulting irrigation map for 2002 with irrigation ground reference 

information for California and the central Great Plains. 

2. Background 

2.1. Irrigation and Irrigation Water Use in the United States 

In 2007, 18.3% of the harvested cropland in the conterminous United States was irrigated. However, 

irrigated cropland accounts for 22% of the major crops’ production and nearly half of the value of all 

crops sold [1,18]. Crop yields are usually higher when the crops are fully irrigated compared to yields 

from non-irrigated crops when water requirements are not met. For example, in 2007, irrigated barley 

and wheat yields were twice as much as yields of non-irrigated barley and wheat [1]. The density of 

irrigated lands varies greatly from west to east. Most agriculture in the West is irrigated because of its 

arid climate. Nearly 75% of irrigated lands are concentrated in 17 western states where average annual 

precipitation is less than 500 mm [1,6]. However, irrigation has been increasing in the southeastern 

United States because of intensified drought during the past decade [19]. 

In the western United States, average farm sizes are relatively large [2,20] and over 36% of the 

farms in the west had irrigated lands in 2002. These large western farms (with ≥ USD 250,000 in 

annual farm sales) account for 61% of irrigated lands, and consume 66% of the total farm water 

applied [21]. This implies that irrigation occurs in a relatively large spatial domain, or pattern, in the 

western United States; similar findings were also supported by [2]. The irrigation in the western United 

States is comprehensive, structured, and consistent, resulting in less temporal and spatial dynamics. 

Conversely, irrigation in the humid eastern and southeastern United States is generally supplemental 

and varies spatially. 

Since 1950, the total U.S. irrigated area doubled, converting approximately 11 million ha of  

non-irrigated land into irrigated agriculture. Associated with population increase, the irrigated area 

steadily increased from 11.7 million ha in 1954 to 19.8 million ha in 1982. The irrigated area declined 

slightly during the 1980s then increased at a lower rate to 22.2 million ha in 1997. Irrigated area has 
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remained relatively constant since then (Figure 1(a)); however, the estimated area of total croplands 

has decreased nationally since 2000 [1,63-68]. 

Irrigation water use and total water withdrawal increased steadily from 1950 to 1980 (Figure 1(b)). 

Irrigation water use peaked in 1980 at 567.8 million m
3
 per day and represented 35% of the total 

withdrawal (1.6 billion m
3
 per day). Since 1980, irrigation water use has decreased, except in 2000. 

The prevailing dry condition through much of the country in 2000 led to the increase in irrigation water 

use and the total water withdrawal in 2000 [6]. Although the area of irrigated lands increased by 

2.8 million ha since 1980, these lands were irrigated with 15% less water. The average application rate 

for irrigation water has declined steadily from 1.05 ha-m per ha in 1980 to 0.77 ha-m per ha in 2005 

(application rates were calculated using irrigation area estimates of USDA-NASS and irrigation water 

use provided by [6]). This decline is attributed to climate, energy costs, shifts in crop genetics, 

improvements in irrigation systems, and optimized application of water [6,22]. Surface water 

historically has been the prime source for irrigation, but irrigation expansion in the central United 

States since 1970 has gradually increased the groundwater contribution to irrigation. In 2005, 

groundwater contributed to 42% of irrigation withdrawals nationally [6]. 

Figure 1. Trends in (a) Population and irrigated lands, and (b) Total water withdrawal and 

irrigation water use in the United States [1,6].  

2.2. Irrigation Statistics in the United States 

Our method of mapping irrigated areas is directly associated with the irrigated acreage reported by 

the 2002 USDA NASS Census of Agriculture. Historically, USDA NASS publishes the total number 

of acres of irrigated land by county administrative unit every 5 years (e.g., 1997, 2002, and 2007) in the 

Census of Agriculture. NASS surveyed all the farming operations that produce or would normally 

produce and sell USD 1,000 or more via questionnaire and compiled the collected information in the 

Census of Agriculture. They ensure that their statistics are reliable.  A complete description of their 

methodology can be found in the 2002 Census (see Appendix C in the 2002 Census of Agriculture: 

Volume 1, Geographic Area Series). The questionnaire contained several questions addressing whether 

a farm had any irrigated acres and, if so, how many of those acres were harvested land and how many 

were pastureland or rangeland. 
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No exact error estimates for irrigated land statistics were published in the 2002 Census of 

Agriculture, so we are constrained to extrapolating from the general published errors. USDA publishes 

certain error estimates for U.S. totals and by state, but they are not available by county (Appendix C  

C-12 Table B of 2002 Census of Agriculture).  For example, the relative RMSE for the land in farms 

(U.S. Totals) is 0.64%. From this, we have assumed that for the United States, a relative RMSE of 

0.64% when applied to the total number of acres of irrigated lands for 2002 (22.4 million ha) results in 

a possible error up to 144,000 ha in the number of irrigated acres across the United States. 

2.3. Existing Geospatial Irrigation Maps 

Historical records of county-level irrigation acreage have been made available for many years by the 

USDA in the Census of Agriculture, but there have been very few attempts to map the spatial 

distribution of these irrigated areas at a higher level of precision than individual counties. The Kassel 

digital Global Map of Irrigated Areas (GMIA) [12] was the first raster dataset showing the percentage 

of each 0.5° × 0.5° cell area that was equipped for irrigation in 1995. The map was subsequently 

improved and upgraded to 5′ × 5′ cell size for 2000 [11]. 

When the high temporal resolution remotely sensed Earth observation datasets with continental and 

global coverage became available consistently, they were used in efforts to classify land cover 

(including agricultural lands). The U.S Geological Survey (USGS) Global Land Cover Characteristics 

(GLCC) dataset [14] identified four types of irrigated croplands for an 18-month period in 1992 and 

1993—hot irrigated cropland, cool irrigated cropland, irrigated grass and cropland, and rice paddy and 

field—along with various other land cover types globally from 1-km Advanced Very High Resolution 

Radiometer (AVHRR) sensor data. Multi-temporal unsupervised classification method was used to 

produce the map. The Global Irrigated Area Map (GIAM) [13] was produced by the International 

Water Management Institute using a multi-resolution blend of satellite Earth observation, topography, 

and climate data using a robust unsupervised classification technique with post-classification 

refinement. The final map identified fractional irrigated areas for each 10-km unit presented in 

28 irrigation classes for 1999. The United States was included in these datasets as part of their global 

application. A new optimized supervised classification technique [3] using MODIS time series and 

climate and agricultural extent data to map irrigated areas for the conterminous United States was 

identified, but the technique is also suitable for global application. Their map identified fractional 

irrigated areas for each 500-m area. 

These datasets present irrigated areas as percentage of the pixel’s unit area (unit area varies between 

100 km
2
 and 250,000 m

2
), which does not provide information on the subpixel location of the irrigated 

lands. Although estimation of fractional irrigated areas may satisfy quantification of spatially averaged 

parameters over large areas for Earth science research, it is not detailed enough to answer questions 

about local level water, carbon, or energy cycles requiring identification of irrigated areas with respect 

to their true spatial locations. Another problem for datasets developed using image classification 

techniques is inadequate reference training data. GIAM used 1,790 sites surveyed mostly in Asia and 

Africa for post-classification refinement and accuracy assessment, which makes the map highly 

optimized for these regions but less reliable for the rest of the area [3]. Both the GIAM- and  

MODIS-based maps heavily relied on high-resolution remote sensing Earth observations for class 
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labeling and obtaining training datasets for spectral classification and regression analysis. These Earth 

observations of the landscape are from one point in time and may not capture irrigation that occurred at 

other times, and this may lead to errors in class labeling in those maps. In terms of area estimates, these 

maps overestimated irrigated areas for the conterminous United States compared to the estimate 

provided by USDA [2,3]. Irrigated area estimates mapped by GIAM were even higher than the area 

equipped for irrigation for the United States (estimates were provided in Table 3 of [13]). Although 

there was a time lag between the two estimates, the mixed classes with ambiguous members in an 

unsupervised classification may have caused overestimation of irrigated areas in GIAM. The more 

recent MODIS-based map overestimated the irrigated areas by 10% for the conterminous United States 

(estimates were provided in Table 3 of [3]). 

The method presented in this article differs from the above methods by incorporating published 

irrigation areal statistics into our modeling approach rather than deriving irrigated lands using image 

classification techniques. Our objective was to map irrigated lands using well-validated, statistically 

robust, survey-based data integrated with satellite remote sensing techniques to reduce the uncertainties 

in the derived map and provide a repeatable, consistent, and cost-effective means of mapping irrigated 

areas at a national scale. 

3. Materials and Method 

We present a robust yet simple and easy to implement geospatial model to create a map of irrigated 

areas, hereafter referred to as the MODIS Irrigated Agriculture Dataset for the United States  

(MIrAD-US). The method uses three primary data inputs [2]: 

a. USDA county-level irrigation area statistics for 2002 

b. Annual peak MODIS Normalized Difference Vegetation Index (NDVI) (a proxy for maximum 

vegetation growth; [2]) 

c. A land cover mask for agricultural lands derived from NLCD 2001 [17] 

A schematic diagram of our mapping methodology is shown in Figure 2. The success of our 

modeling approach is tied to the following three hypotheses, which are further discussed below.  

a. Irrigated crops have higher annual peak NDVI values than non-irrigated crops in the same 

county. 

b. The growing season peak NDVI, at any time it occurs, will vary for each crop and for each 

geographic region of the United States. 

c. The difference in NDVI between irrigated and non-irrigated crops will be enhanced under  

non-optimal precipitation conditions (e.g., drought). 
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Figure 2. Schematic diagram of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Irrigated Agriculture Dataset (MIrAD-US) methodology.  

 

3.1. Input Data 

County Irrigation Statistics 

The county irrigation statistics were the most important input variable in the MIrAD-US model. The 

2002 Census of Agriculture [20] provided the number of irrigated acres for each of the 3,114 counties 

in the conterminous United States. The modeling methodology essentially reconstructs the Census of 

Agriculture irrigated acreage in a spatially-distributed fashion guided by the peak MODIS NDVI and 

the NLCD agriculture land cover. The Census of Agriculture statistics are the best available estimates 

of irrigated acreage for the entire United States from a single source. However, as discussed in section 

2.2, there is the potential for error within the Census statistics. The reported 0.64% RMSE of the total 

statistical database for land in farms was a potential source of uncertainty in the derived map of 

irrigated areas. However, as a federally published national database, we consider the USDA statistics to 

be the best consistent available data on irrigation.  

MODIS Annual Peak NDVI 

The NDVI is a commonly used vegetation index that has been demonstrated in the remote sensing 

literature as a proxy measure for absorbed photosynthetically active radiation. The NDVI represents a 

dimensionless, radiometric measure shown to be correlated with the relative condition and amount of 

green vegetation [23,24] by means of the differential response of incident visible red (absorbed by leaf 

chlorophyll) and near-infrared (reflected by spongy mesophyll and green leaf biomass) reflectance 
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properties of the vegetation canopy. Prior studies have shown time-series NDVI observations are 

linked to phenological signals [25-27] and biophysical vegetation characteristics over different land 

cover types (e.g., leaf area index and biomass) [28-32]. Positive correlations between NDVI and 

precipitation [33-36] have indicated that increasing available moisture for vegetation also increases the 

NDVI over many different cover types, including grasslands, shrubs, and crops [25,37]. Consistent 

with this legacy research, a maximum NDVI in an annual time series for a location is a proxy for the 

peak level of photosynthetic activity, the highest biomass, and possibly the densest vegetation cover in 

the canopy [38-40] but over certain land cover types (e.g., deciduous forest and crops), the NDVI often 

saturates over high-density vegetation. It has also been observed that irrigated crops exhibit higher 

(maximum) NDVI than non-irrigated crops, especially for corn (maize) and wheat [41,42]. Based on 

this heritage research and our own investigations, we assume that the highest annual peak NDVI for 

any agricultural crop is the result of consistent adequate soil moisture as is delivered by irrigation 

throughout the growing season; therefore, the maximum NDVI for irrigated crops generally exceeds 

the peak NDVI for non-irrigated crops. An analysis of crop specific time-series NDVI for irrigated and 

non-irrigated corn, dry beans, millet, pasture, winter wheat, and alfalfa for 2002 and 2006 in western 

Nebraska confirms a higher peak NDVI of irrigated crops compared to the peak NDVI of non-irrigated 

corps. Figure 3 presents examples of the crop NDVI time-series analysis for six sites and supports 

this assumption. 

Single cropping (i.e., one crop grown during one annual period) is the prevalent agricultural practice 

in the United States. However, double cropping has been practiced in California, the Great Plains and 

some Midwestern states (e.g., winter wheat followed by soybeans). Even triple/quad cropping also can 

be found for high value crops on selected fields in California and Arizona. In our method, the 

calculation of the annual peak NDVI simply selected the highest value irrespective of 

cropping intensity. 

The MODIS instrument has radiometric and geometric properties designed to collect and construct 

global science-quality remotely sensed data with high temporal frequency (standard 8-day and 16-day 

surface reflectance products) [43,44]. Since the first MODIS instrument was launched aboard the Terra 

platform in 1999, MODIS data have been used by many researchers for agricultural applications, 

including mapping crops, estimating crop yields, describing crop phenology, disaster monitoring and 

mapping irrigated agriculture [3,41,45-49]. Another feature of MODIS is its cost effectiveness. Data 

are available free-of-charge to the users. 

The annual peak (or maximum) NDVI for 2002 was extracted from annual time series of temporally 

smoothed MODIS 16-day composite NDVI data. The MODIS data products of MOD13Q1 

MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V005—Collection 5 were 

downloaded from the Land Processes Distributed Active Archive Center (LP DAAC), NDVI data 

layers were extracted and reprojected to Lambert Azimuthal Equal Area projection and an annual time 

series of NDVI was created. The NDVI is affected by number of phenomena including cloud 

contamination, atmospheric perturbations, variable viewing geometry of the sensor, and imperfect 

sensor calibration. All of these tend to enhance the difference in NDVI between two composite periods 

that often not reflect a real change in vegetation condition. To minimize this disturbance in temporal 

profile of vegetation growth signal, a temporal smoothing was applied on the NDVI time series data. 
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The smoothing employs a weighted least-square technique [51] and uses a moving temporal window to 

calculate a family of regression lines that are associated with each observation. The family of lines is 

then averaged at each point and interpolated between points where a weighting factor favoring local 

peaks (high value) to produce a continuous temporally smoothed NDVI signal. The annual peak NDVI 

layer was then created by calculating the maximum NDVI from the annual time series for each pixel. 

Figure 3. Examples of crop specific smoothed NDVI time series and peaks for 2002 and 

2006 at three sites in Scotts Bluff and Banner counties in western Nebraska, (a) irrigated 

and non-irrigated corn in both years at 103.44W 41.75N irrigated, 103.44W 41.73N  

non-irrigated sites, (b) irrigated and non-irrigated dry beans in 2002 and irrigated dry beans 

and non-irrigated corn in 2006 at 103.45W 41.81N irrigated, 103.73W 41.98N  

non-irrigated sites (c) irrigated and non-irrigated pasture in 2002 and irrigated corn and 

non-irrigated millet in 2006 at 103.82W 41.55N irrigated, 103.65W 41.43N non-irrigated 

sites, (d) is the mean time-series NDVI for a, b and c. The sites were selected on the basis 

of irrigated and non-irrigated ground reference points surveyed in 2006 and the crop types 

were obtained from NASS Cropland Data Layers (CDL) [50]. 
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Land cover 

Our methodology incorporated a land cover mask to constrain the selection of irrigated areas within 

agricultural land cover. The land cover mask was derived from the 2001 NLCD [17]. The 30-m cell 

size of NLCD was resampled to 250-m
 
cell size, and the dominant land cover type in each cell was 

identified through block majority geospatial techniques. Tests determined that annual peak NDVI from 

forest and woody wetlands could potentially be higher than the annual peak NDVI from croplands 

including Pasture/Hay (a list of the peak annual MODIS NDVI by land cover type is provided by [2]). 

Therefore, a land cover mask was required to mask out non-agricultural land cover areas to avoid 

mapping of irrigation over vegetative non-agricultural lands such as forest, woody wetlands, or 

golf courses. 

From NLCD land cover classes, only Pasture/Hay and Cultivated crops were considered agricultural 

lands, and areas or cells that were not Pasture/Hay or Cultivated crops were successively eliminated or 

masked out (made null) at the MODIS annual peak NDVI data layer before ingesting them into the 

model. The overall thematic accuracy of 2001 NLCD was 85.3% for Anderson Level 1 classes with 

user’s accuracy of 82% for cropland category [69]. However, a modest agreement (r
2
 = 0.65) of area by 

county between 2002 Census estimates of farmlands and 2001 NLCD estimates of agricultural lands 

suggests a possible source of uncertainty in the modeled result in the irrigated area map. 

3.2. Description of the Geospatial Model 

In a geospatial modeling framework, we identified cells using a threshold based on the annual peak 

NDVI within agricultural land cover that comprise an equivalent target area by county provided by the 

Census of Agriculture (Figure 4). The model was implemented at a county spatial domain and initiated 

by creating an ordered list of unique annual peak NDVI values from within the extent of agricultural 

land cover. The peak NDVI value list was sorted in descending order. In the first iteration, cells with 

the highest annual peak NDVI value were identified and mapped and the accumulated area covered by 

those pixels was calculated. The accumulated area was then compared with the target area provided by 

the Census. If the total area of the selected cells was less than the target area, then cells with the next 

highest peak NDVI were taken from the sorted list and corresponding cells having that value were 

identified and appended with the previous map. The cumulative area of the cells identified by the two 

highest peak NDVI values was calculated. The cumulative area was again compared against the target 

area. These steps were repeated until the target area for the county was exceeded and a final county 

map of irrigated areas was created. 
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Figure 4. Processes illustration of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Irrigated Agriculture Dataset (MIrAD-US) geospatial model; the USDA irr. acg. 

refers to the county irrigation acreage tabular data at 2002 USDA Census of Agriculture; 

value of n determines number of iterations. 

 

In principle, we have calculated model estimates of irrigated areas to match the irrigated area 

estimates of USDA by varying NDVI threshold for individual counties. The basic strategy relies on the 

selection of locations with higher peak NDVI for irrigated crops. The size of a typical center pivot 

irrigation is about 500,000 m
2
 or 50 ha [52]. Thus, the MODIS resolution of 250-m (62,500 m

2
) offers 

adequate precision to identify all major irrigated cells. However, model dependency on the USDA 

irrigation estimates means that inaccuracies in these estimates will lead to inaccuracies in the 

model results. 

Since, the annual peak NDVI will vary by crop and may be further influenced by topographic, and 

climatic, and management factors, the optimal NDVI threshold to separate irrigated from non-irrigated 

cells needs to be locally selected. Improvements to the model might be realized by introducing a crop 

type map for 2002. However, no wall-to-wall U.S. crop map is currently available for 2002 at the  

250-m resolution. 

The irrigation mapping year of 2002 was climatologically a dry year with below average 

precipitation across the conterminous U.S. [53,54]. This provided the enhanced difference in peak 

NDVI between irrigated and non-irrigated crops suitable for this modeling approach. 

In the final step, all the county outputs were mosaicked together to create a seamless 250-m raster 

data product of MIrAD-US. All lone pixels from the raster product were filtered out based on the 
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assumption that in the United States irrigated fields are generally larger than 62,500 m
2
. This model 

will therefore not resolve very small, isolated irrigated fields. 

4. MIrAD-US for the Conterminous United States 

4.1. Results 

The MIrAD-US dataset (Figure 5) is a two-class data product presenting irrigated and non-irrigated 

classes. The map presents a geospatially specific rendition of the reported irrigated areas from the 2002 

Census of Agriculture at 250-m resolution, and each cell identified as irrigated in the data product was 

considered entirely irrigated. Unlike other remotely sensed irrigation maps, the MIrAD-US overcomes 

the spatial issues presented in subpixel fractional irrigated areas, but at the same time, it may have 

trouble identifying irrigated fields that are smaller than a 250-m cell. 

In the MIrAD-US, most of the major irrigation-dominated areas across the conterminous United 

States are located in the central valley of California, the Snake River Basin in Idaho, the Columbia 

Basin of the interior Northwest, the Ogallala Aquifer in the central Plains, and the Mississippi Flood 

Plains, with more sparsely scattered irrigation located along the east and southeast coasts (Figure 5). 

Most of the irrigated areas were concentrated in the western United States, but sparsely scattered 

irrigated fields were identified throughout the more humid eastern seaboard and Mississippi 

Flood Plain. 

Figure 5. The Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated 

Agriculture Dataset (MIrAD-US) showing the spatial distribution of irrigated lands in light 

gray color identified in a geospatial modeling framework using USDA irrigation statistics 

for 2002, MODIS annual peak NDVI, and 2001 NLCD 

 

The MIrAD-US mapped the targeted irrigated areas well in the western and Great Plains regions, 

but the difference between the targeted irrigated area and mapped irrigated area was relatively high in 

the humid Eastern regions (Table 1), suggesting that MIrAD-US may be more accurate in the West 

than in the East. Although the county statistics published by the Census of Agriculture provided the 
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target for the MIrAD-US model, the actual area identified in MIrAD-US was approximately 1.5% 

higher for the conterminous United States. This is because the model selects the NDVI peak threshold 

for each county that just exceeds the irrigated area indicated by the USDA statistics.  This reduces the 

precision of the model especially in counties with small amounts of irrigation. Table 1 presents a  

state-by-state comparison of irrigation area estimates between USDA and MIrAD-US. The differences 

between the estimates were low for most of the highly irrigated western states, but they were relatively 

high for the eastern states. The amounts of irrigated lands were comparatively low and scattered in 

small patches in most of these eastern states, and county sizes were relatively small. The filtering of 

single cells identified as irrigated also contributed high difference between the estimates for few 

eastern states. At the cell size of 250-m, the NDVI threshold-based separation of irrigated and  

non-irrigated cell areas are more effective when the target mapping area is approximately 200,000 ha 

or more by state and in the regions where differences in NDVI between irrigated and non-irrigated 

crops are more distinct. 

Table 1. Irrigated area estimates of USDA and MIrAD-US by state for 2002. 

States 
Irrigated lands by source in 

ha 

% 

Difference 
States 

Irrigated lands by source in 

ha 

% 

Difference USDA MIrAD-US USDA MIrAD-US 

California 3,524,550 3,507,406 −0.5 Illinois 158,169 190,113 20.2 

Nebraska 3,085,797 3,192,381 3.5 Wisconsin 156,169 164,919 5.6 

Texas 2,053,633 2,058,038 0.2 Indiana 126,719 143,713 13.4 

Arkansas 1,679,351 1,781,975 6.1 North Carolina 106,860 89,850 −15.9 

Idaho 1,330,818 1,352,225 1.6 North Dakota 82,077 97,669 19.0 

Kansas 1,083,860 1,110,800 2.5 Iowa 57,509 85,325 48.4 

Colorado 1,048,400 1,041,769 −0.6 Alabama 44,023 28,506 −35.2 

Montana 799,704 818,656 2.4 Virginia 40,029 30,700 −23.3 

Oregon 771,989 772,456 0.1 Delaware 39,322 35,463 −9.8 

Washington 737,805 743,531 0.8 New Jersey 39,211 36,400 −7.2 

Florida 734,575 746,100 1.6 South Carolina 38,705 27,356 −29.3 

Wyoming 623,899 602,763 −3.4 Maryland 32,710 30,400 −7.1 

Mississippi 475,720 501,081 5.3 New York 30,215 25,644 −15.1 

Utah 441,516 438,700 −0.6 Tennessee 24,774 19,681 −20.6 

Missouri 418,029 444,300 6.3 Pennsylvania 17,206 12,381 −28.0 

Louisiana 379,935 396,569 4.4 Ohio 16,465 14,106 −14.3 

Arizona 377,060 376,156 −0.2 Kentucky 14,873 10,081 −32.2 

Georgia 352,404 318,831 −9.5 Massachusetts 9,599 6,838 −28.8 

New Mexico 341,878 337,675 −1.2 Maine 7,974 7,131 −10.6 

Nevada 302,160 291,369 −3.6 Connecticut 4,103 2,938 −28.4 

Oklahoma 209,446 207,000 −1.2 Rhode Island 1,604 931 −41.9 

Michigan 184,649 197,419 6.9 Vermont 945 500 −47.1 

Minnesota 184,071 212,450 15.4 New Hampshire 928 356 −61.6 

South Dakota 162,313 187,619 15.6 West Virginia 802 431 −46.2 

    Total U.S. 22,354,552 22,698,700 1.5 
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4.2. Validation 

The validation of MIrAD-US was a major challenge because of inadequate comprehensive and 

timely historical ground observations. While technically feasible, intercomparison with existing remote 

sensing-derived maps of irrigated lands available for the United States would not necessarily provide 

validation of the MIrAD-US, because those maps themselves typically have not been comprehensively 

validated against actual ground observations. In addition, potential discrepancies would be expected 

because of underlying differences in processing techniques, input data, methods, and map legend 

definition implemented in creation of the referenced geospatial data products [55]. A comprehensive 

ground verification survey was outside the scope of this effort; therefore, we relied on the best 

available geospatial irrigated area information based on ground surveys from multiple sources for the 

accuracy assessment of MIrAD-US. We have evaluated MIrAD-US both quantitatively and 

qualitatively. Quantitative assessment was based on land use data provided by California Department 

of Water Resources (DWR) and irrigation ground reference points collected by the University of North 

Dakota (UND) in Nebraska, Kansas, Oklahoma, and Texas. No irrigation ground reference points for 

2002 were found for the eastern United States, thus a qualitative evaluation was performed by 

comparing MIrAD-US with August 2002 Landsat images for the eastern states of Missouri and Florida.  

Accuracy Assessment of MIrAD-US in California 

The California DWR conducts detailed land use surveys in California to map agricultural lands each 

year. In these surveys, field-level data on crop categories, irrigation methods, and water sources are 

well documented. However, not every county is surveyed every year. Each survey begins with 

delineation of agricultural field boundaries from aerial photographs and high-resolution satellite 

images. Then, over 95% of these fields are visited by a DWR staff member for visual identification of 

the land use. Once the field work is complete and land use attributes with irrigation information are 

added with the spatial (vector polygon) field unit, a digital composite vector field map of the survey 

area is created with appropriate metadata. After quality checking, these field maps are posted at a DWR 

Web site (http://www.water.ca.gov/landwateruse/lusrvymain.cfm). We downloaded vector field 

boundaries for 19 counties (Figure 6(a)) that were considered representative for the state. The irrigation 

and land use information for the fields in these counties were acquired in a 5-year period (2000 to 

2004). As total irrigated area did not vary substantially over these 5 years in California, we assumed 

that ground observations collected across a 5-year period bracketing the year 2002 would have a 

minimal influence on the assessment. 

We used a random sampling technique to quantify the agreement between MIrAD-US and DWR 

irrigated areas. We converted DWR surveyed polygon fields into grids using an irrigation attribute (1 

for irrigated and 0 for non-irrigated) matching the spatial properties (projection, extent, and cell size) of 

the MIrAD-US so that both data products fully overlay each other on a cell-by-cell basis. Thus, the 

MIrAD-US and DWR raster maps were made to have the same attribute values (e.g., 1 if the cell is 

irrigated and 0 if the cell is not irrigated). We used a random point generator to create 5 sets of sample 

points constrained by the common areas from both data products and with a minimum spacing of 1 km 

between any two points. These points were overlaid on both data products, and irrigation information 



Remote Sens. 2010, 2                            

 

2402 

was extracted from the cell that contained the point. Approximately 22% of the points were in the 

irrigated area and 78% of the points were in the non-irrigated areas. The numbers of these sample 

points from each type (irrigated and non-irrigated) were directly proportionate to the area they cover in 

the landscape. Finally, an error matrix was generated using the extracted irrigation information from 

MIrAD-US and DWR for each of those set of points. The results from the error matrix are presented in 

Table 2. Five sets of points were generated to understand the influence of the number of samples in a 

random sampling. The numbers of samples varied from 1,000 to 5,000 with point density varying 1 

point per 96.7 km
2
 to 19.3 km

2
. Test results implied that the total number of samples in random 

sampling had a negligible impact on the derived statistics.  

Table 2. Error matrix summary of irrigated lands between MIrAD-US and DWR fields 

map for California. 

Sample # / 

density per 

point in km
2 
 

Classes 
Producer’s 

accuracy 

Errors of 

omission 

User’s 

accuracy 

Errors of 

commission 

Overall 

accuracy 

Kappa 

stat 

3000/ 

32.2 

 

Irrigated 0.75 0.25 0.86 0.14 

0.92 0.75 
Non-Irrigated 0.97 0.03 0.94 0.06 

Results presented in Table 2 suggest that the irrigated areas in the MIrAD-US agreed well with 

DWR irrigated fields with an overall accuracy of 92%. Another measure of agreement, especially for 

remotely sensed data product, is the Kappa statistic [56]. Kappa values range between 1 and −1, where 

1 is perfect agreement, 0 is no agreement beyond agreement chance and −1 is complete disagreement. 

The Kappa index calculated from the error matrix for California ranged from 0.75 to 0.77, which can 

be considered a substantial agreement. The producer’s accuracy of around 75% and the user’s accuracy 

of around 86% suggest that the MIrAD-US have omitted some irrigated areas. In terms of total area, 

the DWR county field-based maps showed 24% more irrigated area than the irrigated areas mapped in 

MIrAD-US for these 19 counties. If an irrigated field was isolated and less than 250-m in size or 

around 6 ha, then it is obvious that the vegetation greenness signal would not be strong enough from 

that field to be picked up by MODIS annual peak NDVI, and consequently may not be identified as 

irrigated areas in MIrAD-US. In DWR field surveys, as little as 2,000 m
2
, or 0.2 ha, of irrigated fields 

were identified and mapped. Many of these small fields were generalized when DWR vector fields 

were converted to raster. This difference in spatial detail between the compared data sets might have 

contributed to this omission error. Another cause for the omission error is the time lag between 

MIrAD-US and DWR field-based data composite map. MIrAD-US mapped irrigated areas for 2002, 

whereas the field information acquisition dates of the DWR field map range from 2000 to 2004. 

Despite very little change in total irrigated area estimates over these 5 years, any crop rotation or 

changes in irrigation requirements that took place across the landscape over this period would change 

the spatial distribution pattern of irrigated areas across the landscape which might have resulted in 

omission error in MIrAD-US map.  
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Accuracy Assessment of MIrAD-US in Great Plains 

The second set of ground observations was obtained from UND. In 2006, UND conducted a 

comprehensive field survey to visually identify irrigated and non-irrigated fields in several  

high-intensity irrigated areas of the Great Plains. A total of 336 sites were observed during the survey 

and coordinates of the sites were recorded using a Global Positioning System (GPS) along with 

multiple digital photographs with photo facing direction and land use as attributes. The survey was 

conducted between the fourth week of July and first week of August. Figure 6b shows the location of 

the ground observation sites surveyed by UND. 

We digitized the area of the targeted fields for each of these points by overlaying them on August 

2006 Landsat images and visually interpreting the image with the help of point attributes (Figure 6(c)). 

In this fashion, the ground observation points were transformed into area polygons. These area 

polygons were converted to raster grid with the same spatial properties of MIrAD-US (cell size and 

extent) so that both grids align perfectly on a cell-by-cell basis. Finally, these ground observations were 

compared with MIrAD-US in two ways. First, the grid with ground observation information was 

overlaid on MIrAD-US and compared on a cell-by-cell basis, and an error matrix was produced; 

second, each of the digitized area polygons was overlaid on the MIrAD-US, and the land use was 

visually identified from MIrAD-US based on a portion of the maximum coverage (e.g., if more than 

one half of the polygon was covered by irrigated cells from MIrAD-US, it was considered ―irrigated‖ 

for MIrAD-US). This land use information from MIrAD-US was then compared with the original 

ground-observed land use, and a second error matrix was produced. The summary of these two error 

matrixes is presented in Table 3.  

Table 3. Error matrix summary of irrigated lands between MIrAD-US and UND ground 

observation sites for the Great Plains. 

Comparison 

type 

Producer’

s accuracy 

Errors of 

omission 

User’s 

accuracy 

Errors of 

commission 

Overall 

accuracy 

Kappa 

stat 

By grid cells 0.67 0.33 0.94 0.06 0.75 0.51 

By polygons 0.79 0.21 0.94 0.06 0.81 0.56 

Although lower than the agreement results for California, the agreement between MIrAD-US and 

ground observations was reasonable for the Great Plains with overall accuracy of 75% or 81% 

depending on the comparison methods. The Kappa statistic of 0.51 or 0.56 also suggests a fair 

agreement. Comparison by polygon may be relatively skewed because of generalization of the 

information obtained from the MIrAD-US for each of those ground observation polygons. Relatively 

high errors of omission and low errors of commission suggest that, in the regions where the ground 

data were collected, there may have been less irrigated fields mapped by MIrAD-US. This could be due 

to the discrepancy between MIrAD-US date (2002) and field survey dates (2006). Some of the  

high-intensity irrigation in the United States occurs in the Great Plains, which is primarily fed by the 

Ogallala Aquifer. The irrigated area did increase in Nebraska, Kansas, Oklahoma, and Texas by 

392,890 ha, or 6.1% between 2002 and 2007 [1]. 
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Figure 6. Showing the spatial distribution of irrigation ground truth data used in the 

accuracy assessment, (a) California Department of Water Resources field boundaries for 19 

counties surveyed between 2000 and 2004, gray shaded fields were irrigated and void 

outlined fields were non-irrigated, (b) black dots were the ground truth points surveyed by 

University of North Dakota during July–August 2006, and (c) a polygon was drawn for 

each of the ground truth points by overlying them on August 2006 Landsat images and 

using the point attributes taken during the survey, these polygon areas were used in the 

accuracy assessment instead of the points directly. 

 

Qualitative Assessment of MIrAD-US 

In Figure 7, we present the MIrAD-US irrigated lands side-by-side with Landsat images for six 

major irrigation sites (the MIrAD-US is in the first and third column and Landsat image views of the 

landscape is in the second and fourth column). The Landsat images were acquired during August 2002 

and presented in false color combination (Thematic Mapper bands 7, 4, and 3 as RGB). The bright 

green cells were assumed to be irrigated in the Landsat images; however, they cannot be confirmed just 

by looking at one snapshot of the cropping system; nevertheless, they were helpful in providing 

qualitative observations of crop growth conditions.  

In the Pacific Northwest, the Cascade Mountain range effectively causes most of the moisture from 

the atmosphere to precipitate onto the west side of the mountains, leaving the east side in a rain 

shadow. The eastern area, therefore, requires irrigation for profitable production of most crops [62]. 

Figure 7(a) shows the irrigation in the Snake River Basin in southern Idaho. MIrAD-US was successful 

in identifying the spatial distribution pattern of irrigation in this region. 

a) 

b) 

c) 
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Figure 7. MIrAD-US (first and third column) is qualitatively compared with a snapshot of the cropping system depicted by August 2002 

Landsat images (second and fourth) in (a) Snake River Basin in southern Idaho, (b) Central Valley in California, (c) south-central Nebraska, 

(d) semiarid northwestern Texas, (e) humid Mississippi flood plains in Missouri, and (f) South Florida. Landsat bands 7, 4, and 3 are shown in 

red, green, and blue combination. 
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Figure 7(b) depicts the irrigation in the central valley in California. The central valley has the 

highest concentration of irrigation within the state. MIrAD-US seems to overmap irrigated areas by 

identifying most of the agricultural lands as irrigated, but the observation was based on just one 

Landsat image. Most of the agricultural lands in the central valley require an additional supply of water 

to grow crops because of very low summer precipitation and the Mediterranean climate.  

Figure 7(c) depicts the highly irrigated parts in south-central Nebraska, mostly fed by the Ogallala 

Aquifer. The MIrAD-US mapped the irrigated areas significantly well because of the distinct 

difference in NDVI between irrigated and non-irrigated crops during the peak growing season in the 

relatively dry summer month of August. A recent study conducted by the University of  

Nebraska-Lincoln also confirmed a high degree of agreement (90.2%) between MIrAD-US and the 

Landsat-based Nebraska land use map [57].  

In the semiarid northwestern Texas (Figure 7(d)), irrigation typically occurs on a large scale based 

on center pivot systems depending on withdrawals form the Ogallala Aquifer. Over 90% of Ogallala 

withdrawals in the High Plains are used in irrigation [58]. The irrigation presence at this site was 

clearly mapped by MIrAD-US with identification of the irrigated center pivots. The sharp contrast 

between large-scale irrigated and non-irrigated vegetation in this semiarid climate was key to the 

successful identification of irrigated lands in the Texas High Plains. 

Unlike the west and the Great Plains, in the humid Mississippi flood plains in Missouri, irrigation 

occurs on small field sizes and on a supplemental basis. Despite an average annual precipitation of 

1,000 mm, periodic summertime drought makes irrigation necessary to avoid crop failure and yield 

reductions. The comparison in Figure 7(e) shows that MIrAD-US was reasonably successful in 

mapping irrigated land in this highly heterogeneous region. 

In Figure 7(f), irrigated areas were distinctive in this June 2002 Landsat image in south Florida. 

Despite high annual precipitation, the non-uniform distribution and porous soils with low water holding 

capacity makes irrigation necessary in Florida. Here, irrigation also reduces water stress for high-value 

specialty crops and enables environmental modifications, including freeze protection and crop cooling 

[59]. The irrigated lands mapped by MIrAD-US appear to align better with the Landsat-based irrigation 

in the northeastern part of the Landsat image but do not appear to be as accurate in the northwestern 

part of the image possibly because of the tendency for NDVI to saturate over high-density vegetation 

that may minimize the distinction between irrigated and non-irrigated crops. 

5. Discussion and Conclusion 

We mapped irrigated lands in the conterminous United States by spatially identifying the areas from 

the tabular data that were reported by USDA at the county level. The method was robust and easy to 

implement using datasets from secondary sources that were all publicly available. The resulting map of 

irrigated areas for 2002 was reasonably accurate in the western and central parts of the United States, 

with overall accuracy of 92% and 75%, respectively. The very distinct crop growth signals between 

irrigated and non-irrigated fields were the key in successful mapping of irrigated areas in these regions. 

MIrAD-US identified irrigation status for each 250-m cell without the fractional presentation of 

irrigation information. This is especially helpful for the quantification of parameters for water and 

energy budget with respect to the true spatial location. 
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Our method of identifying irrigated lands was tied to the USDA statistics for irrigation surface area 

and the spatial distribution of remote-sensing-based annual peak NDVI for spatial pattern. This makes 

it possible to spatially map the irrigated areas across the United States consistently for USDA statistics 

compilation years (i.e., years ending with 2 and 7). Routine implementation of the approach would 

facilitate the analysis and understanding of spatial trends in irrigated lands across the United States, 

which is an essential component in the assessment of national water use. The USGS Science strategy 

calls for a Water Census of the United States, including performance of regular and timely assessments 

of national water availability and use. As a contribution, the USGS Geographic Analysis and 

Monitoring program proposes to develop and implement a national irrigation water use monitoring 

system.  This system will provide estimates of water use on irrigated lands across the country requiring 

detailed information on the location of irrigated fields, their surface area, seasonal cycles, crop types, 

and rates of evapotranspiration. Combining remote sensing data, including the MIrAD-US, with in-situ 

data will lead to a comprehensive assessment of current water use for agriculture. 

One of our modeling assumptions was that there would be a distinct difference of NDVI between 

irrigated and non-irrigated crops. This assumption was found to be appropriate in the western and 

semiarid regions of the United States, but for the humid regions, high precipitation and the 

supplemental nature of irrigation caused the difference in NDVI between irrigated and non-irrigated 

crops to be less distinct, which makes it difficult to map irrigated lands in the humid regions. So, in 

this approach, we categorized most of the irrigated lands well as they are concentrated in the West, but 

we may not have categorized it well in the humid eastern region. However, visual interpretation shows 

comparative improvements in the mapping of irrigated areas in MIrAD-US across the humid eastern 

regions of the U.S. over existing geospatial maps of irrigated areas by [3,11,13-16]. 

The accuracy of the MIrAD-US model results is strongly dependent on the accuracy of county 

irrigation statistics and the NLCD data layer. Thus, uncertainties in these source data products from 

secondary sources may compromise the performance of the model results. 

The 2002 MIrAD-US model and geospatial results were encouraging and we plan to investigate 

ways to improve the methodology. Immediate plans include using this method to calculate a new 

version of the MIrAD-US for 2007. The 2007 county irrigation statistics are now available from the 

USDA. Other developments in the inputs that will be incorporated in the model will be a 2007 annual 

peak NDVI derived from eMODIS and the revised 2006 land cover from the National Land Cover 

Database which is expected to be available in 2010 [60]. A new MODIS-based North American land 

cover dataset at 250-m resolution will also be tested.  Other plans include testing the model with 

alternative vegetation index inputs. For example, the Enhanced Vegetation Index (EVI) may provide a 

better indicator of peak vegetation than NDVI [61]. Also optimizing the model for the hierarchical 

selection of vegetation index by incorporating crop types may yield improved separation of irrigated 

and non-irrigated lands especially in the humid regions. Incorporation of topographic derivatives may 

provide improvements to the model.  

The 2002 MIrAD-US is available for download from the USGS EROS Early Warning and 

Environmental Monitoring Program Web site at http://earlywarning.usgs.gov/USirrigation/. The 

dataset is provided with Environmental System Research Institute GRID and ENVI image file formats 

at two different cell sizes (250-m and 1-km) and includes appropriate metadata. 
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